
BOOKS...
V AND VI

Copyright (c) 1961

by
SC IEN TIFIC

DEVELOPM ENT
CO RPO R A TIO N

Watertown
Mass.

How Computers Work for Man
MIN I VAC Games

Ml N I V A C 601

BOOKS V-VI

SCIENTIFIC DEVELOPMENT CORP.
W ATERTO W N , MASS.

The M inivac M anual was prepared and edited by the staff of

Scientific Development Corporation

First Printing— August, 1961

EX LIBRIS ccapitalia.net
Copyright (c) 1961 by Scientific Development Corporation, 372 Main Street, Watertown, Massachusetts

C O N T E N T S

BOOK V: HOW COMPUTERS WORK FOR MAN I

1. SIM PLE COM PUTER-LIKE DEVICES ENCOUNTERED EVERY D A Y 1
Introduction 1
Experiment 1: The Light on the Stairs 2
Experiment 2: The Burgular Alarm 2
Experiment 3. The Metronome 3
Experiment 4: The T ra ffic Light 4
Experiment 5: The T ra ffic Light with Pedestrian Control 5
Experiment 6: The Automobile Speed Timer 6
Experiment 7: The Train Gate Control 8
Experiment 8: The Two-Floor Elevator 10
Experiment 9: The Three-Floor Elevator 11
Experiment 10: The Automatic Toll Collector 12
Experiment 11: The Telephone Dialing System 13
Special-Purpose vs. General Computers 14

2. COMPUTER APPLICATIO N S IN BUSINESS AND INDUSTRY 16
The Computer System in the Business World 16
What Computers Can Do 16
W hat Computers Cannot Do 16
Truth vs. Output 17
W ill Computers Make Management Obsolete? 17
Examples of Computer Handling of Business Problems 17

The Payroll Problem 17
The Inventory Problem 19
Check Processing: How Computers "Read" Printing 20
Experiment 12: Arabic Numeral Recognition 22

Examples of Computer Handling of Industrial Problems 23
Experiment 13: Multiple Point Control 24
Experiment 14: Sequence Control with Manual Operation 24
Experiment 15: Automatic Sequence Control 25

W hat is the "Best" Computer? 26

3. COM PUTER APPLICATIO N S IN SCIENCE AND TH E M IL IT A R Y 27
Introduction 27
Real-Time Problem Solving 28
Computer Handling of Scientific Problems 28
Examples of Computer Handling of M ilitary Problems 29

Signal Systems 29
Experiment 16: Automatic Message Transmission 29
Experiment 17: Automatic Name Transmission 30
Experiment 18: Automatic Transmission with Differential

Spacing 31
Computerized Coding Systems 31
Experiment 19: Encoder for Morse Code 32
Experiment 20: Decoder for Morse Code 34
Experiment 21: "Search and T rack" Radar 35
Countdown Control 36

iii

4. COMPUTER APPLICATIO N S IN TH E SOCIAL AND PO LIT IC A L SCIENCES 36
Vote Registering Machines 36
Computers and Election Predictions 36
Language Translation 37

Symbols and Meaning 37
Translation of Symbolic Combinations 37
Simple Translations between English and German 38

Job Selection 40
Mate Selection 42
Behavioral Simulations 44

Associative Memory 44
A Simulated Maze Solver 44

5. COMPUTER APPLICATIO N S IN SCIENCE FICTION FILM S 45
The Flashing Lights Circuit 45
The "Super" Circuit 46

APPEN D IX : Programming Languages 46

BOOK VI: MIN I VAC GAMES

Preface 51

T; M IN I VAC AS AN OPPONENT 51
The Secret Code 51
The Combination Lock 52
The Electronic Maze 53
The Match Game 54
Tic-Tac-Toe 55

2. M IN IVA C AS A REFEREE 56
The Philosophic Tug of W ar 56
The Mind Reading T rick 57
The Fortune Teller 58
The Random Number Generator 59
Scissors, Paper or Stone 59
Reaction Time Tester 60

iv

BOOK V

How Computers Work for Man

PREFACE

The previous books in this series have examined various functions performed by modern
high-speed digital computers. In this book, M IN IVAC 601 is used to demonstrate how these func­
tions are combined in various situations to enable the digital computer to do a specific job. Ex­
amples of computer applications are examined in five major sections.

The first section— Simple Computer-like Devices Encountered Every Day— presents a number
of fam iliar basic switching circuit devices. These applications involve relatively simple, special-
purpose machines which are not "computers" in the general sense in which computers were de­
fined in Book II, although they perform computer-like functions.

The second section— Computer Applications in Business and Industry— contains a description of
some general applications which computer systems find in business and industry. Included in this
section is a discussion of how computers "read" printed material in processing bank checks. Indus­
trial systems used to provide automatic process control and checking of production are also in­
cluded in this section.

Section three— Computer Applications in Science and the Military— contains examples of prob­
lem-solving and control applications in which large computers are now being used. In addition to
illustration of the kinds of problems which computers are helping scientists to solve, this section
contains experiments demonstrating how computers are utilized in radar tracking, automatic
coding systems, and missile check-out procedures.

Section four— Computer Applications in the Social Sciences— examines the potentials of com­
puters in such areas of election prediction, language translation, and simulation of human learn­
ing functions.

Although the first four sections of this book provide a summary of the many areas in which
high-speed computers are finding applications, there is one computer application which cannot
reasonably be considered under any of the four headings discussed above. Although this fifth area
is probably the least important of all computer applications, it may well be the only application
with which your friends are really fam iliar. Section five— Computer Application in Science Fiction
Films— is included to insure that you will be able to use M IN IVAC 601 to demonstrate how com­
puters are used on the movie and T V screen.

Much work has recently been done in the development of "compiler programs" which permit
programmers to communicate instructions to computers using a language similar to that used to
communicate mathematical problems to men. The compiler program converts the symbols of
mathematical and/or logical expressions into binary codes which can be processed by the com­
puter. In the appendix to this book— Computer Programming Languages— commonly used program­
ming languages are discussed.

1. Simple Computer-like Devices Encountered Every Day
This section contains examples of several fam iliar computer-like machines. These simple

devices perform specialized functions using basic computer or "switching circuit" functions.
It is important to remember that the machines used to perform these functions do not have

1

the capacity or flexib ility of the more generalized high-speed digital computers discussed in later
sections of this book. These simple machines, however, provide excellent examples of specialized
computer functions used to perform some basic jobs for man.

Experiment 1: The Lights on the Stairs
It seems appropriate to begin our examples of simple computer-like systems with the ordinary

light switch. In many homes a light in a particular location can be controlled from 2 points. This is
often true of the light in a stair well which can be turned on or off either at the top or the bottom
of the stairs. The problem presented in this case (i.e ., how to turn the light on or off from either
the top or the bottom of the stairs) is solved using a basic computer function.

The function used in this circuit is a version of the AND circuit. The circuit diagram and pro­
gram below summarize the situation. With this circuit in use, the light can be turned on or off
from either of 2 locations. Assume that slide switch 1 is the switch at the top of the stairs and
slide switch 2 is the switch at the bottom of the stairs. Regardless of which position the switch is
in, the switch at the other location can always turn the light either on or off.

Program for dual-control light:
1A/1 +
1B/1V
1U/2U
1W/2W
2 V /2 -

To use the program:

Light 1 can be turned either ON or OFF using slide switches 1 or 2.
For example, moving slide switch 1 to the LEFT will turn light 1 ON if slide switch 2 is

RIGHT. The light will go OFF if slide switch 2 is now moved to the LEFT.

Experiment 2: The Burglar Alarm
This next circuit provides an example of the basic NOT function in a device found in some

homes, most office buildings, and all banks: the burglar alarm. The essential element of this
application is that all of a set of contact points must be closed for the alarm not to sound. The con­
tact points may be on doors, windows or vault openings.

If any set of contacts is opened— by a door or window being opened— the circuit is broken
and the alarm sounds. Once the alarm sounds, the device can be re-set by closing the contacts and
throwing a re-set switch. In actual practice, the re-set switch is not readily accessible; in some
cases, in fact, the re-set switch may be at police headquarters.

The program which follows illustrates a simple alarm circuit. If any contact is broken by
pushing any of pushbuttons 2 through 6, the alarm (light 5) comes on. The system is re-set by
pushing pushbutton 1.

2

C IR C U IT DIAGRAM — BURGLAR ALARM

Program for Burglar A larm :
1X/6F 3Z/4Y 5E/5+ 6C/6+
1Y/2Y 4Z/5Y 5F/5H 6F/6L
2 Y / 2 - 5A /5+ 5J/6J 6H/6—
2Z/3Y 5B/5J 5Z/6Y 6K/6Z

To use the program:
Turn power ON. The alarm (light 5) comes ON. Set the system by pushing the re-set

button (pushbutton 1). The burglar alarm is now set. If any contact is broken by pushing any
of pushbuttons 2 through 6, the alarm will come on. After an alarm has been given, the
system can be re-set by pushing pushbutton 1.

Experiment 3: The Metronome
Computers frequently use timing circuits to perform a series of operations or to repeat an

operation periodically. A fam iliar example of a timing device is the metronome, which is designed
to generate a signal at periodic intervals.

The program which follows demonstrates a basic timing circuit using the turning of the
rotary switch dial between two points to generate a periodic signal. Commercial metronomes can
produce signals with a wide range of periods; with this circuit, however, only four periods can be
produced using the positions of slide switches 4 and 5 to determine the period. Through an ap­
propriate circuit, the M IN IVA C is capable of generating 15 different periods.

The program and circuit diagram for a metronome are:

3

C IR C U IT DIAGRAM — METRONOME

Program for metronome:
4R/D3 4W/D9 6F/6— 6J/6K
4S/5R 5S/6K 6G/D1 6J/6+
4T/D5 6C/6L 6G/6N 6L/D18
4U/D7 6E/D16 6H/D17 6N/6—
4V/5T

To use the program:
Turn power on. The rotary switch dial will begin to turn back and forth, generating a periodic

signal. To change the period of the signal, move slide switches 4 and 5.

Experiment 4: The Traffic Light
Timing circuits are used in many devices. One of the most fam iliar is the traffic light which

follows a pre-programmed cycle from red to green to yellow and back to red. A continuous cycling
device is used in this case to produce the fam iliar sequence of light.

Using the rotary switch mechanism and the lights, M IN I VAC can be programmed to simu­
late the three-light sequence of a traffic light.

RED AMBER GREEN

C IR C U IT DIAGRAM — TR A FFIC LIG H T

4

Program for traffic light:
4A/4+ D1/D2 D8/D9 D15/D0
4B/D11 D2/D3 D9/D10 D16/M—
5A/5+ D3/D4 D1I/D12 D17/M—
5B/D7 D4/D5 D12/D13 D18/M+
6A/6+ D5/D6 D13/D14
6B/D1 D7/D8 D14/D15

To use the traffic light program:
Turn power on. The rotary switch will turn, turning lights 4, 5 and 6 on and off in succession.

Light 4 represents "red", light 5 represents "am ber", and light 6 represents "green". The length
of time any given light remains on may be varied by changing the connections on the rotary
switch.

Experiment 5: The Traffic Light with Pedestrian Control
The traffic light provides a good opportunity to move from a simple timing circuit to a more

complicated circuit which involves sequence control. The traffic light in Experiment 4 moves
through a pre-determined sequence, and unless the device is re-programmed, it will continue to
fo llo w th e se q u en ceas lo n g asp o w eris fe d to it .lt is often desirable, however, to interrupt the
sequence or control it in some manner.

Specifically in the case of the traffic light it is desirable to have an "over-ride" control which
allows a pedestrian to modify the normal pattern of the light. The program and circuit which fol­
low illustrate an "interrupt circuit" which permits an operator to temporarily change or start a
pre-programmed sequence.

RED AMBER 6REEN

Program for traffic light with pedestrian control:
4A/4 + 5F/5Z 6B/D7 D5/D6 D12/D13
4B/D1 5H/5— D1/D2 D7/D8 D14/D15
5A/5+ 5J/D18 D2/D3 D8/D9 D15/D0
5B/D14 5Y/D6 D3/D4 D9/D10 D16/M—
5E/5+ 6A/6 + D4/D5 D10/D11 D17/M+

D11/D12

5

To use the program:
Turn power on. The "red" light (light 4) comes ON. To cross the street: push pushbutton

5 until the "red" light (light 4) goes OFF and the "green light" (light 6) comes ON. A fter the
light has turned green, it will go to amber (light 5) and return to red again.

In actual practice, this traffic light would be tied to a complementary light facing the flow
of tra ffic . This traffic light, facing the pedestrian, would normally be red, the complementary
light would normally be green. Since the two lights are connected, changing the pedestrian's light
by pushing a button would automatically change the complementary light.
Experiment 6: The Automobile Speed Timer

As an example of a computer-like device encountered, we hope, not every day, consider the
device used by police who post the warning: "Speed Electrically T im ed." The mechanism used
to determine the speed of passing cars depends essentially on a device which measures the time
which lapses as a car passes between two given points.

The actual devices use a variety of mechanisms (radar beam, switches on the road, etc.) to
indicate when a car has passed the two selected points. However, we can simulate the action of
the timing mechanism by pushing pushbuttons to indicate when a car passes the check points.

