
TEMPERATURE MEASUREMENT
RTD PT100, 4-20 mA TRANSMITTER,

ARDUINO

RTD

In the industrial world where broad temperature ranges and harsh working environment are
predominant, the use of Thermocouples and RTDs are very common. All of them have their
respective pros and cons, (there isn't an absolute winner) the final application and working
conditions are who decide which one is better in every specific case.

An RTD is a thin filament, usually made of Platinum, whose resistance varies in a very way
related to the temperature applied. One of the winning points of a RTDs is their high linearity
across the entire working range (-200 to 850 C) and its stability over time. The most common
type is the PT100, which shows a 100 Ohm resistance at 0 C

PT100 to 4 -20 mA TRANSMITTERS

knowing the temperature applied on an RTD based on its resistance is a little complex task,
because the variation of the resistance is in the tenths of ohms for every Celsius degree.
Precision circuits are required, like Wheatstone bridge. The main pitfall in the industrial world, is
that usually the temperature measurement place (process) is very far away from measurement
and control equipment cabinets. To cover this distance, very long wires are required, which
resistance can affect the temperature measurement

To solve this problem, there is an old known in the industrial world: 4-20 mA temperature
transmitter. This encloses all the precision electronics needed to interface the RTD and is placed
as close as possible to it. This device automatically adjusts the wire resistance using the third
terminal.

More info: Absolutelyautomation.com @absolutelyautom

The transmitter "translates" signals from temperature sensor to current signals from 4 to 20 mA.
A current signal can be sent over very long wires without signal disturbance due to wire
resistance.
.

PT100, ARDUINO, 4-20 mA

A metal sheathed RTD probe was used and a 4-20 mA transmitter spanning from -50 to 150 C.
To convert the current signal into voltage signal a 250 Ohm resistor was used in the ADC pin of
the Arduino. When the signal is 4mA there will be 1V at the ADC and when the signal is 20mA
there will be 5V at the ADC. To power the loop a 24V DC power supply was used..

To convert voltage signals into temperature, the Arduino app does a mapping with min and max
signal values. In this case -50 C is 1V, or in ADC read is 205. For 150 C the ADC reading is
1023

The Arduino app listens for a byte in the serial port, and then answers with a temperature
measurement in ASCII format, so it can be visualized in a serial port terminal application

More info: Absolutelyautomation.com @absolutelyautom

PYTHON, TKINTER

A small visual application was programmed using Python and TkInter, based on the Andreas
Boesh example. This app has an independent thread to manage serial port tasks (send a byte,
wait and read the temperature from Arduino) and other task related to GUI things, like update
values, move progress bar, etc. To run it python serial and python tk packages are required.

Test and conclusions

Right after the application was started, ambient temperature was displayed (well surrounding
stuff temperature: computer, lamps, etc.). Next the RTD was immersed in very hot water. After
a minute or so the sensor is showing a temperature a few Celsius degrees below boiling point.

For the last test, a mug with a block of ice (with an orifice for the sensor) was used. After a few
minutes the temperature stabilizes near water icing point.

Generally speaking RTDs give very precise measurements, however, they have a kind of slow
response to temperature changes, and last but not less important, the accuracy in the
measurement relies heavily on how good calibrated is the 4-20 mA transmitter, and the precision
of the measuring resistor.

More info: Absolutelyautomation.com @absolutelyautom

LINKS

Video: Connecting parts and tests: https://youtu.be/ZKj12hfqrZQ
RTD PT100 3 wire -50 a +150 C 4-20 mA temperature transmitter: http://www.dx.com/es/p/
zndiy-bry-sbwz-rtd-pt100-50-150-c-dc-24v-20ma-temperature-sensor-transmitter-module-
deep-blue-369581?Utm_rid=24981582&Utm_source=affiliate
Metal sheathed 3 wire RTD PT100: http://s.click.aliexpress.com/e/maEYFuN3z
24V DC Power Supply: http://www.dx.com/es/p/24v-2a-48w-constant-voltage-switching-
power-supply-for-led-395226?Utm_rid=24981582&Utm_source=affiliate

ARDUINO PROGRAM

/*
 2016-FEB-09
 Application for reading a 4 - 20 mA current signal
 over a 250 Ohm resistor on voltage analog input pins
 this gives voltage readings from 1 to 5 volts.

 The current signal represents a temperature between -50 to +150 C
 from a PT100 connected to a 4-20 mA current transmitter

 current voltage(250 Ohm) ADC Temperature

 4 mA 1 V 205 -50 C
 20 mA 5 V 1023 +150 C

 The temperature value obtained is sent over serial port in ASCII format
 every time a byte is received. (On demand)

 Absolutelyautomation.com

 */

const int AnalogInput = A0; // Analog input where the resistor is placed

int sensorValue = 0;
int temperature = 0;
int ReceivedByte = 0;
float f1 = 0;
float t1 = 0;

void setup() {
 // inicializa comunicacion serial a 9600 bps:
 Serial.begin(9600);
}

void loop() {

 // Wait until a byte is received
 // (On demand send)
 if(Serial.available() > 0){
 ReceivedByte = Serial.read();

 // Reading ADC
 sensorValue = analogRead(AnalogInput);

