Cordless Drill Upgrade for About $40

by alexander.m in Workshop > Tools

40293 Views, 30 Favorites, 0 Comments

Cordless Drill Upgrade for About $40

Photo 1.jpg
Photo 2 copy.jpg
save hundreds on a drill by upgrading the power to 1.4 hp instead of buying new.


I needed a cordless drill to do some outdoor drilling, but I did not want to spend $200-$300 for a 18v-24v cordless from a store shelf. I got a cheap 6v cordless drill that I up graded by replacing the motor, the circuit ,the batteries; and I made box to hold the 16 C batteries. After the fabrication and assembly, I tested it and found that it was almost as powerful as my 120v AC corded drill from Skil. The price of this project would be $30 for the parts, $8 for the alkaline batteries, $40-$70 for nickel cadmium rechargeable batteries.The price depends on the quality of the drill I started with which would cost around 30$. If you have to buy an inexpensive cordless drill, and do this conversion, it will still be cheaper than an expensive cordless drill.

Please note that the photos are in mirrored image.

Tools and Parts List

Photo 4.jpg
Photo 10a .jpg
Photo 5.jpg
Photo 7.jpg
Photo 10 c.jpg
Photo 10e.jpg
Photo 6.jpg
Photo 8.jpg
Photo 9.jpg
Photo 10r.jag.jpg
the tools include :

1. soldering iron
2. circle guide or compass
3.solder (I suggest lead free)
4. electrical tape and masking tape
5. screw drivers
6. alligator clips
7. wire strippers
8. small hammer
9. red and black markers
10. drill
11. pliers
12. ruler
13. scissors
14. hand saw
15. file
16. pliers
17. wire cutters
18. super glue
19. volt meter or you could use a battery,
light bulb and wire instead to check conductance
20. drill bits
21.sand paper

22. hobby knife

parts include:

1. a metal or hard plastic box
2. metal sheet (I suggest aluminum)
3. battery holders
4. 24 volt motor
5. electrical connectors
6. insulated wire
7. small plastic box from an adapter
8. steel wire
9. 16 batteries
10. 4 button
11. coat hanger
12. CD box

The 1.4 hp motor it is normally used for RC cars, I got this one at a local hobby store for $10, if you can't find it locally you can get it at http://www.robotmarketplace.com/products/0-HTIM1.html

I found a good source for rechargeable battery's at http://www.cheapbatteries.com/nicd.htm I suggest
that you only use nickel cadmium batteries because they can be charged easily, just supply power of 1.7V multiplied by the number of 1.2V batteries, connect in Series or 1.7x) other batteries need a more complex charger.

The four buttons on the second slide of this page are not the same. The two blue buttons are on when at rest and off when pressed and the two red ones are off when at rest and on when pressed.
This will be explained later .

Disassembly and Modification

Photo 12.jpg
Photo 13 copy.jpg
Photo 14.jpg
Photo 15.jpg
Photo 16.jpg
Photo 21 copy.jpg
Photo 22.jpg
Photo 23.jpg
Photo 24.jpg
Photo 17.jpg
Photo 18.jpg
Photo 24k.jpg
The first thing to do is to remove the screws on the drill, then take notes on the inner workings, this is important because you might not have the same drill. Remove the batteries because they might be leaking corrosive or toxic chemicals so take them to a poison control office or hardware store where there should be a bin for old batteries. Next remove the gear from the motor and leave the switches intact because they will be used later. Then finally cut away from the base because you will need to make space for 1 battery and the connectors. Now you have all the salvaged parts.

The Battery Assembly Wiring

Photo 54.jpg
Photo 29.jpg
Photo 30.jpg
Photo 32a.jpg
Photo 32z.jpg
Photo 33.jpg
Photo 34.jpg
Photo 36.jpg
Photo 37.jpg
Photo 38.jpg
Photo 41.jpg
Photo 40.jpg
Photo 42.jpg
Photo 43.jpg
Photo 44.jpg
Photo 45.jpg
Photo 46.jpg
Photo 47.jpg
Photo 48.jpg
Photo 49.jpg
Photo 50.jpg
Photo 51.jpg
Photo 52.jpg
Photo 53.jpg
Photo 54.jpg
Here we will make the battery circuit and some of the attaching assembly.
Start by stripping the insulation on all the wires, then cut the wires on one of the battery holders then cut the battery holders. Connect all the battery holders into two sets of eight battery circuits. Place electrical tape on all the connections and place all of the battery holders in the battery box except for one. Trace the bottom of the drill then use another drill to make a quarter inch hole in the top of the battery box after removing the lid from inner components. Place the lid back on then feed the four wires though the hole. Place a connector on three of the wires and the fourth being connected to the last battery holder, then to the fourth connector. Be sure to lablel the connectors , remember there are two separate 12V circuits.

The Battery Assembly Connecters

Photo 97.jpg
Photo 55.jpg
Photo 66.jpg
Photo 56.jpg
Photo 57.jpg
Photo 60.jpg
Photo 61.jpg
Photo 67.jpg
Photo 62.jpg
Photo 63.jpg
Photo 64.jpg
Photo 69.jpg
Photo 70.jpg
Photo 74.jpg
Photo 68.jpg
Photo 71.jpg
Photo 72.jpg
Photo 75.jpg
Photo 73.jpg
Photo 76.jpg
Photo 77.jpg
Photo 78.jpg
Photo 79.jpg
Photo 80.jpg
Photo 81.jpg
Photo 82.jpg
Photo 84.jpg
Photo 85.jpg
Photo 86.jpg
Photo 90.jpg
Photo 94.jpg
Photo 96.jpg
Photo 97.jpg
In the last step there was one battery holder outside of the battery, now you will make a smaller battery box out of aluminum. Start by making a paper model and check if it fits, then copy it in aluminum. The drill might require a spacer, so I used the converter box as a template to make one out of plastic, then used super glue to secure it. The final part is to drill some smaller holes and make a loop with some metal wire then use super glue to secure it.