The signal that a car is passing the first check point will be indicated by pushing pushbut­
ton 6; the signal that the car is passing the second check point will be indicated by pushing push­
button 5. Pushing pushbutton 6 starts the timing motor (in this case the rotary switch); pushing
pushbutton 5 stops the motor. As the rotary switch turns, M IN IVAC will count its revolutions.
A fter the motor has stopped, we will be able to calculate the speed of the passing car.

Program for the automobile speed timer:
1C/1G 2L/D11 4H/5H 6C/6X
1C/2K 3C/3G 4L/D13 6F/6—
1 F/1 - 3C/4K 5C/5G 6H/6 +
1H/1 + 3F/3— 5C/D15 6H/6L
1H/2H 3H/4H 5F/5— 6K/D17
2C/2G 3L/D12 5L/D14 6Y/6+
2C/3K 4C/4G 5X/6E D16/M+
2F/2— 4C/5K 5Y/5— D18/M—
2H/3H 4F/4— 6C/6G

6

The simplest way to calculate automobile speeds with the above program is to make up a
dial plate to cover the regular input-output dial. To make such a dial plate, follow these steps:

1. Measure the distance between the two points to be used as check-points.
2. Correct this distance from whatever unit it was measured in to miles. For example, if the

distance was measured in yards, divide this distance by 1760 (the number of yards in a
mile) to get the distance in miles.

3. Count the number of complete revolutions which your rotary switch makes in one minute and
note this number. Since the program above indicates a revolution of the rotary switch when
the dial has completed 15/16 of a revolution, we must multiply the number of complete
revolutions in a minute by 16/15 to obtain a "revolutions per minute" figure for the dial
plate.

4. Multiply the "revolutions per minute" figure which you have obtained by 60 to get the num­
ber of revolutions per hour.

5. Multiply this last "revolutions per hour" figure by the distance between the two checkpoints
expressed in miles. This will give you the speed in miles per hour which a car would be trav­
eling if the rotary switch turned exactly one revolution while the car passed between the two
checkpoints.

For example: assume that the checkpoints are 50 yards apart, and that the rotary switch
turns 45 full revolutions per minute. Then:

50
50 yards = ------= .029 miles

1760

16
45 X — = 48 revolutions per minute

15

revolutions per hour = 48 X 60 = 2880

And if a car were to pass from the first checkpoint to the second checkpoint while the rotary
switch dial moved from 0 to 15, its speed would be:

.029 X 2880 = 83.52 miles per hour

To find the car's speed if the dial turned through two revolutions— from 0 to 15 and then from
15 to 14— we will divide the last figure by 2:

83.52
 = 41.76 miles per hour.

Sim ilarly, if the dial turns through three revolutions— from 0 to 15, then from 15 to 14, then
from 14 to 13— the speed of the car is:

83.52
----------= 27.64 miles per hour.

The dial plate will thus have a sequence of speeds depending upon the number of revolu­
tions the rotary switch makes as the car passes between the check points. Since the program is
such that the relay indicator lights count the number of revolutions of the rotary switch, we will
know which speed to read by observing which relay lights are on.

The dial plate for the example above would look like this:

7

READ SPEED IN MPH FROM THIS
BAND IF:

RELAY LIGHT 5 IS ON

RELAY LIGHT 4 IS ON

RELAY LIGHT 3 IS ON

RELAY LIGHT 2 IS ON

RELAY LIGHT 1 IS ON

D IA L PLATE— AUTOM OBILE SPEED T IM ER

To time an automobile's speed:
Push pushbutton 6 as a car passes the first check point.
Push pushbutton 5 as the car passes the second check point.
Read the speed of the passing car from the dial plate: the speed is read from the band cor­

responding to the lowest numbered relay indicator light which is on.

Experiment 7: The Train Gate Control
The gate control at a train crossing provides a simple example of a function known as "en­

vironmental sensing." A device with environmental sensing is one which is capable of receiving
information about its environment and then acting on the basis of the information. In a large-
scale computer, the actual "sensing" device would ordinarily be a specially-designed input unit
which would automatically feed environmental information into a computer which was pre-pro­
grammed to handle it.

An extremely complex version of environmental sensing is the control system used in an au­
tomatically controlled oil refinery process. Input in the form of fluid flow, temperature, pressure,
etc., is feed into a computer which processes this information and feeds its results into special­
ized output units which adjust valve settings, re-route fluid flow, or, in case of emergency, turn
on various safety devices.

In the case of the simple train gate control, the control device must be capable of sensing
the presence of a train and, when it does, must act to close the gate. The actual "input unit" for
this type of system is generally a set of pressure switches under the rails. These switches remain on
as long as a train's weight is on them. In actual practice there are many sets of switches located
up and down the track, spaced less than a locomotive's length apart. When any of these switches
is activated, the gate closes and remains closed until none of the switches is on.

8

For demonstration purposes, we can assume that there are only three switch locations: one
each on either side of the crossing, and one in the middle of the crossing. The switch in the mid­
dle of the crossing must be so designed that cars passing over it will not close the gate.

The circuit diagram and program for a train gate control system are:

Program:
4C/5C 5F/5K 6J/D17
4F/4X 5G/6F 6L/6+
4F/4K 5H/5+ 6L/6Y
4G/5G 5L/5X 6N/D18
4H/5H 5Y/6Y D0/M+
4L/5L 6C/6— D7/M—
4Y/5Y 6G/6N D16/D19
5C/6C 6H/6—
5F/6X 6J/6K

To use the program:
Turn power on and set the pointer knob of the rotary switch at 0.
The rotary switch at 0 represents the gate up. To indicate that a train approaches from the

left and continues through the crossing, push pushbutton 4, 5, and 6 as follows:
1. Push pushbutton 4.
2. While holding pushbutton 4 down, push pushbutton 5.
3. Hold pushbutton 5 down and release pushbutton 4.
4. While holding pushbutton 5 down, push pushbutton 6.
5. Hold pushbutton 6 down and release pushbutton 5.
6. Release pushbutton 6.
The pattern for a train moving from left to right through the crossing may be expressed as

the following sequence of operations:

9

Pushbutton 4 Pushbutton 5 Pushbutton 6
0 0 0
1 0 0
1 1 0
0 1 0
0 1 1
0 0 1
0 0 0

Notice that the gate closes (the pointer knob moves to the "gate closed" position— 7) as
soon as the first switch is activated and remains closed until none of the switches is activated
The same will be true for a train moving from left through the crossing, or for a train which en­
ters the crossing, stops and backs out again.

Push pushbutton 5. This represents a car passing over the center of the crossing. Notice that
the gate does not close.

Experiment 8: The Two-Floor Elevator
A number of fam iliar devices exhibit an important characteristic of a computer - memory.

One of the most common devices which has a memory built into it is the automatic elevator. The
complexity of the controlling mechanism for an automatic elevator depends primarily on its size
— that is, the number of floors which it services.

The simplest possible automatic elevator control, of course, would be for a two-floor elevator.
The system would then be required to remember only at which of two floors it was stopped, and it
would not need to remember commands from various other floors. The program which follows
simulates this basic elevator control circuit.

The rotary switch dial at 1 indicates that the elevator is at the first floor; the dial at 7 indi­
cates that the elevator is at the second floor. Sim ilarly, binary output light 5 on indicates that
the elevator is at the first floor; binary output light 6 on indicates that the elevator is at the sec­
ond floor. These lights are analogous to the indicator above an elevator door which tells you
where the elevator is.

Pushbuttons 5 and 6 serve a dual purpose; they represent the "c a ll" buttons on the floors, as
well as the control buttons inside the elevator. That is, pushbutton 5 is used to direct the elevator
to the first floor— as would be done either by pushing a "c a ll" button on the first floor or by
pushing the "first floor" button inside the elevator. Sim ilarly, pushbutton 6 is used to direct the
elevator to the second floor.

The circuit diagram and program for the two-floor elevator control system are:

C IR C U IT DIAGRAM — TWO-FLOOR ELEVATOR CONTROL SYSTEM

10

The program is:
5A/6C 5G/6E 6 F /6 - 6N/D18
5 B /5 - 5L/5X 6G/6N 6Y/D1
5B/6B 5N/6E 6H/6+ D1/M+
5C/5— 5Y/6Y 6J/6K D7/M—
5C/5H 6A/6K 6 L / 6 - D16/D19
5F/6X 6C/6G 6J/D17

To use the program:
Set the "elevator" at the first floor by setting the pointer knob of the rotary switch at 1. To

call the "elevator" to the second floor, push pushbutton 6. The "elevator" will immediately move
to the second floor (the pointer knob will point to 7). To return the "elevator" to the first floor,
push pushbutton 5.

Experiment 9: The Three-Floor Elevator
The requirements for the previous elevator control system were very simple. Since there

were only two possible locations for the elevator, the control system's memory had only to re­
member whether the elevator was up or down. If we add only one more floor to the system, how­
ever, the necessary circuitry becomes much more complicated. The system must be able to sense
where it is, remember its destination, and then must be able to move to its destination.

As before, the pushbuttons will be used to represent both the call buttons on the various
floors and the control buttons inside the elevator. Whenever a pushbutton is pushed, the system
will go through the following steps:

1. The system will determine on which floor the elevator is presently located.
2. It will compare its present location with its destination (as indicated by which pushbut­

ton was pushed).
3. If the destination differs from present location, the system will store the destination and

proceed with step 4.
4. The system will select the direction in which it is to move (up or down).
5. The "elevator" will begin to move in the selected direction.
6. As the "elevator" begins to move, the pushbuttons will interlock so that the system will

ignore further calls.
7. The "elevator" will continue to move to its stored destination.
8. When it reaches the stored destination, the "elevator" will stop and clear the destination

from its memory.
9. As the "elevator" stops, the pushbutton interlock will clear and the system is ready for

a new command.
The program for the three-floor elevator control system is:

1A/1E 2B/2— 3F/3G 5F/6C
1 B/l — 2C/3C 3G/3X 5G/5N
1C/2C 2E/D7 3J/4E 5J/5K
1E/D1 2F/2G 3Y/4J 5J/D17
1F/1G 2G/2X 4C/5F 5L/5—
1G/1X 2J/3H 4F/4 + 5N/D18
1H/1 + 2X/6H 4G/4H 6C/6—
1H/1L 2Y/3Y 4H/4 + 6F/D12
1J/2H 3A/3E 4L/D19 D0/D1
1K/5E 3B/3— 4N/D18 D6/D7
1Y/2Y 3C/4C 5C/5G D12/D13
2A/2E 3E/D13 5E/6G D16/M—

Floor 1
Floor 2
Floor 3

call button

pushbutton 1
pushbutton 2
pushbutton 3

indicator light

output light 1
output light 2
output light 3

D0-D1
D6-D7
D12-D13

11

To use the program:
Set the "elevator” at the first floor by setting the pointer knob at DO. Turn power on. Out­

put light 1 will come on indicating the location of the "elevator". To call the "elevator" to the
third floor, push pushbutton 3. To direct the "elevator" to the second floor, push pushbutton 2.

Notice that, even with the relatively complex circuit above, the system is still not able to
accept more than one command at once. Much more capacity is required for a control system
which will remember successive commands and select the appropriate next move.

Experiment 10: The Automatic Toll Collector
Most of the specialized circuits discussed so far have been designed to perform various con­

trol functions. This next circuit, however, is designed to function as a decision-maker. The au­
tomatic toll collector has the responsibility of deciding whether or not a combination of coins
given to it is sufficient to pay the toll. Ignoring the very specialized problem of recognizing vari­
ous coins, let us consider the decision-making problem which the automatic toll collector must
solve.

We will assume that a 10 ̂ toll is to be collected. This toll can be paid by depositing:
one dime
two nickels
one nickel and five pennies
ten pennies

The automatic toll collector must examine the input (the coins) and decide if it is adequate. If
the payment is sufficient, the system must indicate to the driver that he may proceed. However,
if a car passes through the toll gate without paying sufficient toll, the system must sound an
alarm so that the guards will be notified immediately.

The program for an automatic toll collector is:

1A/3K 2H/2+ 4A/4E 5J/5X
1A/2E 3A/3E 4B/5B 5J/6H
IB /IE 3B/4B 4C/5C 5L/6G
1B/2B 3C/4C 4E/4J 5X/D5
1C/1J 3E/4G 4H/5N 5Y/6Y
1E/2C 3F/3H 4K/5N 6A/6E
1F/1H 3F/4F 4Y/5Y 6 C /6 -
1J/2K 3G/3L 5A/5E 6E/6J
2A/3N 3G/3+ 5B/6B 6X/D16
2B/3B 3J/4H 5C/6C 6X/D18
2C/3C 3J/4X 5E/6G D0/D19
2F/2G 3L/3Y 5F/5H D5/D10
2F/4N 3N/6Y 5F/6F D17/M—
2H/2L 3X/4L 5G/5+

Output light 1 ON represents "Thank You— Go Ahead"
Output light 2 ON represents "Stop— Pay Toll lOtf"
Relay 1 and relay indicator light 1 ON represents "A la rm "
Pushing pushbutton 3 represents "Drive Away"
Pushing pushbutton 4 represents depositing one dime
Pushing pushbutton 5 represents depositing one nickel
Pushing pushbutton 6 represents depositing pennies (number of pennies indicated on rotary
switch)
To use the program:

Turn power on. Output light 2 comes on indicating "Stop— Pay Toll 104."

