Lamina Nixie Clock

by zorwick in Circuits > Clocks

168268 Views, 1016 Favorites, 0 Comments

Lamina Nixie Clock

IMG_9036.jpg
nixie_render_023.jpg
IMG_9021.jpg
This is my first instructable and I hope you will like it. I have been reading this website for a while now and I decided to publish my project. I am non-native English speaker please excuse my language mistakes.

This project is inspired by a previous instructable from Hellboy and his Lantern Clock. In the meanwhile he came out with the Cyclops which has a kind of similar concept as mine, but God see my heart, I just took the Lantern clock as my starting point. Anyway I would like to thank him for that inspiration.

When I first saw Hellboy's clock, I said I want something like that. So I sat to my desk switched on my computer and started to design. After a while I came up with the final plan.

The rendered 3d image looked quite OK for me.

For the wooden parts I wanted to use wenge wood but I could not get wenge in that size for a reasonable price. So I decided to use the old proven walnut and maple combination.

I realized soon enough that finding a similar brass disks and gears what matching my design is quite impossible so I decided to make them, but I did not know how yet. The turning would kill my little Unimat machine, which set is meant  to make small parts not these big ones, so I just put them on hold for a while until I find a solution and start the rest. And lately, the solution came to me by itself.

List of Materials, tools:

-walnut timber
-maple timber
-acrylic tubes
-circular saw, scroll saw
-drill and router machines
-brass rods, pipes
-threaded rods
-brass sheets
-screws, bolts
-lots of sandpaper
-lacquer
-nixie clock kit
-12v power adaptor
-wires
-soldering iron
-multimeter
-safety gloves, eye protection

Video:



The Woodwork

IMG_20111212_154552.jpg
IMG_8419.jpg
IMG_8424.jpg
IMG_8423.jpg
IMG_20120118_145752.jpg
IMG_20120208_140756.jpg
IMG_20120120_154949.jpg
IMG_20120205_123443.jpg
IMG_20120212_114619.jpg
IMG_20120210_131624.jpg
IMG_20120118_162322.jpg
IMG_20120210_191142.jpg
IMG_20120212_142218.jpg
IMG_8840.jpg
IMG_8842.jpg
IMG_8844.jpg
IMG_8555.jpg
 First I made the mass model from cheap MDF to have a notion how it is going to look like, than I made a more accurate plywood model where all the openings and holes were correct.
I ordered some 5mm thick walnut sheets and cut all of them by laser to have the accurate curves. The cutting shapes are from the 3d design, just had to convert them to vector format.

That was the first time when I have ever used laser cutter, I can tell it is amazing how much work you can save just to use the laser... Of course I don't have a laser cutter at home, but there is one just 2 minutes away from my house in a public Fablab workshop. For a few Euro you can use it.

For the base I bought walnut and maple timber. After planing I glued the print outs of the base shapes and drilled all the necessary holes. My experience to make the holes first, then cut the shape. Where the bigger holes are close to the edge the drill bit or router bit could break off little chips from the wood if you cut the shape first and that is definitely not a good thing. So after having the holes I cut the ovals with my scroll saw. For the PCB panel I made the opening on all 3 base components.

After assembling all the parts the next step was to sanding all of them with a fine grit paper. I applied some dark stain for the walnut parts, the maple remained natural and sprayed them with a metal lacquer. I found it more hard and resistant than the one for wood.

The Tanks:

IMG_20120210_093251.jpg
IMG_20120210_162249.jpg
IMG_8565.jpg
IMG_20120326_172130.jpg
IMG_20120326_170943.jpg
IMG_9086.jpg
IMG_9092.jpg
IMG_8758.jpg
IMG_20120326_132800.jpg
IMG_8789.jpg
IMG_20120326_132806.jpg
IMG_8794.jpg
IMG_8790.jpg
IMG_8847.jpg
IMG_8838.jpg
IMG_20120323_123340.jpg
IMG_8787.jpg
IMG_8786.jpg
IMG_8870.jpg
The Nixie holder tanks are made similar way as on the Lantern Clock. I bought 50 mm diameter acrylic tube from ebay and cut them to the desired size. The edges are painted with a ordinary white paint, except on that little part where the LED is on the rim (bottom/back side of the tanks).

The disks and gears on the tanks are made from walnut and brass. I cut the wooden disks by laser. For the brass I bought 1,6 mm, 3 mm and 5 mm thick sheets. The thinner ones are from ebay, from England. The 5 mm sheet was harder to find (for good price), but finally I had them  from Germany. After making the proper drawing for them, I took all the sheets to a local waterjet cutting company.

We had some difficulties to find out how to cut these small part without losing or damaging them.
Two things happened, after the cutting head just finished on one of them, the little parts are popped up and fallen to the deep mud under the machine, so I could say goodbye to them, or the bigger disk slightly moved after cutting head just finished the cutting cycle and the loose disk slipped into the water beam and this made some irreversible damage on them. The solution was to leave a little holder beam/rod on each pieces connect them to the sheet and later I could just break them off, like on the plastic model kits what you can buy anywhere.

As soon I have received the ready disks and gears I had to get into polishing. This is always a nice part, you sand and polish everything for days and days, and everything is just a mess, but at the end you have the shiny discs just waiting to be on the final place.