Clamp Asembly

Photo 116.jpg
Photo 102.jpg
Photo 103a.jpg
Photo 104.jpg
Photo 105.jpg
Photo 107.jpg
Photo 108.jpg
Photo 109.jpg
Photo 110.jpg
Photo 111.jpg
Photo 112.jpg
Photo 113.jpg
Photo 114.jpg
Photo 115.jpg
Photo 116.jpg
In the last step there were four metal loops on the battery box that will be used to attach the drill to the battery box. Start by drilling the holes in the bottom of the drill then place some metal loops much like the last step, then make some clasps similar to the ones on a briefcase out of wire.

The Mechanical Mechanism

Photo 123.jpg
Photo 118.jpg
Photo 120.jpg
Photo 121.jpg
Photo 122.jpg
In this step I placed the small gear on the motor then used a small amount of super glue. The plastic shell has rubber pads so the motor does not need to be glued in place. in my case the motor shaft and the motor was the perfect size, but if the shaft on the motor is too small you could add a small brass tube. If the shaft is to big you could drill the gear to make the hole bigger but if the hole is too big the gear will break apart. If the motor is too small then you could put a piece of pvc pipe around the motor so it will fit. If the motor is just slightly smaller then you could wrap the motor with paper and tape.

Electronic Mounting

Photo 139.jpg
Photo 125.jpg
Photo 127.jpg
Photo 126.jpg
Photo 128.jpg
Photo 136.jpg
Photo 137.jpg
Photo 134.jpg
Photo 135.jpg
Photo 129.jpg
Photo 130.jpg
Photo 131.jpg
Photo 132.jpg
Photo 139.jpg
Photo 140.jpg
Remember the four buttons, the two blue ones are on when at rest and off when pressed, the two red buttons are off when at rest and on when pressed. These will be placed in this step
where we will be mounting the buttons in the shell of the original drill. The red button in the back is used to turn the motor on and off, and the other red button as well as the two blue buttons will be placed at the trigger arranged so that they will move as one and be used to change the voltage from 12v to 24v.




Wiring

Photo 165.jpg
Photo 127.jpg
Photo 141.a.jpg
Photo 214.jpg
Photo 141.b.jpg
Photo 141.c.jpg
Photo 141.d.jpg
Photo 141.f.jpg
Photo 141.g.jpg
Photo 141.h.jpg
Photo 141.i.jpg
Photo 133.jpg
Photo 150.jpg
Photo 151.jpg
Photo 163.jpg
Photo 143.jpg
Photo 144.jpg
Photo 145.jpg
Photo 146.jpg
Photo 147.jpg
Photo 148.jpg
Photo 149.jpg
Photo 150.k.jpg
Photo 162.jpg
The first eleven images are about how to attach the female wire connector to a wire. Start by removing the metal insert then strip off the insulation and tie the wire to the metal insert. Then clamp the back end of the metal insert to secure the wire and finally put the plastic tube back in place.

This part is fairly simple but this can be frustrating if you don't know how the wiring is arranged. If you are uncertain with circuitry then I suggest that you follow my instructions exactly. if you are good with circuitry then you could make your own circuit.

Take note of of the battery pack, the four leads should be labeled P1,P2,N1 and N2 the P stands for positive and N is for negative, in my case P1 and N1 are connected and will have 12V and P2 N2 are the same but insulated .

For the wiring, refer to the twelfth, thirteenth, fourteenth and fifteenth pages
wile viewing page elven and twelve. Follow the wiring list given. All of the points on the list should be soldered as one in each column on the list .

w1 w 2 w 3 w 4 w 5 w6 w7

P1 N1 P2 N2 E2 M1 M2
C1 A1 C2 A2 D1 F1 F2
B1 E1 D2 B2

Once you have done all of this you might want double check the circuit for shorts or any other problems, then you would have what is seen on the first image.







Completion

Photo 712.jpg
Photo 698.jpg
Photo 700.jpg
Photo 702.jpg
Photo 701.jpg
Photo 10e.jpg
Photo 730.jpg
Photo 731.jpg
Photo 733.jpg
This is the final step, first put some electrical tape on all connections then put the mechanical components inside, cover and secure in place. Now comes the part you will have to repeat regularly. It is to attach the connectors and make sure that they are labeled, and now you are finished.

If you want to go beyond alkaline batteries and make your drill rechargeable, you need to get some Nickel-cadmium batteries. I suggest that you only use Ni-Cd batteries because they are easy to recharge ,you just supply power positive to the positive and negative to negative (the voltage to recharge is 1.7v multiplied by the number of battery's in Series or 1.7x) Other batteries such as Ni-Mh or especially lithium batteries need a more complex charger.

Whether you get Ni-Cd or something more advanced, you would insert all 16, 1.2V battery or 6, 3.6V lithium batteries (you will need to modify the battery box). Then what you do is to attach alligator clips to the battery leads then to the charger or power supply. You can get an advanced charger at http://www.robotmarketplace.com/products/battery_chargers_main.html and batteries at http://www.cheapbatteries.com/ or at http://www.robotmarketplace.com/products/batteries_main.html

Observe the last three images if you are unsure how to charge batteries.

I hope you enjoyed this project, leave a comment or questions and I will try to reply.

the image of battery is from http://www.germes-online.com/direct/dbimage/50060458/High_Rate_Discharge_SC_Size_Ni_Cd_Batteries.jpg