12

Deposit 1 0<? in toll:
to deposit one dime, push pushbutton 4
to deposit two nickels, push pushbutton 5 twice
to deposit one nickel and five pennies:

push pushbutton 5 once; then set the rotary switch dial to 5 and push pushbutton 6
to deposit ten pennies:

set the rotary switch dial to 10 and push pushbutton 6.
When 10P has been deposited, output light 1 will come on indicating "Thank You— Go
Ahead."
Push pushbutton 3 to "Drive Aw ay."
The toll collector will re-set.
If you try to drive away without depositing enough money, the alarm will sound. To turn off

the alarm , deposit 10P. If you deposit more than 1 OP, the automatic toll collector will accept the
extra money and do nothing about it.
Experiment' 11: The Telephone Dialing System

The telephone dialing system is an excellent example of a highly specialized computer sys­
tem capable of handling a particular type of complex problem. The entire dialing system is far
too complicated for this discussion. However, we can examine one small segment of the prob­
lem: the conversion of a dialed number into a type of binary code which can be understood by
the circuits of the telephone exchange.

The telephone dialing system uses a special binary code known as the Gray Code. This code
is binary in nature; that is, it uses only the digits 0 and 1. However, it does not follow the usual
rules for the development of a number system. The system is so designed that when moving from
any number to the next highest number there is a change of only one bit.

For this experiment, we will use a three-bit Gray Code which will allow us to count from 1
through 7. We will use the Gray Code equivalent of zero for 8 so that we can represent the num­
bers 1 through 8:

The program which follows is in essence a conversion program from decimal to Gray Code.
The decimal number "dialed" will be displayed in Gray Code on output lights 4, 5, and 6. This
represents only the first step in the handling of dialed numbers in a telephone system: the con­
version of the dialed number to a form which can be processed at the telephone exchange.
The program is:

Decimal Number Three-Bit Gray Code

2
3
4
5
6
7
8

001
O il
010
110
111
101
100
000

IC / 1 -
1C/1H
IF/DO
1G/4B
2C/3C
2E/3E
2F/3F
2F/3G
2G/2N
2H/5G
2J/2K
2J/6E
2L/5J

2N/6G
3A/6E
3 B /3 -
3C/4C
3E/4J
3F/4G
3G/4A
3H /3+
3K/4E
3L/6K
3N/4F
4B/5B
4C/5C

4E/5E
4F/5F
4H/6N
5A/5K
5B/6B
5C/6C
5F/5K
5H/6T
5L/6H
6A/6F
6C/6—
6F/6G
6H/6+

6L/6W
6R/6U
6S/D1
6U/D18
6V/D2
D1/D3
D2/D4
D3/D5
D4/D6
D5/D7
D6/D8
D16/M+
D17/M—

13

To use the program:
With power off, set slide switch 6 RIGHT. Set the rotary switch dial at 0. Turn power on.
Slowly turn the rotary switch dial to the number you wish to "d ia l” . (Be sure that the pointer

knob is pointing directly at the number.)
Set slide switch 6 LEFT.
The rotary switch will return to 0 and the number "dialed" will appear in Gray Code on out­

put lights 4, 5, and 6.
(Note: output light 3 should be ignored.)
To "d ia l" another number, set slide switch 6 R IGHT and re-set the system by turning power

off and on again.

Special-Purpose vs. General Computers

In the preceding experiments, various devices which exhibit certain computer-like charac­
teristics have been examined. These devices share one common characteristic: they are designed
to perform a specialized and routine function. None is capable of performing all of the major
computer functions discussed in Book II. Moreover, none is capable of performing generalized
problem-solving functions.

In each case, though, a large-scale generalized computer could easily be programmed to
solve the specific problem. It is just not practical to have a full computer system to, for exam­
ple, control the lights in a home. Therefore, simple computer-like devices are designed to per­
form these specific tasks. Technically, any of these simple, highly specialized devices could be
called a computer since it can receive input, can process and/or store the input, and can yield
output. More accurately though, these devices should be called "computer-like" because of their
extremely limited capabilities.

The computer systems discussed in Book II were general computers. That is, their input and
output capabilities allow them to handle a wide range of communication, and their processing and
storage units are such that various types of problems can be handled. These general computers
are used primarily in situations where there is likely to be a great deal of variety in the type of
problem to be solved. A research organization, for example, would require the versatility of the
general computer if it were using the computer for "one-shot" problems (problems which would
only be programmed onto the computer once).

For routine problem-solving— for example, making out a weekly payroll— an organization
may find a special-purpose computer most practical. A special-purpose computer is just what its
name implies: a computer designed to handle a limited number of problems in a particular fash­
ion.

Special-purpose computers are often made to order, in which case computer "building-
blocks" are frequently used. Computer building-blocks are simply generalized logical units which
perform particular tasks. A building-block might be a half-adder, or one bit of an accumulator,
or a single flip-flop. Any number of building-blocks can be combined to produce a special-pur­
pose computer to handle a specific problem.

When a special-purpose computer is in the design stage, the phrase "b lack box" is often
used. This is just a convenient, if amusing, method of expressing the particular problem at hand.
When dealing with a black box, the designers are not concerned with how the system will actually
go about solving the particular problem; they are concerned rather with what the system must
do. The black box is essentially the processing section of a particular part of the problem-solving
unit. The inputs and outputs are specified; later in the design stage, building-blocks will be used
to carry out the requirements of the black box.

We might define a black box as follows:
a black box is a device with specified inputs and outputs; the outputs are expressed as func­
tions of the inputs. The inner workings of the black box are unspecified.
To illustrate both black boxes and building blocks let us consider the problem of designing a

special-purpose computer which will do the following.

14

The system will have three inputs (A , B and C) and one output. Each of two inputs (A and
B) is a series of electrical pulses of different rates. The third input (C) is a re-set input. Inside
the computer are two counters: one counter counts the number of pulses from input A ; the sec­
ond counter counts the number of pulses from input B. If at any time the contents of counter A
equal the contents of counter B, but do not equal zero, both counters will stop and a pulse will
appear as output. Input C will then set counters A and B to zero and the system will begin count­
ing inputs A and B again.

The first step in the design of this special-purpose computer will be to "block diagram" the
problem; that is, we will represent the problem graphically so that we can see just what will be re­
quired. The block diagram of our problem looks like this:

In this diagram, the black boxes are represented by the rectangles; the building blocks are
represented by the circles. The building blocks a re simply basic logical units which perform a defi­
nite function. The black boxes, however, are specified only as far as input and output; the method
for arriving at the output as a function of the input is not defined. When we use a black box to
represent some part of our computer we are saying only "insert some circuitry which will do the
necessary job".

A t a later stage in the design of our computer, we can take each black box apart and select
the appropriate building blocks which are required. In actual practice, this job would probably be
done by the design department of the firm from which we were buying our special-purpose
computer.

As an example of taking a black box to the building block stage, the "Test for Zero" black
box might look like this:

"T ES T FOR ZERO " BLA C K BOX

15

When the actual computer is built, the appropriate components will be wired together ex­
actly as indicated in our sketches. Notice that when completed, our special-purpose computer is
actually only a particular combination of the basic logical units which we examined in Book III.
A general purpose computer, on the other hand, is a large number of basic logical units com­
bined in such a way that particular combinations of them can be automatically effected by in­
ternal programming.

2. COMPUTER APPLICATIONS IN BUSINESS AND INDUSTRY
The Computer System in the Business World

General purpose computers and electronic data processing machines have found extensive
application in the business world, performing a wide variety of tasks with great speed and accu­
racy. In this section, we will discuss the kinds of functions which computers can effectively handle
in a business operation.

A basic answer to the question, "W hat can computers do in business?" might very well be
"any repetitious task". In general, the computer is best equipped to handle any situation in
which the same basic operations are to be performed many times using different data, but fol­
lowing identical, prescribed procedures.

Sim ilarly, a valid answer to the question, "W hat is it unreasonable to expect computers to do
in a business situation?" would be, "to solve a unique or non-recurring problem." These answers
are not necessarily valid in a research or scientific problem-solving situation where the complex­
ity of a given problem may well justify the use of a high speed computer in order to obtain only
one answer at a particular time.

However, in most business situations the problems to be solved are such that computers can
be profitably employed in performing repetitive calculations which must be made in the course of
daily operations. In such situations it is usually well worth the time spent in programming a com­
puter to solve a particular kind of problem since the computer will solve the same problem many
times in the future using whatever data is applicable at the time. On the other hand, the exten­
sive programming time required to prepare a computer to solve a particular problem may make
it economically unwise to program the computer to solve a unique problem. The computer can
be a valuable tool for the businessman who knows how to use it and understands what it can and
cannot do. It can, though, be a very expensive and highly inefficient window-dressing in the of­
fice of a businessman who does not fully understand both its potentialities and its limitations.

What Computers Can Do
Books III and IV examined specific arithmetic and logical operations which computers can

perform. When these operations alone or in combination are used to solve a problem requiring
large amounts of data at once or using different data over a long per-iod of time, the right com­
puter can be an invaluable asset.

In general, an electronic data processing machine can do the job more effectively than a
human clerk if the job to be done involves:

Repetitive arithmetic calculations.
Repetitive decisions based on explicit decision rules.
Categorizing or cataloging large numbers of items.
Comparing large numbers of items.
Tabulating or summarizing quantitative information.

What Computers Cannot Do
In general, an electronic data processing machine is not worth using when small amounts of

data are to be analyzed in a unique manner at a single point in time. A few people with adding
machines or calculators can process several statistical tests on hundreds of pieces of data more
rapidly than a programmer can prepare a high speed computer to process that data and card
punch operators can prepare the data for input into the electronic data processing system.

The section in Book III dealing with sufficient information is particularly applicable in
business situations. In order to solve a problem a computer needs both data and instructions. The

16

importance of this simple fact is often overlooked, sometimes with disastrous results. The basic
requirement of sufficient information leads to a list of jobs which a computer should not be
called upon to perform:

Non-repetitive calculations on small amounts of data.
Problem-solving where inadequate data is available.
Problem-solving where the exact procedure to be followed can not be specified.
Decision-making in situations where qualitative factors must be considered.

Truth vs. Output
It is an unfortunate fact that some people consider information to be accurate simply because

it appears on a printed page. Since most businessmen are exposed to computer output only in the
form of printing prepared by an output device attached to the computer, there is a danger of ac­
cepting the results of the computer operation without first questioning (1) the data which the
computer was given and (2) the methods, procedures, or techniques which the programmer in­
structed the computer to use in order to arrive a t its conclusion.

The answer which a computer produces is only as good as the data which it was given and
the procedures which it was instructed to follow. The computer is a completely faithful servant.
It does everything it is told to do and, providing that the instructions which it is given are not in­
ternally inconsistent, it will not question the legitimacy of either the data or procedures.

Will Computers Make Management Obsolete?
Some businessmen view computers as antagonists ready to usurp power and reduce the man­

agement function to punching computer input cards. These businessmen, who seem to fear that
their conference room will be replaced by a panel of blinking lights, cannot appreciate the legiti­
mate potentialities of electronic data processing equipment because they fail to understand the
basic and important limitations of the potential.

Rather than detracting from the importance of management personnel, the computer, if
properly used, can add immeasurably to their ability to handle a wider range of problems more
effectively, to explore greater numbers of alternatives and to make decisions based on more in­
formation, more completely analyzed. The computer simply removes the tedium of repetitious
considerations and permits management personnel to focus their attention on policy-making and
effective utilization of more and better information in more competent problem-solving.

Examples of Computer Handling of Business Problems.
The Payroll Problem

Computer handling of a large payroll processing job provides a good example of an opera­
tion which computers are well-qualified to perfom in a business situation. Assume that the com­
puter is given the following information for each employee on punched cards or that it already
has this information in storage or on magnetic tape:

1. An identification number
2. The employee's guaranteed pay rate
3. The employee's regular pay rate
4. The employee's overtime pay rate
5. An itemization of all authorized deductions for that employee.
Assume also that the computer has been programmed so that storage locations are avail­

able in which the following information may be accumulated for each employee:
Attendance hours
Regular pay
Overtime pay.
W ith this information stored in the computer, work records from various departments are

fed into the machine. As this information is received by the machine, identification numbers on
departmental job cards are matched with employee identification numbers stored in the com­
puter and the appropriate calculations are undertaken as follows:

17

1) A comparison instruction is used to determine whether the man receives his guaranteed
rate or a job rate.

2) The appropriate rate is multiplied by the number of hours in regular and overtime ac­
tivity and the appropriate amounts are stored in the reserved location.

3) A record of total hours on each job is accumulated and this information is stored in the
appropriate register.

