Ipad Controlled Christmas Star Lantern With Arduino
by Annikken in Circuits > Arduino
1045 Views, 9 Favorites, 0 Comments
Ipad Controlled Christmas Star Lantern With Arduino
Hi guys, it is nearly Christmas and we have created a Christmas star that can be controlled with your mobile device. The lighting effects on Christmas star can be turned on by your mobile device, you can control the amount of cycles the LEDs blink on and off, stop the lighting at your will and even play the jingle bells melody!
video at
Components
Components
- Arduino
- Annikken Andee
- Mobile device
- Breadboard
- Wires
- 5 RGB LEDs
- Buzzer
- power source with a micro usb cable, in this case a battery pack.
Star Lantern (http://www.homemade-gifts-made-easy.com/paper-star-lantern.html)
Hardware
Making the lighting and buzzer.
- Mount the Annikken Andee onto the Arduino
- Connect the RGB LEDs to the breadboard in parallel arrangement.
- Connect the wires from the LEDs to ardunio pins 13, 12, 11.
- Connect the gnd pin to the breadboard in one of the power line.
- Connect a wire from the power line to the gnd leg of the RGB LEDs.
- Connect the buzzer to the breadboard.
- Connect the + side of the buzzer to pin 3 and – side to the power line.
- Hang the breadboard inside the star lantern and hook them both in a hanger or some play similar.
- Connect the breadboard with arduino using long wires instead of jumper wires.
*We have used small jumper wires to connect the arduino and the breadboard in the picture to show the connection but on the actual star, we have used long wires but the connections are the same.
And you are done with the hardware side of the Christmas star!
To Control the Christmas with your mobile device, you will need an App on your phone first.
Fortunately, Annikken Andee comes with a free app that you can download from the Apple store for iOS.
Use the Annikken Andee App to scan for your device.
Software
Afterwhich, copy this arduino sourcecode and upload to the arduino.
#define NOTE_B0 31
#define NOTE_C1 33
#define NOTE_CS1 35
#define NOTE_D1 37
#define NOTE_DS1 39
#define NOTE_E1 41
#define NOTE_F1 44
#define NOTE_FS1 46
#define NOTE_G1 49
#define NOTE_GS1 52
#define NOTE_A1 55
#define NOTE_AS1 58
#define NOTE_B1 62
#define NOTE_C2 65
#define NOTE_CS2 69
#define NOTE_D2 73
#define NOTE_DS2 78
#define NOTE_E2 82
#define NOTE_F2 87
#define NOTE_FS2 93
#define NOTE_G2 98
#define NOTE_GS2 104
#define NOTE_A2 110
#define NOTE_AS2 117
#define NOTE_B2 123
#define NOTE_C3 131
#define NOTE_CS3 139
#define NOTE_D3 147
#define NOTE_DS3 156
#define NOTE_E3 165
#define NOTE_F3 175
#define NOTE_FS3 185
#define NOTE_G3 196
#define NOTE_GS3 208
#define NOTE_A3 220
#define NOTE_AS3 233
#define NOTE_B3 247
#define NOTE_C4 262
#define NOTE_CS4 277
#define NOTE_D4 294
#define NOTE_DS4 311
#define NOTE_E4 330
#define NOTE_F4 349
#define NOTE_FS4 370
#define NOTE_G4 392
#define NOTE_GS4 415
#define NOTE_A4 440
#define NOTE_AS4 466
#define NOTE_B4 494
#define NOTE_C5 523
#define NOTE_CS5 554
#define NOTE_D5 587
#define NOTE_DS5 622
#define NOTE_E5 659
#define NOTE_F5 698
#define NOTE_FS5 740
#define NOTE_G5 784
#define NOTE_GS5 831
#define NOTE_A5 880
#define NOTE_AS5 932
#define NOTE_B5 988
#define NOTE_C6 1047
#define NOTE_CS6 1109
#define NOTE_D6 1175
