Snail Art Car the Golden Mean
by jonsarriugarte in Workshop > Cars
87869 Views, 289 Favorites, 0 Comments
Snail Art Car the Golden Mean
"The Golden Mean" a giant Jules Verne hot rod snail art car we built in 2008 in my shop "Form & Reform" in West Oakland. This is my wife Kyrsten's Dream car and together we made it a reality.
Following is the basic process by which we built this amazing art car. This is meant as a process guide for building any kind of art car and not a guide for building this one. There are far too many details in this project and each step could be broken into many different stand alone instructables. I hope by posting this you gather your own team (most of mine had no experience) and make your own dream car together. The sum of the parts make wonderful things!
For more info see: Golden Mean
There is now a fan club for the Golden Mean on facebook
Keep track of the Snail's events and news there
JOIN
Choosing the Base Vehicle
After removing the body I temped in the gas tank and steering wheel and took it for a test drive. this entire process took about 4hrs!
After the test drive we made some notes on what needed to be fixed before we started building the Snail.
Tune Up and Repairs
Frame
We also installed mounting for the 3 batteries.
The Base of the Shell
I determined that the gas tank would be best placed near the original bug location, low and just behind the front right tire.
Temporary wire mock-ups of the shell are made to make sure it looks right and to use as patterns for making the main shell support arcs.
The crew is starting to think it might work!
Shell Supports
Spiral Is Made
Door Added and Frame Painted
As the old ones are cracked and don't match, new tires are purchased and mounted.
Growth Rings
With the use of a 20 ton press and dies, we make fake rivets on steel strap and begin replacing the tape with metal parts. Each one has to be custom cut and bent slightly to "poof out" the frame of the shell.
Next, each rivet has to be polished with a wire wheel to give it the illusion of being a separate piece of steel.
Head
Most of this steel is now tacked in place. We stop now and let Hino weld it solid.
Air Suspension
We needed the ability to adjust the suspension for the load (ie: the number of people on board) so the car was drivable at street speeds. Air bags seemed the simplest and Slam Specialties (http://www.slamspecialties.com/) offered to sponsor us after seeing the car. We fabricated custom mounts for two air bags to lift the frame off the axles. Once welded into place, we plumbed fill and dump airlines to the 12v control solenoids and regulator used to adjust the psi for load. We were now able to raise the car up and down by filling the bags as high as 160psi.
This system was originally run on co2, but later was converted to an on board air compressor and tank for ease of use.
Running Gear and Controls
One thing that I've learned about cars and crews: keep as many people off the car doing jobs that can be done on a bench for as long as possible. Once everything is on the car, only so many people can work on it with out tripping over each other. Welding was one of the biggest problems as no one could work while welding was being done. The solution was to quickly tack in everything at night, when everyone was around, and then turn over the long hours of welding to the day crew, only Hino and I, with full gear on and no one to bother us. Wiring was also done off the car. The entire wiring harness was built on the bench over the weeks, and then installed in one day by Lauren!
Shell Patterns
After cut out, each piece had to be DA (orbital) sanded, cleaned with alcohol and renumbered. From this point on, no one could touch the sheet metal with their hands as this would leave prints in the final finish.
While this work was taking place, the rest of the crew moved forward with finishing all the details inside the car in preparation for the final shell.
Fire Effects
To keep with the oilpunk look and to make sure it always works, I decided on a very low tech approach to add fire to the snail. We mounted the liquid propane tank in the neck and a plenum tank for gas accumulation just behind it. Fittings were welded to the tank to make the plumbing easy and clean.
Next, I forged 2 eye stalks out of pipe, making sure the centers remained hollow. I then welded hollow hemispheres, with pilot rings on top and a 1/2" hole in the base of the bowl, to the eye stalks. The pilot ring is a hollow tube with a slit cut around the entire inside ID with a NP fitting welded to the outside for plumbing the gas. Each eye was then plumbed with a venturi fitting to mix air with the gas for a clean burning pilot. The pilots were then plumbed back to the plenum tank using 1/4" copper tubing, 45 Deg compression fittings and a needle valve to adjust the gas flow.
Then, 1/2" globe valves were plumbed to the base of each eye stock and plumbed using 3/8" copper lines attached to the plenum tank. When these valves are opened a giant fire ball erupts from the eyes. We attached leather reins to the valves that could be pulled from inside the car.
Finally, for safety shut off, a regulator and hose were attached from the liquid propane tank to the plenum tank with a 1/4" turn ball valve.