4) A fter total earnings have been determined, deductions are processed and final pay rec­
ords and labor costs records are supplied as output. The following flow chart summar­
izes the operation of this program:

18

This flow chart illustrates a relatively comprehensive job done by a computer using only
the simplest of operations. The only logical operation used to perform the job outlined above is a
"comparison" operation which is simply a logical AND. In performing the comparison the com­
puter compares each bit of the register containing the identification number for a particular man
with each bit of the register containing the identification number on the job record. If each bit of
the man's identification number register AND each bit of the register containing identification
number from the job record are the same, the comparison is satisfied and the computer proceeds
with the program.

The flow chart shows graphically one of the advantages of a computerized payroll system—
the ability to perform more than one job at one time. Notice that, in the same operation, the pay­
roll is processed and the cost distribution is calculated. This is a valuable trait, particularly to a
large firm which has many operations, each of which must be correctly accounted for.

The Inventory Problem
Maintaining an appropriate inventory for several thousand parts used in an active produc­

tion line is a very real problem to businessmen who must minimize time delays, storage costs, and
purchase costs in lot sizes, to mention only a few factors. An appropriate computer system can
handle the routine data flow and standardized decision-making after the correct program has been
written.

It cannot be over-emphasized that a computer system is only as good as its input. This is
definitely true of an inventory control system in which the computer yields purchase decisions
as output. If the computer can be given precise decision rules for purchase, as well as accurate in­
formation regarding the inventory, it can easily produce routine purchase decisions.

A particular advantage of a computerized inventory control system is the speed with which
information can be processed, making possible daily control of large inventories which would
otherwise be practically impossible.

Various inventory control systems use punched cards, paper tape or magnetic tape— or com­
binations of these. As an example of a functioning system, let us consider one which uses mag­
netic tape plus punched cards.

A complete record of the inventory is kept on a master tape which is up-dated daily. Addi­
tions to and issues from inventory are recorded first on punched cards and then fed into the mas­
ter tape. Daily output from the processing is in the form of punched cards which give order in­
structions, notice of abnormal usage and account summaries, as well as a revised master tape.
The following chart shows the input, processing steps and output for such a system:

MASTER
TAPEa

D A ILY
ORDERS

D A ILY
RECEIPTS

D A ILY
ISSUES

Dally Processing

1. Bring on-hand and on-order balances up to date.

2. If total balance for a part is below "order point", a to-be-ordered card is
punched showing economical order quantity and expected delivery date.

3. If on-hand balance for a part is below "minimum bank" figure, an ex­
pedite card is punched.

4. For parts having a receipt, new average unit cost is computed and included
in new master tape.

5. If actual daily usage of a part varies by more than ± 10% from planned
average daily usage, an exception card is punched.

6. Each issue is costed and extended (quantity x unit cost = total cost) and
an extended issue card is punched.

7. A distribution of costs by account is built up from the extended issues.

NEW
MASTER

TAPEo
TO-BE-ORDERED

CARD

EXPEDITE
CARD

EXCEPTION
CARD

EXTENDED ISSUE
CARD

ACCOUNT SUMMARY
CARDS

19

Notice that of the five output card types two are "warning" cards. Both the expedite and
exception cards alert management to the fact that some part of the system requires attention. As
in the payroll problem, cost distributions are built up as the inventory processing is done.

Check Processing
The use of computers to facilitate the physical handling of printed materials is effectively

illustrated in the computerized processing of bank checks. The actual job to be done is a book­
keeping procedure and, as such, the instructions and procedures are not unlike those of the pay­
roll problem.

The distinguishing aspect of the bank check problem is that the "input" is a printed paper
(a check) rather than a punched card. In order to handle the problem then, the computer must be
able to "read" the printing. (This ability of a computer to "read" printing also arises in the proc­
essing of credit billings.)

Previously, we have discussed how a computer "understands" information fed to it by recog­
nizing the presence or absence of holes in a card, magnetic marks, etc. at particular locations.
The problem in "reading" printed characters is basically the same: the computer must be pro­
grammed to recognize and interpret a "code" which identifies the input symbols. The "code" in
this case is the standard alphabet or standard arabic numbers.

The first step in communicating information to a computer as input in printed form is to
position the printing so that the computer can observe it. This is directly analogous to placing
punched cards in a reader, or loading magnetic tape on a magnetic tape reader. A variety of "read­
ing" systems for printed material are used, and most require placing the printed material in a
device which either holds it or moves it to a light source or magnetic sensing device.

Once the material is positioned in front of the sensing equipment, these specialized input de­
vices communicate to the computer the presence or absence of a magnetic or ink spot at a par­
ticular location in a matrix of light or of magnetic sensing elements. The process by which the
computer recognizes the symbols positioned against the matrix can be demonstrated on M INI-
VAC's game matrix.

For simplicity, consider a matrix composed of four sensing points: M l, M3, M5 and M7.
Using this matrix, M IN IVA C can be programmed to recognize simple geometric shapes. The pos­
sible geometric shapes which M IN IVA C can recognize are:

M1x
POINTS

M3
X •

X
M5

X
M7

M1 M3 M1

M7

LIN ES

M7 M5

M3

M5

M1 M3

M5 M7

TRIANGLES
Ml M1 M3 M3 Ml M3

M7 M5 M5 M7 M5 M7

SQUARES
M1 M3d
M7 M5

GEOM ETRIC SHAPES— VARIOUS FORMS

20

These various forms would be communicated to a commercial computer as information re­
garding the presence or absence of spots of ink or magnetic material at the "sensing points" of
the matrix. The "sensing points" of M IN IVA C 's matrix respond to electricity rather than light
or magnetic ink. Therefore we will supply current to the various sensing points of the matrix to
simulate the effect produced by the sensing elements in a printed character reader.

Light 1 on will indicate that M IN IVA C senses a point
Light 2 on will indicate that M IN IV A C senses a line
Light 3 on will indicate that M IN IVA C senses a triangle
Light 4 on will indicate that M IN IVA C senses a square

The program for the geometric shape recognition circuit is:

1A/2K 2A/2G 3H/5G 5H/6G
1 B /1 — 2B/2— 3J/3K 5J/5K
1C/2C 2C/3C 3L/5K 5L/6J
1F/2F 2F/M7t 3N/4G 6C/6—
1G/4A 2H/3N 4B/4— 6F/MH
1H/3G 2J/2K 4C/5C 6H/6+
1J/1K 2L/4J 4F/M5t M10/M+
1K/3A 3B/3— 4H/5N
IL/3K 3C/4C 5C/6C
1N/2G 3F/4F 5F/M3t

To use the program:

Indicate a geometric shape to M IN IVA C by making connections from M10 to the top ter­
minals of the various points on the matrix. For example, to indicate the triangle:

Make the connections:

M lO /M lt
M 10/M 3t
M 10/M 5t M5

Light 3 will come on indicating that M IN IV A C senses a triangle.

This program for the recognition of geometric shapes is sim ilar in function to the Quantity
Recognition circuit discussed in Book III. A large computer would determine how many points in
its m atrix of sensing elements were being activated by the presence of ink or magnetic material.
W ith the limited size of the matrix used in the above example, a properly programmed computer
can recognize a particular geometric form.

To recognize printed characters requires an expanded matrix— one large enough so that
each possible character can be uniquely defined. We can uniquely define the numbers 0 through
9 using the full game matrix on the M IN IVAC . The result will be ten forms, each with a unique
recognition code.

21

FORM CODE FORM CODE

269

126789

2345679

12379

2356789

2 4 6 8 9

2 4569

2 3 6 7 9

2 3 4 5 9 2468

CH ARACTER FORMS AND CODES
Notice that not only the form, but also the position of the characters is important. For ex­

ample, the character 1 must be centered in the block of sensing elements.
The experiment which follows uses a more complex variation of the quantity recognition

circuit to recognize arabic numerals which are "drawn" on the game matrix.
Experiment 12: Arabic Numeral Recognition

In this experiment we will program M IN IVAC to recognize arabic numerals which are
"drawn" on the matrix. The nine terminal locations of the matrix will provide the sensing ele­
ments for the computer. The program will allow M IN IVA C to recognize numerals according to
the code represented above.
The program for the recognition of arabic numerals is:

1C/2C 3C/4C 4H/5J 6H/6—
1 F/M9t 3F/M6t 4L/5K 6X/M10
lG/6com 3G/D6 5C/6C 6X/D17
1H/4K 3H/4N 5F/M4t 6Y/6+
1J/D0 3J/D9 5G/D5 6com/D4
2C/3C 3K/D8 5H/6G M10/M1 1
2F/M5t 3L/4J 5L/6J D16/D19
2G/D2 3N/D7 5N/D1 D18/M—
2H/4G 4C/5C 6 C /6 -
2J/D3 4F/M8t 6F/M7t

22

Now connect four short programming wires to M10, leaving one end of each free. Also, connect
four short programming wires to M l 1, leaving one end of each free.
To use the program:

Turn power on. Select a number from 0 to 10. "D raw " this number on the top terminals of
the matrix with the free wires from M l0 and M l 1, using the arabic numeral code previously
presented. Push pushbutton 6. The pointer knob of the rotary switch will turn to the number
"drawn" on the matrix.

To try another number, be sure that all eight wires to M10 and M l 1 are free. Then "draw"
the new number on the top terminals of the matrix and proceed as above.

You have undoubtedly noticed that some of the numbers used in the above experiment are
peculiarly shaped. For instance, the "8 " is a bit lop-sided. However, for the computer to recog­
nize the numerals, each character must be presented according to the code which the machine
is programmed to understand. This is true of any device designed to "read" printing: the device
will read only the particular type face which it is designed to understand.

Since each character must be unique, the type faces which are designed to be machine-read
do not look exactly like the numerals with which we are generally fam iliar. An example of a
specially-designed type face for use in a print-reader is that now used by many banks. In the
illustration below, the characters are printed with a special magnetic ink for sensing by the
reader:

1-987
Y O U R N A T IO N A L B A N K 210

New York, N. Y.. *<59.

PAY TO THE (/ 4 - S X V / - . . 70
ORDER OF

vo \ 5 ^ — A . B . D e p o s it o r
k W M a r y F . D e p o s it o r

.DOLLARS

co z lO 'O sa ?■: z zooai. z t ?oir iO L Z,' '0 0 0 0 0 0 5& 7 0 /

C H E C K A B A A C C O U N T P R O C E S S A M O U N T
R O U T I N G T R A N S I T N U M B E R C O N T R O L .
S Y M B O L . N U M B E R

BAN K CH ECK SHOW ING SPECIAL T Y P E FACE FOR M ACHIN E READING

Machine recognition of printed characters is presently limited to specially designed type
faces. Once the printed information is recognized by the machine, modern computers can rapidly
process this information. Banks now use computerized check processing systems, and the large
credit card companies have found computerized handling of accounts to be a valuable tool. Re­
search is presently being carried out on equipment designed to read any type face, and it is hoped
that in a short time computers will be able to understand printed characters regardless of the type
face.

Examples of Computer Handling of Industrial Problems
Although it is artificial to separate business from industry, we are establishing this distinc­

tion because of the types of problems which are handled by computer systems. The "business"
applications discussed have involved primarily computer handling of data-processing problems.

23

The "industrial" applications which follow deal primarily with computerized control systems for
production problems.
Experiment 13: Multiple Point Control

An expansion of the simple "Light on the Sta irs" circuit (see Experiment 1) is used in indus­
trial situations which require control from a number of points. An example of such a situation
would be the problem of handling radioactive materials without approaching them. Intricate sys­
tems have been designed for this particular process; these systems consist of a great number of
complex mechanical devices which allow an operator to handle these dangerous materials from
behind safety shields.

V ital to such a remote control operation are, of course, a great number of safety devices—
for instance, emergency cut-off switches as well as emergency "on" switches for certain safety
mechanisms. For added safety, duplicate emergency switches are generally placed at various
locations— at the actual equipment location, in the safety engineer's office, in the central
power plant, etc. Thus, in case of an emergency, safety devices can be turned on or dangerous
equipment can be turned off from the most accessible location and with the least possible danger
to the employees.

This experiment demonstrates a basic control circuit which permits a single light (which
could represent any safety device) to be turned on or off from twelve different "locations".
The program for a multiple point control system is:

1V/1Y 4A/6K 5E/6G 6A/6E
1W/2V 4B/4— 5F/6F 6 B /6 -
1Z/2Y 4W/5V 5F/5H 6C/6—
2W/3V 4Z/5Y 5G/5+ 6E/6J
2Z/3Y 5A/5E 5J/6H 6H/6W
3W/4V 5 B /5 - 5W/6V 6L/6Z
3Z/4Y 5C/6C 5Z/6Y 6Z/6+

To use the program:
Set all slide switches to the RIGHT. Turn power on. Light 4 may be turned on or off by push­

ing any pushbutton or by moving any slide switch to the LEFT and then back to the RIGHT. In ac­
tual practice, these twelve switches would be located at various control points, rather than being
grouped in one place. (Note: lights 5 and 6 are wired into the control circuit.)
Experiment 14: Sequence Control With Manual Operation

Another form of a control system used in an industrial process is one which insures that a pre­
determined sequence of operations is executed in the proper order. This type of system finds
application, for instance, in a situation which calls for the combination of chemical compounds in
a specified order— particularly when an error in the sequence would prove dangerous.