#define NOTE_DS6 1245
#define NOTE_E6 1319
#define NOTE_F6 1397
#define NOTE_FS6 1480
#define NOTE_G6 1568
#define NOTE_GS6 1661
#define NOTE_A6 1760
#define NOTE_AS6 1865
#define NOTE_B6 1976
#define NOTE_C7 2093
#define NOTE_CS7 2217
#define NOTE_D7 2349
#define NOTE_DS7 2489
#define NOTE_E7 2637
#define NOTE_F7 2794
#define NOTE_FS7 2960
#define NOTE_G7 3136
#define NOTE_GS7 3322
#define NOTE_A7 3520
#define NOTE_AS7 3729
#define NOTE_B7 3951
#define NOTE_C8 4186
#define NOTE_CS8 4435
#define NOTE_D8 4699
#define NOTE_DS8 4978
#define melodyPin 3
//JB main theme melody
int melody[] = {
NOTE_D4, NOTE_B4, NOTE_A4, NOTE_G4, NOTE_D4, NOTE_D4, NOTE_D4,
NOTE_D4, NOTE_B4, NOTE_A4, NOTE_G4, NOTE_E4, NOTE_E4,
NOTE_E4, NOTE_C5, NOTE_B4, NOTE_A4, NOTE_D5, NOTE_D5, NOTE_D5, NOTE_D5,
NOTE_E5, NOTE_D5, NOTE_C5, NOTE_A4, NOTE_G4,
NOTE_B4, NOTE_B4, NOTE_B4, NOTE_B4, NOTE_B4, NOTE_B4,
NOTE_B4, NOTE_D5, NOTE_G4, NOTE_A4, NOTE_B4,
NOTE_C5, NOTE_C5, NOTE_C5, NOTE_C5, NOTE_C5, NOTE_B4, NOTE_B4, NOTE_B4, NOTE_B4,
NOTE_B4, NOTE_A4, NOTE_A4, NOTE_B4, NOTE_A4, NOTE_D5,
NOTE_B4, NOTE_B4, NOTE_B4, NOTE_B4, NOTE_B4, NOTE_B4,
NOTE_B4, NOTE_D5, NOTE_G4, NOTE_A4, NOTE_B4,
NOTE_C5, NOTE_C5, NOTE_C5, NOTE_C5, NOTE_C5, NOTE_B4, NOTE_B4, NOTE_B4, NOTE_B4,
NOTE_D5, NOTE_D5, NOTE_C5, NOTE_A4, NOTE_G4
};
//JB main them tempo
int tempo[] = {
8, 8, 8, 8, 3, 16, 16,
8, 8, 8, 8, 3, 8,
8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 2,
8, 8, 4, 8, 8, 4,
8, 8, 6, 16, 2,
8, 8, 6, 16, 8, 8, 8, 16, 16,
8, 8, 8, 8, 4, 4,
8, 8, 4, 8, 8, 4, 8, 8, 6, 16, 2,
8, 8, 6, 16, 8, 8, 8, 16, 16,
8, 8, 8, 8, 2
};
#include
#include
AndeeHelper button;
AndeeHelper display1;
AndeeHelper slider;
AndeeHelper stopButton;
AndeeHelper singButton;
AndeeHelper speechObject;
int sliderVal;
void setup(void)
{
pinMode(3, OUTPUT);//buzzer
Andee.begin();
Andee.clear();
setInitalData();
pinMode(13, OUTPUT);
pinMode(12, OUTPUT);
pinMode(11, OUTPUT);
}
void setInitalData() {
button.setId(0);
button.setLocation(1, 0, FULL);
button.setType(BUTTON_IN);
button.setTitle("Lighting");
button.setColor(THEME_DEFAULT_DARK);
display1.setId(1);
display1.setLocation(0, 0, FULL);
display1.setType(DATA_OUT);
display1.setTitle("MODE");
display1.setData("Select a mode");
slider.setId(2);
slider.setLocation(2, 0, FULL);
slider.setType(SLIDER_IN);
slider.setTitle("No. of times the LEDs blink on and off");
slider.setSliderMinMax(0, 300, 0);
slider.setSliderInitialValue(150);
slider.setSliderNumIntervals(300);
slider.setSliderReportMode(ON_VALUE_CHANGE);
slider.setColor(THEME_ORANGE_DARK);
stopButton.setId(4);
stopButton.setLocation(3, 0, HALF);
stopButton.setType(BUTTON_IN);
stopButton.setTitle("Stop");
stopButton.setColor(THEME_TURQUOISE_DARK);
singButton.setId(5);
singButton.setLocation(3, 0, HALF);
singButton.setType(BUTTON_IN);
singButton.setTitle("Song");
speechObject.setId(6);
speechObject.setType(TTS);
}
int ii;
void loop()
{
if(button.isPressed()) {
button.ack();
display1.updateData("Merry Christmas");
speechObject.updateData("Merry Christmas");
sliderVal = slider.getSliderValue(INT);
for(ii = 0; ii <= sliderVal; ii++) {
// Red
digitalWrite(13, HIGH);
digitalWrite(12, HIGH);
digitalWrite(11, HIGH);
delay(200);
// Green
digitalWrite(13, LOW);
digitalWrite(12, HIGH);
digitalWrite(11, LOW);
delay(200);
// Blue
