Compressed Air Airplane
As a school project, we had to make an airplane that flew as long as possible without using an electric motor.
Therefore, I came up with the idea of using compressed air to propel a rotorblade.
If you want to make one yourself, you'll need a couple of things:
- Balsa wood sticks:
- 15 x 15 x 1000 mm (2x)
- 10 x 20 x 1000 mm
- Balsa wood plate 10 x 100 x 1000 mm
- Polystyrene modelling foam (blue) (minimum 100 x 400 x 600 mm)
- Polystyreen plate 2 mm thick
- Duct tape
- Glue:
- Superglue
- Wood glue
- Hot Glue
- Old electric motor with small ball bearings (stepper motor)
- 2 Coke Bottles 1,5L (or other strong plastic bottles)
- Steel shaft ( diameter 3 mm , depending on your ball bearings inner diameter)
- PVC pipe (outer diameter 40 mm , depending on the inner diameter of your motor caps)
- 9 inch rotorblades (Slow-fly props would be best)
- Pneumatic tube 9 mm
- Adapter for 9mm tubes
- Reduction valve
- Pipe clamps
- Presta valve ( bicyle tire)
Turbine
- Take your old motor and cut it open with a grinder or dremel. Do this carefully in the joints, where the motor is connected together.
- Take the two sides apart and remove the stator and wires.
- For the rotor of the turbine, you'll use the steel shaft (3 mm ), the original rotor of the motor a piece PVC pipe and some small pieces of polystyrene plate (2 mm).
- First you need to remove the old shaft, if it's to short. Beat the new shaft on the old with a hammer to remove it. The new one will take it's place.
- Glue six polystyrene plate rectangles in a circle on the rotor (superglue). Make sure none are touching the PVC pipe if you align it. But don't make them too small, because air will get through.
- Cut the PVC pipe slightly larger then the width of the rotor (25 mm).
- Drill a hole in it under an angle, so the air will hit the blades almost perpendicular.
- Drill another hole for the outlet, 30 degrees of the other hole (make sure you take the right direction)
- Glue a small piece of 9 mm pipe to the PVC pipe, on the hole. Make sure it fits just right and the air can not escape.
- Take two washers and place them around the shaft on both sides of the rotor, so the friction on the sides is minimal and the shafts axial movement is limited.
- Glue a polystyrene circle on the inside of both caps ( sides of the motor) so no air can escape there.
- Place both caps with ball bearings on both sides of the PVC pipe with rotor inside. Align them carefully so the rotor has as least as possible friction.
- Finally, connect your proppeller on the shaft.
Now the turbine is ready, test it by blowing air in it.
In this short video I tested my turbine with one 1,5L bottle at 5 bar (72.5 psi). More video footage with 2 bottles will be coming soon.
Downloads
Wings and Tailwing
- Cut the wings using the hot wire method:
- Make the shape of your widest point of the wing (at the center) in wood and attach it to the side of the foam
- Span one side of the hot wire in one point, the other one you can move freely.
- Connect a power supply and follow with the end of the wire the wooden shape.
- When its done, you'll have a wing that's narrower at the end.
- Do the same for the other wing
- The middle part of the wing, you can use a normal hot wire cutter because its just a straight extrusion of the wooden shape (width 130 mm) .
- For the tail wing, just cut out its shape with a belt saw or normal saw. Make it not too thick and not too thin ( about 10 - 15 mm). Rounden its front and sharpen its and with a a file or sandpaper.
- When all wings are cut, coat them with duct tape to make them stronger and to prevent braking pieces of your wings.
Frame
Now we have to make a frame to attach the wings to.
- Take the two balsa wood sticks and glue them in one end together and one end 240 mm apart with an other stick between them.
- Then take a balsa wood plate and make curved sticks to make the arc at the front.
- Reinforce the front with extra sticks and a foam tip.
- Attach two other sticks across the arc and mount the turbine in a wooden plate with hole.
- Glue all parts together with wood glue ( superglue for metal - wood combination).
- When the glue is dry, you can place the wings on the frame and glue it together with hot glue.
Bottle Tanks
Another important part of this airplane are the bottle air-tanks. They are made using two 1,5L plastic bottles and some valves and adapters.
- Drill in one cap a hole to fit the reduction valve. Screw it tight on the cap with a nut and use hot glue to make it extra air-tight.
- Drill in the other cap a smaller hole to fit the 9 mm tube adapters. Same here, use nut and hot glue.
- Drill in both botlles a hole on the bottom side, one bottle to fit a presta valve and one to fit another tube adapter.
- Connect the two bottles with 9 mm pneumatic tubes in series and fit them with pipe clamps on the tube adapters.
- Test multiple times to make sure everything is air-tight, if not adjust with hot glue untill it is.
- Connect the air-tanks to the turbine.
Assembly and Testing
Finally, the bottle tanks can be mounted on the frame and with everything connected, you can test it.
I tested it a few times with 5 bar (72.5 psi) and it kept running for 5 - 8 seconds full speed. I couln't go higher because of some minor air leaks. I do think there is potential with this concept, but right now mine isn't optimised. For instance, I used a to heavy reduction valve and adapters, my wings were to small (40 mm in stead of my suggested 60 mm) and my propeller wasn't a slow-fly prop.