The program below provides constant control as would be required in the situation just out­
lined. The control circuit provides that the first step in the process be taken before the second can
be begun, and so on through twelve consecutive steps. This particular circuit will not permit an
error in sequence to be made. The system will not recognize a step taken out of order. Only the
correct steps given in the correct sequence will be accepted as input. When all twelve steps in the
operation have been completed, light 1 will come on indicating the end of the operation.
The program for a control system with manual operation is:

1A/1G 2F/2G 3H/4G 4com/5L 5S/5X
1 B /1 — 2F/3K 3N/4N 4R/3com 5T/6T
1C/2C 2H/3G 3com/4L 4S/4X 5Y/6Y
1F/1G 2N/3N 3R/4com 4T/5T 6A/6J
1F/2K 2com / 3 L 3S/3X 4Y/5Y 6B/6—
1H/2G 2R/5com 3T/4T 5C/6C 6C/6—
1 com/2L 2S/2X 3Y/4Y 5F/5G 6F/6G
1 R/6com 2T/3T 4C/5C 5F/6K 6F/6com
1S/1X 2Y/3Y 4F/5G 5H/6G 6H/6 +
1T/2T 3C/4C 4F/5K 5N/6N 6R /1 com
1Y/2Y 3F/3G 4H/5G 5com/6L 6S/6X
2C/3C 3F/4K 4N/5N 5R/2com 6Y/6 +

24

To use this program:
Set all six slide switches to the R IG HT and turn power on.
Carry out the twelve steps in the operation by setting the slide switches and pushing the
pushbuttons in this order:

Set slide switch 1 LEFT
Push pushbutton 1
Set slide switch 2 LEFT
Push pushbutton 2
Set slide switch 3 LEFT
Push pushbutton 3
and so on, through pushbutton 6.

When you have completed all twelve steps, light 1 will come on indicating "operation com­
plete."

If you attempt to carry out a step in the wrong order, nothing will happen. The system accepts as
input only the proper steps.
To re-set the system, set all slide switches to the R IGHT and turn power off, then on again.

Experiment 15: Automatic Sequence Control
The previous program provides basic control over an operation by requiring that a human

operator perform the required steps in the appropriate order. However, it leaves execution of each
of the steps to the operator.

In some complex industrial processes not only the sequence of operations, but also the tim­
ing of each step, is crucial. Under such circumstances it is often desirable to use a completely
automated system to control the entire process. With the appropriate circuitry, each step in the
operation will be performed in the specified sequence, with the specified delay between steps.

In the following program, pushing pushbutton 6 will start the automatic sequence. Lights 1
through 6 will come on in order, indicating that each step in the sequence has been completed.
When the last light— light 6— comes on, pushing pushbutton 5 will turn the system off.

The program for automatic sequence control is:

1A/6G 2F/2— 4B/4— 5Y/M—

1 B/l — 2G/5A 4C/4G 6B/6—
1C/1G 2H/3H 4C/5K 6C/6G
1C/2K 2L/D11 4F/4— 6C/6X
IF/1 — 3A/4G 4H/5H 6F/6—
IG/6A 3B/3— 4L/D13 6H/6+
1H/1 + 3C/3G 5B/5— 6H/6L
1H/2H 3C/4K 5C/5G 6K/D17
2A/5G 3 F / 3 - 5C/D15 6Y/6+
2B/2— 3G/4A 5F/5— D16/M+
2C/2G 3H/4H 5L/D14 D18/M—
2C/3K 3L/D12 5X/6E

To use this program:
Turn power on. Start the system by pushing pushbutton 6. Lights 1 through 6 will come on

in order, representing the completion of six successive steps. When light 6 has come on, push
pushbutton 5 to stop the system.

Notice that the sequence can be stopped at any time by pushing pushbutton 5. This is an­
alogous to having an emergency shut-off switch wired into the control circuit.

Control With Feedback
The three previous control circuits dealt with situations in which the sequence of operations

was completely specified. Only the order of execution and the timing of each operation was con­
trolled by computer programming. Many industrial processes, however, require execution of cer­
tain operations which must be determined by conditions occurring during the actual processing.

25

This would be the case if, for example, a specific ingredient were to be added to a chemical com­
pound when the compound had reached a certain temperature.

Control in which information from the process determines execution of successive steps is
known as "control with feedback." Information from the process is "fed back" to the control
mechanism to modify successive operations, or to activate successive operations.

As in the sequence control systems, control systems with feedback can be completely auto­
mated or can be manually operated. We can demonstrate a manual control system with feed­
back using the "two-floor elevator control" circuit from Experiment 8. We will assume that the
process to be controlled is dependent upon the continued oscillation of the rotary switch between
1 and 7.

To start the system, we will set the pointer knob at 1 and push pushbutton 6. This moves
the pointer knob to 7, and light 6 will come on to indicate that the system is now at 7. Light 6 is,
in this case, a "feedback indicator." As soon as light 6 comes on we must push pushbutton 5
to return the pointer knob to 1. When the pointer knob is at 1, light 5— another "feedback in­
dicator"— comes on, telling us that pushbutton 6 must be pushed to turn the pointer knob to
7 again.

In an industrial situation, lights 5 and 6— the feedback indicators— would have special
meaning:

Light 6 on would indicate that the first of two steps had been executed and pushbut­
ton 5 must be pushed to continue the process.

Light 5 on would indicate that the second of two steps had been executed and push­
button 6 must be pushed to continue the process.

Notice that in this manual control system with feedback, the system indicates to the operator that
an operation has been executed. The operator must then carry out the next operation on the basis
of this information which has been "fed back" to him.

Industrial processes which require split-second reaction to a particular signal are often de­
signed so that the signal will automatically set off the appropriate next operation. In the illustra­
tion above, this can be done by a program which will automatically sense the position of the
pointer knob and immediately act to change its position. An example of such a program is the
metronome in experiment 3. The metronome circuit provides constant oscillation between two
points on the rotary switch dial. The operator can change the period of oscillation by moving the
slide switches, but the system automatically reacts to its own operation.

What is the "Best" Computer?
As more businesses turn to computerized operations, the question of the "best" computer

arises more frequently. There can, of course, be no general answer to the question, since each
firm must decide what problems it can best solve with a computer's help and then select the best
system for its particular needs.

There are, however, three basic decisions to be made when the final selection of a computer
system is to be made:
1. How large a computer system is required?
2. What speed of operation is required?
3. W hat kind of input the computer must be equipped to handle.
With these factors specified, the choice of the best system will be made simpler.

The first factor— size— can be broken down into two considerations: the size of the com­
puter's memory and the size of numbers which the computer will be required to handle. In terms
of memory size, the basic question to be answered is, "How much information will the system
have to handle at any one time?" A firm with 1000 employees may want a system capable of
processing the total payroll in a single operation; but if management is willing to process the
payroll in two sections, a smaller system— one with less memory— could be used.

The size of numbers which the system will be required to handle raises the question of ac­
curacy. If the system is to be used in applications where ten significant figures are sufficient, it

26

would be unnecessary to pay for the additional size of a machine capable of producing figures ac­
curate to twenty significant digits.

In general, the larger the capacity of a computer system, the more it will cost. The capa­
city requirements must be accurately determined if the system is to be a practical one. And it
should always be kept in mind that either in sufficient or excess capacity will be expensive.

The second factor— speed— is one which must be considered from two aspects: actual proc­
essing speed and input-output speed. Computer systems can be designed with high speed input-
output units connected to high-speed processing units. For a firm which plans to enter large quan­
tities of input, perform a large number of calculations on its data input, and which will require
output immediately, a high-speed system would probably do the job most economically.

However, in an application where a great deal of calculation is to be done on a limited
amount of input, with a limited amount of output, the high-speed input-output units would not
be practical. To determine the required speed of the system— and hence the required speeds of
the individual units of the system— the following should be accurately determined:

1. How much work must be performed in a given amount of time?
2. How quickly must output be received?
3. What is the ratio of calculations to communications?
4. Is the limiting factor in the operation calculating speed or communication speed?
When these questions have been answered, the speeds of the system's functional parts will

be known and a complete system can be determined. W ith an efficient computer system, there
should not be delays while one segment of the system catches up with another segment— such de­
lays cost money.

The appropriate input-output devices can often determine the ultimate practicality of a com­
puter system. For a great number of operations, punched cards are completely adequate. How­
ever, operations which require feeding large amounts of information into a master file of some
type may find the added expense of magnetic tape well worth the cost. Certain specialized cases
— where information is to be obtained directly from an operating process, or communicated over
telephone lines from distant points— will require specially designed input-output devices which,
although expensive, will be worth their cost through time saved.

The form of the output is particularly important since it must present the results of the
computer's work to those who will make use of it. The permanency, accessibility and comprehen­
siveness of the output must be determined before final selection of the correct unit can be made.

Deciding upon the best system for a given operation— or set of operations— is just as im­
portant as the decision to computerize the operation in the first place. Whether the best system
is to be simply a few small units or a complex combination of many high-speed, specialized units
can only be determined on the basis of the job to be accomplished. When correctly selected, a
computer system can be a valuable asset to a business organization. When incorrectly selected, a
computer system can be expensive and time-wasting.

3. COMPUTER APPLICATIONS IN SCIENCE AND THE M ILITARY

Introduction
As in business and industry, computers find wide applications in basic problem-solving opera­

tions for science and the military. And, the characteristics of computer problem-solving which
influence the decision to use or not to use a computer in the business situation are equally applic­
able in the military or scientific situation. That is, computer problem-solving is normally most ef­
fective when it can be applied to a repetitive process to obtain solutions of a consistent type
using relatively large amounts of data.

However, in the areas of science and the m ilitary computers find particularly valuable ap­
plication in the solution of unique problems. The simulation technique discussed in Book III is
frequently used, for instance, in the solution of single problems which would otherwise require
many months— even years— of tedious calculation by mathematicians and scientists. Because of
the specialized nature of the problems to be solved, computers are often used by scientists and

27

members of the military for projects which would be uneconomical in the business world. A prob­
lem involving a defense project, for example, cannot be evaluated in terms of cost alone; pro­
gramming a unique military problem for computer solution may be well worth the expense if the
results will affect the progress of the national defense effort.

A characteristic of computers which is particularly useful in scientific and military work is
their ability to perform extremely rapid calculations with absolute accuracy. This means that a
properly programmed computer can, in a matter of minutes, examine and analyze hundreds of
alternative solutions to a given problem. For situations in research where the only reasonable ap­
proach is a "trial-and error" method, the computer's capabilities are making possible the solution
of previously "impossible" problems.

Real-Time Problem Solving

In experiment 7 in this book we briefly examined "environmental sensing." An expansion
of this function is often applied with great success in the handling of scientific and military prob­
lems. In general, the situations which we have examined have involved feeding data into a com­
puter system— data in the form of mathematical and/or logical relationships, quantitative re­
sults from operating processes, etc. Real-time problem solving differs from these situations in
that the data is supplied directly to the computer from its environmental and the computer is
instructed to act upon this information immediately and provide recommendations for action
or analyses of the environmental situation.

In real-time problem solving, the computer is given the capacity to directly sense its en­
vironment without requiring a human intermediary to supply the environmental information.
For example, a computer can be used in conjunction with a radar tracking system so that as soon
as the tracking system identifies an object in its path the computer will immediately give an
alarm and begin plotting the location and movement of the object. A coordinated system such
as this provides constant watch on the "environment" (the scope of the radar tracking equip­
ment), yet does not require constant scrutiny by human operators.

Computer systems which are used for real-time problem solving in conjunction with spe­
cialized input equipment can greatly increase the value and utility of that equipment.

Computer Handling of Scientific Problems
Computers are rapidly becoming as fam iliar— and valuable— tools to the scientist as the

vacuum pumps, power supplies, intricate glass tubing and other equipment vital to the experi­
mental stage of a research project. It would be an impossible task to even list the scientific prob­
lems and projects which are presently being programmed for computer solution.

This does not mean, of course, that computers have all the answers to the problems. The
computer is simply a valuable tool which permits scientists to examine more information more
accurately, and with far greater speed than has ever before been possible.

Scientists use computers and computer techniques at every level of sophistication— from
simple tabulation and correlation of data to extremely complex simulation programs for com­
plicated analyses. For example, research teams have simulated the atom on computer systems in
attempts to predict the locations and actions of atomic particles. In other scientific fields, vast
amounts of data taken from thousands of observations— of the earth's structure, of the flow of
ocean currents, of the paths of molecular particles— are being analyzed in attempts to find the
basic concepts and relationships which govern their actions.

The field of engineering— which is becoming increasingly indistinguishable from what was
previously known as "pure science"— has put computers to work on its particular types of prob­
lems with great success. Engineers find the simulation technique described in Book III especially
useful: they are now able to test designs safely, and often without the cost of building a test model.

Technically speaking, the actual design of computer systems falls under electrical engi­
neering, while the design and development of the various computer techniques falls between
electrical engineering and pure mathematics. However, as is often the case in scientific and en­
gineering work, there is a considerable amount of traffic among the various specific fields. A phys­

28

icist may find it necessary to develop a special technique to handle a problem; and this technique
may well be one which can be effectively used by a chemist or a metallurgist. On the other hand,
an electrical engineer may develop a technique which proves valuable to a biologist.