digitalWrite(13, LOW);
digitalWrite(12, LOW);
digitalWrite(11, HIGH);
delay(200);
if(singButton.isPressed()) {
singButton.ack();
digitalWrite(13, LOW);
digitalWrite(12, LOW);
digitalWrite(11, LOW);
//sing the tunes
sing(1);
if(stopButton.isPressed()){
stopButton.ack();
break;
}
sing(1);
if(stopButton.isPressed()){
stopButton.ack();
break;
}
sing(2);
if(stopButton.isPressed()){
stopButton.ack();
break;
}
}
if(stopButton.isPressed()){
stopButton.ack();
break;
}
}
digitalWrite(13, LOW);
digitalWrite(12, LOW);
digitalWrite(11, LOW);
}
if(stopButton.isPressed()){
stopButton.ack();
}
button.update();
display1.update();
slider.update();
stopButton.update();
singButton.update();
delay(500);
}
int song = 0;
void sing(int s) {
// iterate over the notes of the melody:
song = s;
// if (song == 2) {
// Serial.println(" 'Underworld Theme'");
// for (int thisNote = 0; thisNote < size; thisNote++) {
//
// // to calculate the note duration, take one second
// // divided by the note type.
// //e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
// int noteDuration = 1000 / underworld_tempo[thisNote];
//
// buzz(melodyPin, underworld_melody[thisNote], noteDuration);
//
// // to distinguish the notes, set a minimum time between them.
// // the note's duration + 30% seems to work well:
// int pauseBetweenNotes = noteDuration * 1.30;
// delay(pauseBetweenNotes);
//
// // stop the tone playing:
// buzz(melodyPin, 0, noteDuration);
//
// }
// } else {
//Serial.println(" 'Mario Theme'");
int size = sizeof(melody) / sizeof(int);
for (int thisNote = 0; thisNote < size; thisNote++) {
// to calculate the note duration, take one second
// divided by the note type.
//e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
int noteDuration = 1000 / tempo[thisNote];
buzz(melodyPin, melody[thisNote], noteDuration);
// to distinguish the notes, set a minimum time between them.
// the note's duration + 30% seems to work well:
int pauseBetweenNotes = noteDuration * 1.10;
delay(pauseBetweenNotes);
// Red
digitalWrite(13, HIGH);
digitalWrite(12, HIGH);
digitalWrite(11, HIGH);
delay(50);
// Green
digitalWrite(13, LOW);
digitalWrite(12, HIGH);
digitalWrite(11, LOW);
delay(50);
// Blue
digitalWrite(13, LOW);
digitalWrite(12, LOW);
digitalWrite(11, HIGH);
delay(50);
// stop the tone playing:
buzz(melodyPin, 0, noteDuration);
}
}
void buzz(int targetPin, long frequency, long length) {
digitalWrite(13, HIGH);
long delayValue = 1000000 / frequency / 2; // calculate the delay value between transitions
//// 1 second's worth of microseconds, divided by the frequency, then split in half since
//// there are two phases to each cycle
long numCycles = frequency * length / 1000; // calculate the number of cycles for proper timing
//// multiply frequency, which is really cycles per second, by the number of seconds to
//// get the total number of cycles to produce
for (long i = 0; i < numCycles; i++) { // for the calculated length of time...
digitalWrite(targetPin, HIGH); // write the buzzer pin high to push out the diaphram
delayMicroseconds(delayValue); // wait for the calculated delay value
digitalWrite(targetPin, LOW); // write the buzzer pin low to pull back the diaphram
delayMicroseconds(delayValue); // wait again or the calculated delay value
}
//digitalWrite(13, LOW);
}