Simple Walker Robot
Building a simple walking robot is really easy. Don't let the number of steps fool you into believing otherwise. This robot is basically made with a handful of household items and some simple electronics that you can easily pick up at Radioshack. In fact, this robot is entirely zip tied together, which makes building it and modding it extremely easy. If at any point you are unhappy with how its built, cut the zip ties away and zip tie it together differently.
The "brains" of this robot are also easily modifiable since it is based on an Arduino development board. Programming it and changing the code is extremely straight-forward. Even people with no programming experience can usually get up to speed pretty quickly and start coding their own robotic routines.
For me, this robot was mainly an experiment to see what would happen if I built a full-on robot that was like one of the many Simple Bots that I have built. It was interesting to see how much more robust one of these creatures become when you give it some computer logic.
Check out my book Homemade Robots for more projects! |
Go Get Stuff
You will need:
(x4) Rubber spatulas
(x2) 6" turnbuckles
(x1) 2" x 48" aluminum ruler
(x1) Ballpoint pen
(x1) 4-40 x 1/4" nut and bolt
(x1) Arduino Uno REV 3
(x2) Standard Servo
(x2) 3x1 male header pins (strips of 40 available)
(x1) Parallax Ping Sensor
(x1) 9V Snap Connectors
(x1) 9-Volt Battery Holder
(x1) DC Power Plug
(x1) Multipurpose PC Board
(x1) Stranded 22AWG hookup wire
(x1) 9 Volt Battery
(x1) 5-1/2" Zip Ties
(Please note that some of the links on this page contain Amazon affiliate links. This does not change the price of any of the items for sale. However, I earn a small commission if you click on any of those links and buy anything. I reinvest this money into materials and tools for future projects. If you would like an alternate suggestion for a supplier of any of the parts, please let me know.)
Saw
Cut a 10" section off one end using a hacksaw.
Bend
Bend the aluminum slightly (to about 30 degrees) using a rubber mallet or hammer.
If you don't have a bench vise, hang the ruler halfway off the edge of your workbench, place a block of wood atop the ruler and clamp it firmly in place. You have now made an impromptu bending rig.
Simply hammer down on the ruler until it bends down over the edge of the workbench.
Take Apart
Set them aside for some other project.
Drill
Repeat this for the second servo.
Mark and Drill
Place the servo horn at the 3" center point on the turnbuckle.
Position the horn such that it is making a "V" perpendicular to the length of the turnbuckle. This should, by default, position two more "V" shapes pointing to each side of the turnbuckle. Make marks in the valley of each of these "V" shapes.
Finally, drill these two marks with a 1/8" drill bit.
Repeat on the second turnbuckle.
Mark
Drill
Remove
Mark Again
Rotate the servo 180 degrees and repeat on the opposite side.
Drill Again
Zip Tie
Trim away the excess zip tie tails.
Reattach the Horn
Put the first servo horn back on such that all of the "V" shapes are parallel to each of the edges.
Fasten it in place with the mounting screw.
Repeat for the second servo motor.
Mark and Drill a Bit More
On the other side of the same servo, place the Arduino board and make marks in each of its mounting hole. Try to fit the whole thing to one side of the ruler's bend.
On the opposite side of the ruler's bend, place the battery mount and make a mark.
Drill all of the marks that you have just made with a 1/8" drill bit.
Insert
Attach
Repeat this process for the second turnbuckle.
Mounting Holes
Make multiple marks on the spatula's handle on all sides of the turnbuckle to indicate drill holes for zip tying it to the turnbuckle.
Drill the marks that you have just made with a 1/8" drill bit.
Flip the spatula upside down, and place the other spatula on top of it right-side-up. Align them so they are of matching height.
Use the first set of drill holes as guides to drill another set of holes in the other spatula. This should end up as a mirror image of the first (i.e. inverted, but otherwise identical).
Front Legs
For the best results, make sure they roughly mirror each other in position and height.
These two spatulas will serve as the front legs.
Hind Legs
Note that the rear legs of this bot were slightly shorter than the front legs. However, this is not a hard rule. Experiment and see what works for you.
Spacers
Cut the pen's tube into 1/4" sections using a razor blade.
These will be used as spacers for mounting components
Trim
9V Adapter
Solder the red wire to the central terminal and the black wire to the plug's outer terminal.
Screw back on the plug's cover.
Sensor Board
Solder the Ping sensor in place at a slight angle such that if you hold the board parallel to the ground, it would appear to be rotated about 45 degrees clockwise. This should counter-balance the fact that the PCB will get mounted to the board at about a 45 degree angle.
One the opposite side of the PCB that the Ping was soldered to, nstall two 3-pin male headers such that each one has a pin that is soldered to the ground rail, and a pin the is soldered to the power rail.
Wires
Solder a 6" black wire to the ground rail.
Solder a 6" green wire to the terminal that the Ping's signal pin is connected to.
Solder a 6" green wire to each of the remaining header pins that are not connected to a power or ground connection. These two wires will correspond to the signal pins for each of the servos.
Program
This code could definitely be more robust, but I will leave it up to you to expand upon it.
Downloads
Sensor
Zip tie it firmly in place.
If the sensor is not level to the ground, gently bend its pins until it is.
Arduino
Zip tie it firmly in place.
Attach
Plug
Wire It Up
Plug the black wire from the PCB into the Arduino Ground socket.
Plug the green wire from the Ping sensor into the socket for digital pin 7.
Plug the green wire from the front servo into the socket for digital pin 9.
Plug the green wire from the rear servo into the socket for digital pin 10.
Power
Connect the battery to Arduino, secure it in the battery holder, and it is good to go.
Did you find this useful, fun, or entertaining?
Follow @madeineuphoria to see my latest projects.