As a basic scientific instrument, computers have only begun to prove their value. As scien­
tists and engineers use this new tool, they will make it even more valuable by expanding its ca­
pabilities and finding new uses for it.

Examples of Computer Handling of Military Problems
Computers are, of course, used by the m ilitary to handle operating problems, just as they

are used in the business world. Basic research projects carried out under m ilitary contract re­
quire the use of computer systems as indicated above. However, there are many computer appli­
cations which are unique to the military— particularly applications which concern national de­
fense. The experiments and discussion which follow illustrate only a few of the applications pres­
ently in use.

Signal Systems:

We have mentioned the use of a computer to signal a human operator when an operation
has been completed, or to notify the operator of an unusual processing situation. In these cases,
though, the signal is only an indication that something has occurred: the signal is important
only in that it alerts the operators to the occurrence. In a military situation, however, the signal
itself becomes important. Systems are often required which will, upon receipt of a specific input,
produce a particular continuous signal.

The complexity of a computerized signal system is a function, basically, of the required in­
puts and outputs. The actual input unit may be as simple as a button to be pushed when the
system is to be started— as, for example, an automatic SOS transmitter. On the other hand, the
input unit can be a sophisticated radar system which produces a particular input when an object
passes into its scope. In any case, the actual processing unit of a signal system is designed to:

1. Recognize a particular input as a "start transmission" command.
2. Search its memory for the appropriate signal.
3. Feed the signal into a designated transmitting device.

Once the signal system has begun its cycle, it will continue to transmit the signal until it
reaches "end transmission" command— which can be pre-programmed into the system or can be
given by a human operator. The output from an automatic signal system can vary in complexity
from a simple blinking light to a coded message directed to distant points.

The three experiments which follow provide examples of the programming necessary to
processing units used in automatic signal systems.

Experiment 16: Automatic Message Transmission
This circuit uses the turning of the rotary switch to generate a sequence of dots and dashes

representing the amateur radio call "C Q " in Morse Code. Once turned on, this system will con­
tinue to "transm it" the CQ call until it is turned off.

The program and circuit diagram for the automatic CQ transmitter are:

29

C IR C U IT DIAGRAM — AU TO M A TIC CQ TRA N SM ITTER

Program:

5A/D3 6B/6— 6H/6+ D6/D10
5 B /5 - 6C/6— 6H/6Y D8/D9
5X/6E 6F/6G D3/D5 D9/D11
5Y/6Y 6F/D17 D4/D6 D16/D17
6A/D4 6G/6X D5/D8 D18/M—

The Morse Code representation for CQ is:
C : — • — ■

Light 5 on represents a dash.
Light 6 on represents a dot.

To use the program:
Set the rotary switch at 0 and turn power on. Push pushbutton 6. This provides the input

command "start transmission." As the rotary switch turns, lights 5 and 6 will flash the CQ signal.
To stop transmission, push pushbutton 5.

Experiment 17: Automatic Name Transmission
This program presents a slightly more sophisticated version of the transmission technique

used in the previous experiment. The name to be transmitted is "JO H N ", and it will be sent in
two parts: first " JO " , then "H N ".

To send the entire name requires a "selective sequencing" circuit. The computer must de­
termine whether it is in the first or second path of the 2-path cycle, and produce the output ap­
propriate to each path. That is, on its first revolution the rotary switch will instruct the com­
puter to transmit " JO " ; on its second revolution it will instruct the computer to transmit "H N ."

As in the previous experiment, will be transmitting in Morse Code. The Morse Code repre­
sentation for JOHN is:

H : -----
N: — •

30

The program for this automatic transmitter is:
3C/4C 4F/5N 5L/D0 6H/6+
3F/4G 4H/5H 5X/6E 6H/6Y
3G/3K 4K/5F 5Y/6Y 6com/D2
3G/5com 4L/D15 5com/Dl 1 D3/D4
3H/D12 4N/5E 6A/6com D4/D5
3J/6com 5A/5com 6B/6— D5/D12
3L/D13 5B/6B 6C/6— D16/D17
4C/5C 5C/6C 6F/6G D18/M—
4E/5K 5F/5G 6F/6X
4F/4G 5H /5+ 6G/D17

Light 5 on represents a dash.
Light 6 on represents a dot.
To use the program:

Set the rotary switch at 0 and turn power on. Push pushbutton 6. The system will immediately
begin transmitting "JO H N " in Morse Code. Notice that as the rotary switch turns the computer
alternately transmits " JO " and "H N ." The selective sequencing circuit causes the computer to
select the correct segment of the "message" for each part of the transmission.

To stop transmission, push pushbutton 5.
Different code words can be transmitted using this basic circuit by re-programming the con­

nections to the rotary switch.
Experiment 18: Automatic Transmission with Differential Spacing

The preceding experiments used different lights to indicate dots and dashes. It is possible,
however, to produce "differential spacing" so that dots and dashes may be distinguished by the
length of time a single light is on.

The program below illustrates a circuit with differential spacing by automatically transmit­
ting the "SOS" distress signal in Morse Code:

3E/3H 5E/D19 6G/D4 D7/D8
3 F / 3 - 5F/6K 6H/D16 D8/D11
3J/6A 6A/D1 6L/D18 D11/D12
4C/5C 6B/6— D1/D2 D12/D13
4C/4F 6C/6— D2/D3 D16/D17
4E/5E 6E/D9 D3/D6 D17/M+
5C/5F 6F/6G D6/D7 D18/M—

The Morse Code representation of SOS is:
S; . . .
0 : -------
S; . . .

To use the prgoram:
Turn power on. The system will immediately begin transmitting "SO S". Light 6 and relay

3 will both indicate dots and dashes: they will remain on longer for a dash than for a dot. The
computer will continue to transmit "SO S" until the power is turned off.
Computerized Code Systems:

A computer application of particular value to the military is the processing of messages
transmitted in code. This application has three distinct aspects:

1. The routine translation of messages transmitted in "known" codes.
2. The more d ifficult translation of messages received in "unknown" codes.
3. The generation of new codes.
Routine translations are handled in much the same fashion as was done in the binary-deci­

mal converters. A computer is simply programmed for direct conversion. If the system is handl­

31

ing more than one code, a technique known as "table-lookup" is often used. With "table-look-
up", the computer holds the various codes in storage until directed to use a particular one. To
translate, it "looks up" the appropriate substitution for each letter. The advantage of a compu­
terized system for routine code translation is, of course, the speed with which the translations
are carried out.

Translation of "unknown" codes— that is, "breaking" codes— can often be effectively
handled by a computer system. If the "unknown" code was generated by a computer, another
computer system will be required to break that code.

If the "unknown" code was originally man-made, the computer attempting to break the
code will use a trial-and-error method based on the frequencies of appearance of the letters in the
coded message. One type of code which a computer cannot break is one which does not use sub­
stitution of letters, but depends instead on phrases with special meaning only to the receiver for
whom they were intended. Breaking codes of this type requires "inside information" which a
computer cannot provide.

An example of a man-made code which a computer could easily break would be a substitu­
tion code based on a simple three-letter shift. That is, A is D, B is E, C is F, etc. An example of
a man-made code which a computer could not break would be the following set of messages which
would be known only to the transmitter and the receiver:

"Roses are red" will mean "A ll going as planned"
"Violets are blue" will mean "There is a change in plans"

The ability of computer systems to generate codes requires that computer systems be used
in any attempts to break those codes. Codes generated by computer system are usually the result
of the computer's ability to generate pseudo-random numbers. Breaking a computer-generated
code is accomplished through sophisticated statistical techniques, using as a basis the fact that
no computer can actually generate completely random numbers.

The two experiments which follow provide examples of simple coding and decoding programs
for the international Morse Code.

Experiment 19: Encoder for Morse Code
This experiment will use M IN IV A C to provide automatic letter-by-letter translation into

Morse Code. The international Morse Code is:

A • — N — •
B — • • • O ------------
C — • — • P • ------- •
D — • • Q --------—
E • R • — •
F • • — • S • • •
G • T —
H U • • —
I • • V • • • —
J • w • -----
K — • — X — • —

Y — • -------
M Z -------- • •

The program which follows will automatically display the Morse Code representation of any
letter entered on the rotary switch. Output lights 3 through 6 will be the display lights.

32

The program for an Encoder is:
2C/3B 3G/D8 4com/5G 6F/D3
2C/3C 3H/3L 5A/5com 6G/6com
2F/D15 3L/4L 5B/6B 6H/6L
2G/4F 4A/4com 5C/6C 6H/6+
2H/2L 4B/5B 5F/D13 6com/D1
2H/3H 4C/5C 5H/5L D1/D9
2K/5F 4F/D14 5H/6L D2/D10
3A/3K 4G/4com 5K/6com D3/D11
3B/4B 4H/4L 5com/6K D4/D12
3C/4C 4H/5U 5com/D2 D5/D13
3E/D0 4K/5com 6A/6com D6/D14
3F/3G 4com/Dl 2 6C/6— D7/D15

D16/M+
To use this program most easily, the rotary switch dial should be fitted with a dial plate

made by tracing the illustration below on a piece of paper.

MORSE CODE: A LPH A BETIC D IAL PLATE

33

To use the program:

Set the rotary switch dial to 0 and turn power on. Turn the rotary switch clockwise until the
pointer knob is pointing at the letter you wish to code. Read the Morse Code representation of
the letter starting with output light 3. If the letter you wish to code is in band 1 of the dial plate,
read only light 3. If the letter is in band 2, read lights 3 and 4. If the letter is in band 3, read lights
3, 4, 5. If the letter is in band 4, read lights 3, 4, 5 and 6.

A light on represents a dash.
A light off represents a dot.

Experiment 20: Decoder for Morse Code
This experiment uses the rotary switch dial plate described in the previous experiment. Let­

ters entered in Morse Code on the slide switches will be indicated on the rotary switch.

The program for a Decoder is:

1A/1T 1W/4A 3G/D15 5J/D3
1B/1C 2B/3B 3J/D7 5K/D10
1B/2B 2C/3C 3K/D14 5N/D2
1C/2C 2F/4R 3N/D6 5S/6R
1F/2F 2G/4H 3S/4S 5V/6T
1G/3H 2H/5T 4C/5C 6 C /6 -
1H/5R 2J/6H 4F/5F 6G/D9
1J/5H 2K/4L 4G/D13 6J/D1
1K/3L 2L/5W 4J/D5 6K/D8
1L/5U 2N/6L 4K/D12 6N/D0
1N/5L 2V/2+ 4N/D4 6S/6—
1R/3A 3B/4B 4S/6X 6X/D17
1S/2U 3C/4C 5C/6C 6Y/6+
1U/2A 3F/3R 5F/6F D16/D19
1V/2W 3F/4F 5G/D11 D18/M -

To use the program:

With the dial plate from experiment 19 in place, turn power on. Set slide switches 1 and 2 to
indicate in binary the number of Morse Code characters (dots and dashes) in the letter you wish
to decode:

Number of Characters Slide Switch 1 SlideSw ith2
1 0 (right) 1 (left)
2 1 (left) 0 (right)
3 1 (left) 1 (left)
4 0 (right) 0 (right)

Starting with slide switch 3, enter the dots and dashes according to the convention:

a slide switch R IG HT represents a DOT.
a slide switch LEFT represents a DASH

Push pushbutton 6: this gives the computer the instruction "read out." The rotary switch will
turn to the correct spot on the dial. Read the alphabetic letter from the dial plate as follows.

Read the letter in Band 1 if output light 1 is on.
Read the letter in Band 2 if output light 2 is on.
Read the letter in Band 3 if output light 3 is on.
Read the letter in Band 4 if output light 4 is on.

34

Experiment 21: "Search and Track" Radar
In the previous section of this book the industrial uses of feedback were discussed. The im­

portance of feedback in enabling a machine to deal directly with its environment makes it es­
pecially useful in m ilitary applications. An excellent example of the use of feedback in a military
situation is provided in the basic operation of a "search and track" radar system used to detect
and follow missiles and satellites.

A "search and track" radar system operates in two distinct modes: the "search" mode and
the "track" mode. When operating in the search mode, the system constantly scans its environ­
ment, signalling the operator when it senses an object in the path of its scan. When an object
is sensed, the system can be set in the track mode. Operating in the track mode, the system will
find the object and continue to follow it if it moves.

W hile in the search mode, the radar system is a simple signalling system. Once in the
track mode, the system utilizes feedback control to keep the desired object in "view ." The actual
operation of the system while in the track mode is as follows:

The system scans the horizon until it picks up the signal which tells it there is an object in
its path. It sweeps past the "object signal" until it has lost it and then reverses its direction,
returning to the object signal. It again sweeps past, reverses and continues in this fashion
until given other instructions or until the object signal is out of range.

The feedback in this case is information about the presence or absence of the object signal. The
control action initiated by a computer system is to reverse the direction of scan immediately
when the object signal is lost.

The program below illustrates a system which operates in two modes: a search mode and a
track mode. The command to change mode must be given manually with this program; real
search-and-track systems are often equipped to change modes automatically.