The acrylic holder rims are made from two parts, one outer disk and one inside disk for the acrylic tube. Between them I placed a bolt to screw in the tank holder threaded rods. These main rods on the bottom are holding the base by attaching them to the clock base, the rods on the top are connected to the arms to hold them tight.
The bottom rims are also keeping the Nixie tubes in place.

The top and bottom rims are connected with a 2 mm brass rod with tightening bolts on the two ends. This is strong enough  to secure everything in place.

All the bottom disks/gears have two more bigger openings for the Nixie tube wires. 

The Electronics:

IMG_7272.jpg
IMG_7273.jpg
IMG_8426.jpg
IMG_8791.jpg
IMG_8573.jpg
IMG_20120210_172748.jpg
IMG_20120210_171828.jpg
IMG_20120210_190750.jpg
IMG_8574.jpg
IMG_8796.jpg
IMG_8807.jpg
IMG_8570.jpg
IMG_20120325_223408.jpg
IMG_8872.jpg
IMG_8874.jpg
IMG_8876.jpg
IMG_8897.jpg
The electronic parts including the tubes are from England, from a very-very helpful guy, Pete. I have to say a very big thank for all his help.

After I have finished the PCB I had to wait a while to see if it’s really working, because the tubes are not soldered to the panel, first need to make the place for them, than connect all the legs by wire. So first thing first...

I extended the nixie legs with some wire to reach the PCB. I used black for the anodes and for all the rest I used white wires. I know I should have used some rainbow coloring, but the wires what I could get in different colors were too hard to bend into that small place what I had between the panel and clock base so I had to use some softer ones. Anyway it was not difficult to work with them. I used 4 colors to mark each wire, by colormarks I, II, III. Than I had 4 x 3 color code =12  + 1 anode, so 13 connection point per Nixie tube.

For the hour/minute/second separator neon lights I used the ones what were come with the electronics package, and I placed the to the front of the clock base, inside two 10 mm outside diameter acrylic tubes.

The power connector fixed to the base sandwich along with operating buttons, what I just bought in the local electronic shop. I made some brass tubes around them to match the design.

From the PCB you can optionally run 6 LEDs to the tubes to give some blue or any other colors of extra light. I used only 3 blue LEDs for the 3 tanks.

For the alarm LED, I found one SMD LED, probably from an old CD writer, in my spare parts box in a very nice matching orange color. I decided to place it inside the acrylic holder rim behind one of those design holes around them.

The Rest:

IMG_20120120_132157.jpg
IMG_20120120_133229.jpg
IMG_20120120_132216.jpg
IMG_20120326_155918.jpg
IMG_20120326_162205.jpg
IMG_20120321_124826.jpg
IMG_8898.jpg
IMG_8899.jpg
The clock has some more little brass details what I had to cut and polish. Such as the plugs above the separator neons. I have them cut by the waterjet guy using the 5 mm sheet, but I could have cut them from a 8mm diameter rod as well.
The spacers (84 pieces) for the laminas and for the base made from 4 mm brass pipe. I polished those along with the visible screws and bolts.

Remember: To protect your eyes is a MUST!

For the bottom of the clock I chose an ABS plastic plate, laser cut it and engraved informations over the buttons and the power requirements. The little holes under the PCB give some ventilation for the electronics.

Assembling:

IMG_20120212_114627.jpg
IMG_20120210_170313.jpg
IMG_20120210_191142.jpg
IMG_8550.jpg
IMG_8553.jpg
IMG_8798.jpg
IMG_8851.jpg
IMG_8858.jpg
IMG_8878.jpg
IMG_8902.jpg
First I had to place all the Nixies into the tanks, and run a wires through the holes. During the assembling the top parts of the tanks were removed, and the 'laminas' and arms were also not attached to the structure.

Than I screwed the 3 tank bases to the base and soldered all the wires to the PCB. I left little extra length of wire to have some space to flip to the side the PCB panel.

After connecting and testing the clock the next step was to place the remaining base parts and the preassembled 'laminas'. The next step was to solder the neon, power and button wires and closed the bottom.
For the legs I was thinking a lot what to use, and finally I have found these brass legs in one of the local hardware shop.
The final step to place the tank tops and the arms and plug the power cable to enjoy the clock.

The Final Clock:

IMG_8963.jpg
IMG_9026.jpg
IMG_9021.jpg
IMG_8994.jpg
IMG_8990.jpg
IMG_8938.jpg
IMG_8934.jpg
IMG_8935.jpg
IMG_8929.jpg
IMG_8928.jpg
IMG_8916.jpg
IMG_8903.jpg
IMG_8914.jpg
Here is than, my Lamina Nixie Clock. Shiny and beautiful. Everybody to who I have showed the clock were hypnotized, just sat and stared the running numbers for minutes :)
That is a good reward for me.

Update: Packaging

IMG_9247.jpg
IMG_20120507_122518.jpg
IMG_20120507_162603.jpg
IMG_20120507_163925.jpg
IMG_20120509_174423.jpg
IMG_9236.jpg
IMG_9237.jpg
IMG_9238.jpg
IMG_9244.jpg
Lamina Nixie Clock_003.jpg
To complete the project I have made a nice box for the clock using a simple 4 mm plywood, cut by laser. After a few experiment with cardboard I have cut the inside part as well to secure the clock. Now I have a product, ready to find a way to make more and reduce the cost :)