 // map the signals (multiplied by 10
 // to get decimal values, because map() doesn't work with floats)
 temperature=map(sensorValue,205,1023,-500,1500);

 f1 = temperature; // Float conversion

More info: Absolutelyautomation.com @absolutelyautom

 t1 = f1/10.0; // dividing by 10
 // with one decimal value

 // Printing temperature value over serial port
 Serial.print(t1);
 Serial.print("\n");

 }

}

PYTHON TKINTER PROGRAM

Absolutelyautomation.com, 02/2016
based on Andreas Boesch, 04/2013 code
Display numeric values (sent as strings) from an external device
The applications sent a buyte to the device and display the response as text also as a bar

import packages
import Tkinter as tk # for the GUI
import ttk # for nicer GUI widgets
import tkMessageBox # for GUI testbox
import serial # for communication with serial port
import time # for time stuff
import threading # for parallel computing

 # A thread that continously request the status of the MWG
class myThread (threading.Thread):
 # initialize class
 def __init__(self, name, ser):
 threading.Thread.__init__(self)
 # Name of thread
 self.name = name
 # Serial port information
 self.ser = ser

the received string
self.rcvstr=''
printable string
self.prnstr=''

 # gets called when thread is started with .start()
 def run(self):
 # counter of the while loop
 self.update_count = 0
 while self.ser.isOpen():

increase counter ...
self.update_count += 1
... and set variable for label shown on the GUI
readCount.set("Read counts: "+str(self.update_count))

for all request commands, send command

try:
send command
self.ser.write("a")
wait for Device to answer
time.sleep(0.1)
create string for the answer
rcvstr = ''
as long as an answer byte is waiting, read the byte
while self.ser.inWaiting() > 0:

self.rcvstr= self.ser.read(self.ser.inWaiting())
except:

do nothing if command could not be send
pass

set the label variables with the answers received

More info: Absolutelyautomation.com @absolutelyautom

self.prnstr=self.rcvstr.rstrip('\n')
self.prnstr = self.prnstr +" C"

#print self.prnstr
labelVar.set(self.prnstr)

try:
valueVar.set(float(self.rcvstr)+ offsetBar)

 except:
Do nothing in case the convertion fails due to a strange formatted string
pass

Device interval polling time
time.sleep(0.5)

an exit procedure
def mQuit():
 # ask yes/no question to confirm exit
 mExit = tkMessageBox.askyesno(title = "Quit", message = "Do you really want to quit?")
 if mExit > 0:
 # close port
 ser.close()
 # detsroy GUI
 root.destroy()
 return

sending commands to the serial device
def mSend(command):
 try:
 ser.write(command)
 except:
 print "Could not send command. Port closed?"

 return

===========================
Begin of the main program
===========================

provide information for serial port
ser = serial.Serial()

modify according to needs
ser.port = '/dev/ttyUSB0'
#ser.port = 'COM6'

ser.baudrate = 9600
ser.timeout = 0
open port if not already open
if ser.isOpen() == False:
 ser.open()

set up root window
root = tk.Tk()
root.configure(background='black')
root.geometry("400x400")
root.title("Serial device variable reading ")

variables
labelVar = tk.StringVar()
readCount = tk.StringVar()
valueVar = tk.DoubleVar()

modify according to needs
maxBar = 150.0
minBar = -50.0

More info: Absolutelyautomation.com @absolutelyautom

rangeBar = tk.DoubleVar()
offsetBar = tk.DoubleVar()

Text, titles

headerTitle = ttk.Label(root, text = "SERIAL DEVICE VARIABLE READING",
foreground="white",background="black").grid(row=0, column=1)
headerPort = ttk.Label(root, text = "Serial port open: "+str(ser.isOpen()), foreground="white",background="black").grid
(row=1, column=1)
headerVarname = ttk.Label(root, text = "TEMPERATURE", foreground="white",background="black").grid(row=3, column=1)
headerCounts = ttk.Label(root,textvariable = readCount, foreground="white",background="black").grid(row=2,column=1)
headerVarvalue = ttk.Label(root, textvariable = labelVar, foreground="yellow", background="black").grid(row=5, column=2)
headerFooter = ttk.Label(root, text = "Absolutelyautomation.com", foreground="grey",background="black").grid(row=7,
column=1)

Quit button

buttonQuit = ttk.Button(root, text = "close port and quit", command = mQuit).grid(row=6, column=1)

#Progressbar

if maxBar > 0.0 and minBar >= 0.0 :
rangeBar = maxBar - minBar
offsetBar = (-1) * minBar

if maxBar > 0.0 and minBar < 0.0 :
rangeBar = maxBar +abs(minBar)
offsetBar = abs(minBar)

if maxBar < 0.0 and minBar < 0.0 :
rangeBar = abs(minBar) - abs(maxBar)
offsetBar = abs(minBar)

s = ttk.Style()
s.theme_use('clam')
s.configure("yellow.Vertical.TProgressbar", foreground='yellow', background='yellow')
progBar = ttk.Progressbar(root, orient="vertical",length=200,
mode="determinate",maximum=rangeBar,variable=valueVar,style="yellow.Vertical.TProgressbar").grid(row=5,column=1)

wait
time.sleep(1)
call and start update-thread
thread1 = myThread("Updating", ser)
thread1.start()

start GUI
root.mainloop()

More info: Absolutelyautomation.com @absolutelyautom

More info: Absolutelyautomation.com @absolutelyautom