The program for a search-and-track system is:

1A/2E 2J/3H 3E/3J 5F/6G
IB/1— 2K/3N 3K/3+ 5H/6H
2A/3E 2K/2— 3L/D18 5L/6J
2B/2— 2L/D17 4C/5C 6A/6V
2C/3C 2N/3K 4F/5K 6 B /6 -
2E/3G 3A/5E 4G/5E 6E/6—
2F/3F 3H/4F 4H/5H 6F/6U
2F/2H 3 B /3 - 5C/6E 6H/6+
2G/2+ 3C/4C 5F/5G 6V/D16

M + /D1, 2, etc.

* Connection can be made between M+ and any point on the rotary switch dial.

To use the program:

Set slide switch 6 R IG HT and turn power on. The system is now operating in the search
mode. Light 3 will flash on whenever the system detects an object signal (a connection on the
rotary switch dial). You may move the object signal by changing the connection on the rotary
switch dial.

35

Set slide switch 6 LEFT. The system is now operating in the track mode. Notice that the
rotary switch oscillates about the object signal. If you now move the object signal, the system
will continue to search until it finds the new location and will then resume tracking it.
Countdown Control:

One of the most highly publicized applications of specialized computer circuitry is the count­
down used so dramatically on rocket test flights. The countdown is carried out not for effect, but
because of the complexity of the equipment under test— as well as the complexity of the total
test operation.

An actual countdown begins many months before "zero hour", and it is only at the final
stages that specialized computer circuits are used for control. A computerized countdown con­
trol system is in essence a sequence control circuit, (see experiment 14) The inputs are the
results of final checks; the output is either an "O K — step X " signal or an "ERRO R" signal which
immediately alerts the operators to the error and may, if further steps depend directly on the
step in error, stop the countdown. The firing button is so programmed that it will not send the
command " f ire " until every step is correct.

Totally computerized check-out systems are built in to real quick-fire missiles. As soon as
the " f ire " command is given, the computer system begins to check out the individual parts of
the missile, matching the check results against the pre-programmed requirements. If the com­
puterized control system finds an error in the missile system, it automatically stops the firing pro­
cedure and signals an alert to the operators informing them of the location and nature of the
error. The speed with which such control systems function makes it possible to reduce the count­
down time on operational missiles to a few minutes.

The basis of any control system of this type is the simple AND circuit. Only after each in­
dividual switch is closed, through receipt of the correct input, will the " f ire " command be executed.

4. COMPUTER APPLICATIONS IN THE SOCIAL AND POLITICAL SCIENCES

Vote Registering Machines
A computer-like device now fam iliar to many is the vote registering machine being used by

some state legislatures. This device automatically registers the total vote on an issue without
revealing the identity of the individual voter. As such, it is used in place of the "voice vote."

The basic circuit used in this vote registering machine is the Quantity Recognition circuit
discussed in Book III. The inputs are supplied by the individual members of the legislative body,
each of whom has a set of buttons with which he can indicate "yes," "no" or "absta in ." Only the
totals appear as output— usually displayed on a light board in the front of the room.

Although they "count votes," these vote registering machines are not functionally similar
to the voting machines used in public elections. The vote registering machines use a basic com­
puter circuit; the voting machines simply tabulate successive inputs.

Computers and Election Predictions
The national elections have spotlighted the capabilities of computers as predictors. Election

prediction programs take advantage of the computer's ability to handle large amounts of data and
to perform extremely rapid calculations. Many specialized techniques are used to extrapolate
from early election return to the final outcome. However, the basic system is essentially a process
of comparing early returns with historical data and performing various statistical operations to
predict the final result.

When a computer is programmed for election prediction, it is fed information concerning
the historical pattern of returns in certain precincts. These precincts are chosen on the basis of
the relationship between returns in these precincts and returns in key national areas. As the re­
turns from these precincts come in on election night, the computer compares the current ratio
of returns to historical ratios. An extrapolation is then made on the basis of these comparisons.

The results of such a prediction scheme are stated as estimated conclusions with a speci­
fied degree of "confidence"— that is, a specified probability of occurrence of the predicted out­

36

come. When a computer produces a predicted result of this type, it is always very important to
note the degree of confidence associated with that result. As the computer receives more and
more information, its predicted results will have increasing degrees of confidence. The 100%
degree of confidence is reached as a limit when the computer is given all the information— that is,
when all returns are in.

The accuracy of the computer's predictions is a direct function of the program used to arrive
at that prediction. The programs to predict the outcome of national elections are extremely in­
volved mathematical statements designed to take into account as many factors as possible. Built
into these programs is a vast amount of information about the social, economic and political
status of samples of the key precincts and sim ilar information about the country as a whole. In­
formation about the candidates and their parties is also part of the total program, as well as
information from previous elections concerning the vote-attracting characteristics of candidates
and parties in various sections of the country.

Since a computer will accept only quantitative information, the hundreds of qualitative fac­
tors influencing a national election must be correctly stated in quantitative terms for inclusion in
the total program. The analysis of these qualitative factors is in itself valuable work which is fre­
quently made easier and/or speeded up by the use of computers. The knowledge gained from an
attempt at one election prediction is not limited solely to knowledge of whether or not the pro­
gram gave the correct result. Knowledge of indicative factors, changes in voting habits, shifts in
attitudes towards national issues— all are valuable parts of the results of an election prediction
program.

Language Translation
We have already examined a particular type of translation by a computer— the translation

of messages into code. In terms of the circuitry involved in translation with a pre-determined
code, this is merely a Ietter-by-letter substitution scheme. Translation between languages, how­
ever, requires that the computer be programmed to perform symbol-to-symbol substitution and,
in addition, be capable of performing shifts in word order whenever necessary.

Symbols and Meaning

Before taking up the computer's problems in symbol-to-symbol substitution, let us briefly
consider the nature of communication processes. In a normal day we encounter thousands of d if­
ferent symbols, each of which conveys a particular message. The red light of a traffic signal con­
veys the message "stop." The telephone bell indicates that someone is calling. Reading the word
"w ater" brings a mental picture of a clear liquid made up of two hydrogen molecules for each
oxygen molecule. The skull and cross-bones on a bottle warn that the contents are poisonous.

In each situation, we automatically translate a symbol into a message with particular mean­
ing. We translate a color, a sound, a group of letters, or a picture into a meaningful idea. To a
baby, though, these symbols have little meaning. The baby has not yet learned to associate a
specific meaning or concept with these symbols; thus, the baby cannot "translate" the symbols.
Teaching a baby to associate meanings with symbols is analogous to developing a computer
program which will translate languages.

We must "teach" the computer to associate the correct meaning with a given symbol—
and we must, just as in teaching the baby, teach each symbol in its proper environment. A baby
will learn that a ringing bell does not always mean that someone is calling. A computer must be
taught that certain symbols have different meanings depending upon the situation, or it will not
be able to perform adequate translations.

Translations of Symbolic Combinations
Of the three successive stages of machine translation, we have already examined the first

two:
1. Letter-by-letter translation as performed through the circuitry of the Morse Code de­

coder and encoder.

37

2. Translation of a pictorial symbol as performed through the circuitry of the Arabic
Numeral Recognition program.

The third and most complex form of machine translation is that required for language trans­
lation: translation of one set of symbolic combinations into another. A t this stage, the combination
of symbols becomes important. The basic problem of interpretation between two symbolic sets
is complicated by the "environment" of the symbols. That is, a given symbol may have different
meanings depending upon the other symbols associated with it.

Perhaps the easiest way to see some of the problems inherent in machine language transla­
tion is to develop a few simple translation programs. We will do this using English and German.

Simple Translations between English and German
As a first step in developing a computer program for language translation, we will require a

"d ictionary." This will be ours:

ENGLISH GERMAN
Pete Piet
and und
Eve Eva
play spielen
plays spielt
with mit
his seinem
her ihrem
their ihrem
ball Ball

Each English word or symbol has a German word or symbol corresponding to it and indicat­
ing the same idea or concept. In the simplest case, translation would involve merely a series of
direct substitutions. We could program this elementary case by wiring pushbuttons to lights and
letting the pushbuttons represent English words and the corresponding lights represent the cor­
responding German word. We could then translate from English to German by entering English
input (pushing pushbuttons) and reading the German output from the lights.

However, we could not simply reverse the process to translate from German to English.
Notice that the German "ihrem " translates as either "her" or "the ir." The simple program out­
lined above will not produce an adequate translation; we must add to the program a rule for
selecting the appropriate English translation of "ih rem ."

The basic rule which we must teach the computer is: a plural subject requires the use of
"the ir" as an adjective; a singular feminine subject requires the use of "her" as an adjective.
This can be stated logically as:

P X E = their and E X P = her
If we now let the pushbuttons and lights represent words as follows, we will be able to pro­

gram the rule for proper selection of an adjective, given the subject of the sentence.

Output light 1 on represents "the ir"
Output light 2 on represents "her"
Output light 3 on represents "Pete"
Output light 4 on represents "Eve"
Pushbutton 1 represents "ihrem "
Pushbutton 2 represents "P ie t"
Pushbutton 3 represents "Eva"

The program and circuit diagram are:

38

" th e ir " " h e r " " P ete" " E v e "

C IR C U IT DIAGRAM — SELECTION RULE FOR TRAN SLATIO N OF "IH R EM "
Program:

1A/3G 2A/3J 3A/3C
IB/1 — 2B/2— 3 B /3 -
1X/3H 2X/3C 3B/3F
1Y/3X 2Y/3Y 4B/4—
1Y/4A 2Y/2 +

To use this program:
Select a singular or plural subject by pushing pushbuttons 2 and/or 3. Enter the adjective

"ihrem " by pushing pushbutton 1. The English Translation of the German input will appear in the
output lights.

To further complicate matters, consider the expansion of our limited vocabulary to include
the past perfect as well as the present tense of the verb. Direct translation of the past perfect
tense is:

has played— hat gespielt
have played— haben gespielt

However, in German the word order changes when the past perfect tense is used. The auxiliary
verb is placed as usual within the sentence, but the associated past participle must be placed at
the end of the sentence. For instance:

Eve and Pete have played with their ball.
Eva und Piet haben mit ihrem Ball gespielt.

Thus, a translation program must be able to recognize the existence of the past perfect tense and
modify the word order accordingly.

By limiting the number of words permissible in a sentence, we can develop a program to im­
plement this requirement. Different slide switches will be used to communicate the English nouns
and verbs. In actual translating programs, the grammatical identification of each word is sup­
plied through an auxiliary coding scheme. Positioning will be accomplished by programming the
German sequence so that "h a t" and "haben" are required to appear after the subject and before
the predicate if and when they occur.

The program which follows incorporates the word order requirements of the past perfect
tense with the selection rule for the appropriate adjective. The slide switches will be used to pro­
vide information as to the players and whether they are playing now or played at some time in the
past. The correct German expression of the English idea expressed will be read from the output
lights and the relay indicator lights.

39

The translation program is:
1A/2V 1S/2S 2S/3S 3F/6A
IB /IE 1T/2V 2T/3L 3F/3R
IB/2B 2A/3G 2W/4A 3S/3 +
1C/2U 2B/3B 3A/3N 4B/5B
1C/4C 2C/3K 3B/4B 5A/5 +
1E/2E 2E/3E 3C/3J 5B/6B
1R/2U 2R/3H 3E/4E 6B/6—

Slide switch 1 R IG HT indicates "Pete"
Slide switch 1 LEFT indicates "Eve"
Slide switch 2 R IG H T indicates "Pete or Eve"
Slide switch 2 LEFT indicates "Pete and Eve"
Slide switch 3 R IG H T indicates present tense
Slide switch 3 LEFT indicates past perfect tense

The German sentence will be read in this sequence as follows:
Output light 1 on represents "P ie t"
Relay light 1 on represents "Eva"
Output light 2 on represents "haben m it"
Relay light 2 on represents "hat m it"
Output light 3 on represents "spielt m it"
Relay light 3 on represents "spielen m it"
Output light 4 on represents "seinem "
Relay light 4 on represents "ihrem "
Output light 5 on represents "B a ll"
Output light 6 on represents "gespielt"

To use the program:
Enter an English idea by moving slide switches 1, 2 and 3 appropriately. Read the German
sentence from the lights as indicated above. The German sentence will be in the proper
order and will be complete except for the conjunction which must be supplied if Pete and
Eve are indicated as input: supply "und" for "and"; "oder" for "o r."
From these simple examples you can see the problems encountered in a large-scale trans­

lation program. In addition to the grammatical problems which can be solved by converting the
rules of grammar to logical statements for programming, a large-scale translation program must
also be capable of recognizing the subtle shades of meaning conveyed by various words and
phrases.

Present work on the development of language translation programs is by no means complete.
Various research teams are at work on different languages, attempting to perfect present pro­
grams and developing new and better programs for the rapid translation of languages.

Job Selection
Computers' ability to perform high-speed comparisons has led to their application in per­

sonnel work, matching the qualifications of individuals with the requirements of specific jobs.
In applications of this type, the results of computer comparisons are generally used to assist
the personnel staffs of very large firms who find it necessary to process many job applications
in order to select people to fill specific jobs. Seldom, if ever, are the computer's results taken as
the final word on who is to be hired. The true value of the computer in this application is to point
out those best qualified for a particular job— in essence, a narrowing-down procedure.

