Insect Eavesdropper: Creating a High-Gain Parabolic Microphone
by nevdull in Circuits > Electronics
59626 Views, 202 Favorites, 0 Comments
Insect Eavesdropper: Creating a High-Gain Parabolic Microphone
This project builds a high-gain amplifier with a piezo microphone on one end and earphones on the other. In between the magic happens. In fact, if you replace the piezo mic with wire wrapped around a ferrite core you can hear magnets in your wall. Or if you hammer a nail halfway through your wall and place the microphone you can hear conversations in the next room as clear as a bell (ahem, not that I've tried it). I'll offer suggestions for improvements and other uses at the end of this instructable.
Ingredients
Start with the following items and feel free to substitute similar items with what you have handy:
- All detergent container (or similar...just get the shape close to a parabola)
- Small (5"x5") pressboard (you can buy these in huge sheets for minimal scratch at homedepot and elsewhere)
- piezeo microphone like the one at radio shack and elsewhere...
- a few feet of 0.25" x 0.170" vinyl tubing (homedepot) [optional]
- some cardboard (you *can* substitute the cardboard for the pressboard if you want)
- headphones
- felt pads
- LM358 Single-supply OP Amp
- LM386 Audio Op Amp
- 10k OHM resistor (x3)
- 1k OHM resistor
- 0.1uF capacitor (x2)
- 100uF electrolytic capacitor
- 220uF electrolytic capacitor
- 470uF tantalum capacitor
- 1uF tantalum capacitor
- 100k OHM linear potentiometer
- 1/8" audio jack similar to here
- Soldering iron, solder
- hot glue gun
- paint
- tools
- compass (as in the thing you make circles with)
- Schematic cad software if you plan on changing things
- copper-clad or perfboard for pcb
Microphone and Pickup Apparatus
Take the lid off of your detergent bottle and wash it out (the detergent bottle and lid). Place the lid's screw-side opening against the pressboard or cardboard and trace its outline. Cut it out using a jigsaw, scissors, dremel, etc. Drill two holes in the center with a ~ 0.70mm drill bit. The idea here is to get them to be small because you're only going to threading the mic leads through them.
Once you've done that consider this optional step. I took the pressboard outside and spray painted a layer of rubber (you can get spray rubber at homedepot) over it as a sound/shock absorbing layer.
Once done, hot glue (don't trust the felt sticky side) or cement a small felt pad to the center of the two holes. Drill out the two holes being careful not to suck up the entire felt pad (when you do it you'll know what I mean). The felt pad is another shock absorbing measure that I originally used on ultrasonic transmitters. Drill, file, or sand a notch on the edge of the wooden disc big enough for about 5 hookup wires to fit through.
Drill a hole in the bottom of the detergent lid the same (or slightly smaller) diameter as the bushing of your headphone audio jack. This is where you'll be plugging your headphones into.
Once the felt is dry and glued to the board, put your piezo mic through the holes and solder lead wires to each, noting which is the gnd and which signal. If you don't know, the signal line will be insulated with rubber from the case; the GND lead will be soldered directly to or be part of the case.
The Case
[optional] Take your vinyl tubing and measure it around the bottom of the container that you just cut open. Cut it to size. Next, cut long-wise down the center of the tubing from end to end. When complete, grab your hot glue gun and lay a bead around the bottom edge and then slip the vinyl tubing where you cut the groove over the edge of the container. This helps to remove the sharp edge where you cut it open and helps smooth out the lines of the exterior/interior interface.
Cut out some cardboard the shape of the front of the handle concavity and tape it over. It should fit snugly but not completely taped over. We want to a) smooth out the interior for better sound quality and b) have a place to hide our battery. You should do a better job than what I show in the picture. :)
You could paint the case and lid assembly now if you like or wait until later. I'd just advise doing it before you have your electronics inside, just for giggles, you know. For my design, I used a "hammered metal" paint and it makes it look pretty cool, i think.
Amplifier
Your whole board *should* slip through the opening of the detergent bottle, if not, it will require you to "fenagle" a bit more with things while you solder stuff to completion. Solder wires to the two connections marked below and the gnd wire and glue the bushing into the hole in the lid and let dry. You can add more hot glue around the sides of the jack for added stability; it takes a bit of force to push in the jack sometimes so more isn't less.
Note that in the schematic I'm using a single-supply amplifier since I didn't want to try to generate negative voltage. You can't just use an op amp design for a dual power supply for a single supply. I have the voltage divider on the non-inverting input to prevent the amplifier from clipping during negative swings int eh audio input signal. It acts to give the AC signal fluctuations a DC signal on which to operate. I use a 0.1uF capacitor at the output stage of the signal amplifier so that I don't pass on the DC level into the audio signal amplifier.
I etched a board that was about 5mm on either side free, just to match the size inside the detergent container. Drill a hole somewhere along the handle to slip your volume control through. It's a 100k linear potentiometer. Throw on a nice knob. You may need to cut off the volume handle like I did so it doesn't stick too far out. Also, don't forget to drill a place for your power switch.
Once everything is soldered, solder in the audio jack, power switch, and volume knob. Hot glue the wooden disc to the far inside of the detergent lid. You need enough of the threads to attach (it doesn't have to screw on, you can tape it on but I wouldn't suggest gluing the lid onto the case) it to the case. Tape the lid to the case.
You might like to cut a small piece of your tubing, gut out a small amount, and glue it in a backwards "C" configuration on the side and use it to wrap your headphone wires around when you're not using it. It's just a suggestion.
Using the Insect Eavesdropper
Make sure you use the volume knob judiciously. It acts as sort of a squelch, as well. Experiment and have fun.
What else can you use it for?
The high-gain amplifier I designed in this project is ideal for a variety of eavesdropping ventures.
- Replace the piezo mic with six to eight turns of 26-gauge magnet wire wound in a 3x5 foot loop and you can hear atmospheric noises such as lightening, the wind, even distant auroras can be heard with a high-gain amplifier.
- Replace the piezo mic with a 100-turn coil of 28-gauge magnet wire around a ferrite core and you can hear the wires buzzing in the walls and locate hidden wiring. If you place a magnet at 40 degrees to the coil, you can hear nails under the plaster or sheet rock.
- Replace the piezo mic with a single loop connected to a diode and you can detect RF signals and use the high-gain amp as a "bug" detector.
- Connect a solar cell in place of the piezo mic and you can "hear light." Point it at an airplane in the sky and you can hear it's strobe. POint it at any light that has something periodically passing through it like a propeller or a rotary shaft, and you can hear the device.
Final Thoughts
Well, I hope you liked this instructable and hope it's motivated and encouraged you to go out and listen to some nature sounds. As always, I welcome feedback and comments on this or any of my instructables. If you liked it, rate it!
Thanks!
-Gian
/nev/dull