Fenders, Headlights, Access Panels, Palaquine, Fire Wall
Access panels are now fabricated and welded to the floor frame, giving us access to the batteries, electrical subsystems and extra storage areas.
Sheet metal is needed around the frame to seal out dust and water, and to create a "fire wall" between the passenger compartment and storage/engine/fire effect areas. Each piece is first made in paper, checked for fit, then transferred to steel before being welded, screwed and glued into place.
The entire frame is now painted black. Paper patterns of what will become the floor panels are created. The rest will have to wait until the shell is on for a final fit.
We are now ready for the shell!
Sound System
We could now entertain a fairly large crowd and blow out the eardrums of everyone inside.
Electrical System
A 4000 watt inverter was incorporated into the accessory system to power the 110v music equipment.
Both systems batteries are charged via the engine generator with the use of a battery isolator. Because of our large power consumption, we also used a Honda generator for charging the accessory 12v battery bank, two 12v deep cycle batteries. A standard car battery was used for running the car.
All of these items are controlled from the dash switches and the disco box, and are securely mounted under the floor boards.
Early on in the project, we listed everything that we would want to run on these systems and purchased a new automotive wiring harness from Summit Racing. We then mapped out our component list onto the new harness and made our final wiring diagram. We made a mock up of the dash in paper and started to route wires to the different parts of the car. All this work was done outside the car on a large table. Once the dash was done, we added all the pre-made switch bundles to it. As the car was being built, things like the disco box, batteries, inverter, starter, and relays were mounted in the car waiting for the day when we would install and connect the dash and harness to them. While building the frame and shell we regularly met with Lauren (the wire goddess) to make sure we made room and paths for all the wiring.
The day finally came when the welding was done, paint was finished and we could now safely install the dash and harness. Thanks to all the planning, the dash slid right into the mounts, the wiring went down tubes on the right and left of the shell and everything connected right up! The only thing we couldn't get to work the first time was the horn! I was amazed!
Never again will I mess with running wire one at a time. We would have been inside the car for a week doing it that way.
Next time: replace the VW generator with an alternator. We are normally milling around the streets and that's just to slow for a generator to produce a good charge.
Still to ad: dash gauges, built in 12v charging system from 110v and more lights for the shell.
Lights
The Shell
After it's completion, we started by installing the innermost panel sections of the spiral and working out. This gave a place to always clamp from at least two sides of each section. We soon realized that our vise grip clamps could not reach some of the bigger panels, so we stopped and made an extra long clamp by cutting off the tips of the clamp and welding long tubes to extend it (see photo). The careful patterning, marking and cutting of the panels really paid off, and 90% of the panels went on with no problems. Care was taken to keep the welds neat and to do enough welds so we didn't get any rattling. The other 10% took twice as long as the first 90% did. These were the panels that had compound curves, awkward shapes and awkward placement that made them hard to clamp. The seams from front to back were covered with 3/4x1/8 strap witch was attached to the frame with countersunk allen head bolts.
Patina and Finish
The car was moved outside and the patina chemicals prepared. I wanted a warm coppery feel to the car so I chose a patina using water and cupric nitrate 32-1, ferric nitrate 32-1 and gun bluing16-1. We used bug sprayers for each chemical. Before applying the chemicals, we washed down the whole car with plain water. Keeping the section we were about to treat whetted, we started spraying the gun blue, then cupric, then ferric. Gun blue was used in combination with the cupric to fill in bright spots. The completed sections were kept wet to keep air from changing the earlier sections we had finished. Once the entire car was patinad, we used a weak solution of baking powder to stop the reaction, rinsed one more time with water and finally dried it off with air nozzles and the warmth of the sun. The crew stared at what was once beautifully shinny shell, now dull rust colored, and wondered "why".
The tape and tarps were now removed and all the growth rings were cleaned with scotch brite pads to bring back the black look. The whole car was dusted using compressed air.
Polyurethane spray cans were used to paint it late that night and, to the delight and relief of everyone, it looked great! Care was taken not to over spray the section we had already done. It took 3-6 coats to seal.
Now it was time to assemble all the parts again.
Final Assembly
And finally it was time for a test drive.
Done!
Crew
Our crew was:
Jon Sarriugarte
Kyrsten Mate
Zolie Mae
Lauren Winter
Tansy Brooks
Christopher Brooks
Alex Chan
Jackson Wong
Laura Casey
Holly Gibson
Tackett Austin
Keith Johnson
Ann Johnson
Paulvile
Mike Winter
Lisa Winter
Hino Vazques
More info: Golden Mean or jon@formandreform.com