A computerized selection program requires two inputs for comparison:
1. The requirements of the specific job
2. The qualifications of the individual applicant

40

The job requirements are supplied by the personnel department. The applicant's qualifications
are provided by asking the applicant to fill out a specially designed questionnaire. Such a
questionnaire might look like this.

PERSONAL Q U ALIFICA TIO N FORM
Check only one

1. Which would you rather do: for each question
a. Add a column of numbers a.
b. Count the number of items in a row b.

2. Which would you rather do:
a. W rite a short story a.
b. Paint a bookcase b.

3. Which would you rather do:
a. Be responsible for selling 100 items by yourself a.
b. Be responsible for selling 500 items with four other

people b.
4. Which would you rather do:

a. Set type for a printing press by hand a.
b.b. Correct and rewrite articles for a newspaper

5. Which would you rather do:
a. Make final decisions and be responsible for the conse

quences a.
b. Make recommendations to the person above you b.

6. Which would you rather do:
a. Be responsible for hiring and firing close business as

sociates a.
b. Be responsible for preparing the payroll for a company b.

The job requirements information is generally in standardized form, with certain key fac­
tors specified. Some organizations use a standard job evaluation form, an example of which
appears below:

JOB EVALU ATIO N FORM
check only one

1. Does the job require more: for each question
a. Accuracy and attention to detail a.
b. Speed with minimum accuracy b. ---------

2. Does the job require more:
a. Creativity a.
b. Routine performance b.

3. Is job performance more dependent upon:
a. Manual dexterity a.
b. Working cooperatively with others b.

4. Does the job require more:
a. Direct supervisory activity a.
b. Mental effort b. ---------

5. Does the job require:
a. Major responsibility for policy decisions a.
b. Minor responsibility for policy decisions b.

6. Does the job require:
a. Direct supervisory activity a.
b. Little or no supervisory activity b.

41

Using the two forms above, we can write a comparison program designed to match individual
qualifications with job requirements. The questionnaires above are, of course, much simpler than
any in actual use.

The program makes a direct comparison between questions on the two forms. When an ap­
plicant's answer is consistent with a particular job's requirements, a light will come on. The best-
qualified applicants for the job will be those for whom the most lights come on.

The program for section 1 is:

1A/1S IY/1 + 1T/1Z
IB/1— 1R/1X

Repeat this program for sections 2 through 6 on M IN IVAC .

To use the program:

From a completed Job Evaluation form, enter the job requirements as follows:

Set the slide switch corresponding to the question number
LEFT if the answer was " a "
R IG HT if the answer was "b "

To check an applicant's qualifications, enter his replies to the Personal Qualifications form as
follows:

Push the pushbutton corresponding to the question number for each question which was
answer "a " . If the question is answered "b " do not push the corresponding pushbutton.
As the answer to each Personal Qualification question is communicated to the machine
note whether the corresponding light goes on or off. (Note: some of the output lights will be
on when only the job evaluation information has been indicated. Record these lights only if
they do not go off when the applicant's replies are entered.) After the replies to all six ques­
tions have been tested, record the total number of lights that went or stayed on while the ap­
plicant's qualifications were tested.

Those persons most highly qualified for the specific job will be those with the greatest
number of positive comparisons with the job requirements as indicated by the number of lights
recorded.)

Mate Selection
The job selection technique has been used on one well-known television program and in some

social science situations to provide a means of comparing the interests and orientations of a
number of couples to determine their compatibilities. The assumption in this case is that com­
patibility will determine marital happiness.

The job selection program can be used to test the compatibility of a couple by changing the
questionnaires. When used as a mate selection program, the replies of one individual are entered
on the slide switches and the replies of the second individual are checked against the first indi­
vidual's replies using the pushbuttons. The number of lights recorded as on will give an indication
of compatibility. (Total compatibility is indicated by all lights recorded as on.)

Two questionnaires are presented below as examples of the characteristics which are com­
pared in this type of program. The replies to questionnaire A are first compared, then the replies
to questionnaire B. The total compatibility figure is reached by adding the results of A and B.

42

QUESTIONNAIRE A
check only one

for each question
1. Which is more important to you:

a. A person's level of education a.
b. A person's physical appearance b. ---------

2. Do you feel that you have:
a. A liberal political orientation
b. A conservative political orientation

a.
b. ---------

3. Would you prefer to have:
a. A large fam ily
b. A small fam ily

a.
b.

4. Would you prefer to live in:
a. An urban area
b. A suburban or rural area

a.
b.

5. Do you think a wife should be:
a. Career-oriented
b. Family-oriented

a.
b.

6. Do you feel that you have:
a. A fundamentalist religious orientation
b. A liberal religious orientation

a.
b.

Slide switch setting for questionnaire A :

Set the slide switch corresponding to each question
LEFT if the reply is "a "
R IGHT if the reply is "b "

Push a pushbutton for each "a " reply.

QUESTIONNAIRE B
Indicate whether or not you like: YES NO

1. Outdoor activities a. b.
2. Music and art a. b.
3. Sports a. b.
4. Political activity a. b.
5. The theater a. b.
6. Reading a. --------- b. ---------

Slide switch setting for questionnaire B:

Set the slide switch corresponding to each question
LEFT if the reply is "yes"
R IGHT if the reply is "no"

Push a pushbutton for each "yes" reply.

43

Behavioral Simulations
Some research is being done in the use of computers to simulate various behavioral phe­

nomena normally associated with intelligent beings. This work raises interesting questions about
the ability of a computer to exhibit certain kinds of intelligent behavior. For the purposes of
this discussion, we will consider only two specific examples of machine simulation of intelli­
gent behavior.
Associative Memory

The psychological process of conditioning can be simulated by M IN IVA C through the pro­
gram which follows. This program enables the computer to associate a stimulus and a response
once the two elements have been presented together.

M IN IV A C is programmed so that if pushbuttons 1, 2 or 3 are pushed separately lights 1,
2 or 3 respectively will come on. However, if two or three pushbuttons are pushed simultane­
ously, the computer will remember them in association. Once any combination of pushbuttons
has been pushed, the computer will turn on all associated lights whenever any one of the associ­
ated pushbuttons is pushed. M IN IVA C will remember the association until instructed to forget it.

This is analogous to the famous experiments carried out with dogs by the psychologist Pav­
lov. Like Pavlov's dog, the computer "learns" to associate stimulus and response. If two stimuli
are presented simultaneously, the computer "learns" to associate the two responses originally
associated with each of the two stimuli. Thereafter, the computer will execute both responses
whenever either stimulus is presented. Unlike Pavlov's dog, the computer can be instructed to
remember or forget various stimuli at will.
The program for an associative memory circuit is:

1A/1K 1Y/2Y 3A/3K 4H/6G
1 B / l— 2A/2K 3B/3— 4L/5L
1C/2C 2B/2— 3C/4C 5C/6C
1F/4H 2C/3C 3F/6H 5F/5K
1F/1X 2F/5H 3F/3X 5G/6H
1G/6F 2F/2X 3G/5F 5L/6L
1H/3K 2G/4F 3L/4L 6 C /6 -
1K/2H 2K/3H 4C/5C 6F/6K
1 L/2L 2L/3L 4F/4K 6L/6Z
1L/1Y 2Y/3Y 4G/5H 6Y/6+

To use the program:

Turn power on. Push pushbutton 1, 2 and 3 individually. Notice that each pushbutton turns
on the single light associated with it. Now push two pushbuttons simultaneously— for exam­
ple, pushbuttons 2 and 3. From now on, pushing either of the associated pushbuttons will
turn on both of the associated lights.
Push all three pushbuttons simultaneously. Now pushing any one of the pushbuttons will
turn on all three lights. To instruct the computer to forget the associations, push the "fo r­
get" button— pushbutton 6. The computer is once again ready to "lea rn" associations.

A simulated Maze Solver

The program which follows permits the computer to "learn" which of three possible paths
is the correct path to a goal, and to "remember" the correct path until instructed to "forget" it.
This is analogous to experiments in which an animal learns by trial and error the correct path to
a goal through a maze.

The "m aze" will consist of a start position and three possible "paths." The start position
will be the " 1 " setting on the rotary switch dial. The possible "paths" will be:

Path A : from 1 to 3 on the rotary switch dial
Path B: from 1 to 5 on the rotary switch dial
Path C : from 1 to 7 on the rotary switch dial

44

The computer will be allowed to "explore" the possible paths. Then one path will be indicated as
the correct path. The computer will find this correct path and will then always take that path
until it is instructed to forget it.

The program for a simulated maze solver is:

1A/D8 3E/4E 4H/D7 6H/5Z
1B/1 + 3E/6N 4L/D5 6Y/D1
2E/4Z 3F/4F 4Y/5G 6Z/D19
2F/2+ 3F/3 + 5B/5+ D2/D4
2G/6L 3H/D3 5E/6E D4/D6
2H/2— 3J/5A 5F/6F D6/D8
2K/4Y 3K/D2 5H/5— D16/M—
2L/2— 3L/3— 5Y/5— D17/M+
3A/4J 4A/4N 6F/6+ D18/M—
3B/3 + 4B/4+ 6G/D19 6E/free*

* This programming wire may be connected to D3, D5 or D7 to indicate the goal.

To use the program:
Turn power on. The computer will go directly to the start position. Push pushbutton 6. The
computer is now "exploring" the possible paths. Release pushbutton 6 and indicate a "cor­
rect" path by connecting the wire from 6E to D3, D5 or D7. Push pushbutton 6 again. The
computer selects the "Correct" path and stops.
Return the computer to its start position by pushing pushbutton 5. If you now push push­
button 6, the computer will go directly to the "correct" path without exploring possible
paths.
To set the computer to the "exploring" stage again, remove the connection from 6E to the
path you selected and push the "forget" button— pushbutton 4.

5. COMPUTER APPLICATIONS IN SCIENCE FICTION FILMS

Science fiction fans seem always to be entranced by equipment which flashes lights and
makes peculiar sounds. To satisfy these fans, the film industry has designed a great variety of
"computers" for leading roles in science fiction films. Computers are well-adapted for such roles
since it is possible to produce flashing lights and peculiar noises while operating a real computer.

However, the latest computers are made up of solid-state elements which operate silently;
and output is more likely to be a reel of magnetic tape than a series of blinking lights, blips on
a monitor screen and wierd choking and whirring noises.

Lest your friends— or you yourself— be disappointed at the relative quiet and tranquility
of the preceding programs, the following two programs are presented. Neither program per­
forms a useful function, but both provide the elements of science fiction machines.

The Flashing Lights Circuit

This program provides a maximum number of flashing lights. W ith this circuit programmed
on M IN IV A C , turn the power on. M IN IVA C will perform as a blinking light machine.

The program for flashing lights is:

1A/D1 4A/D4 D1/D12 D8/D14
1 B / l— 4B/4— D2/D11 D10/D0
2A/D2 5A/D5 D3/D10 D11/D15
2B/2— 5B/5— D4/D9 D16/M+
3A/D3 6A/D6 D5/D8 D17/M+
3 B /3 - 6 B /6 - D6/D13 D18/M—

45

The "Super" Circuit
This program is presented for those who are not satisfied with the quiet operation of the

previous program. Like the program above, this one does absolutely nothing constructive, a l­
though it appears to be diligently operating to solve the problems of the world. Program this cir­
cuit on M IN IVAC and enjoy the ultimate in science fiction machines.

The program for the "Super" Circuit is:

1 A /IE 2H/4N 4E/4J 6H/D16
IB/1 — 2K/D4 4H/5K 6J/6K
1C/2C 2L/3N 5B/5— 6J/D17
1E/2G 3A/3E 5C/5com 6L/M—
1F/1H 3B/3— 5F/5— 6N/D18
1F/2F 3C/4C 5G/6E D0/D2
1G/1 + 3E/4G 5H/4— D2/D6
1J/2H 3F/3H 5L/5+ D3/D15
1K/D1 3F/4F 5com/Dl 3 D3/D5
1L/3K 3G/3 + 6 A/DO D5/D9
1N/D8 3H/4L 6B/6— D6/D7
2A/D14 3J/4H 6C/6G D7/D11
2 B /2 - 3L/6com 6E/6com D9/D10
2C/3C 4A/4E 6F/6— D11/D12
2E/5A 4B/4— 6G/6N D14/D15
2E/2J 4C/3— 6H/6+

APPENDIX

PROGRAMMING LANGUAGES

In the discussions of programming in this series we have examined instructions which are
communicated to a computer as part of its program. It has been emphasized that a computer
must be given complete instructions for each step which it is to perform in solving a problem.

In Book II, three types of programs commonly used by electronic data processing machines
were discussed: Wired programs, Coded programs, and Stored programs.

We have not yet commented on the various coding systems developed to permit instructions
to be communicated to a computer in other than the l 's and 0's of a binary code. It is important
to remember that once communicated to the computer, all instructions will eventually be reduced
to 1 's and 0's which will be interpreted by the computer as on-off switches. The computer cannot
directly "understand" the meaning of the word "add ." However, it can interpret the letters
"A D D " as 3 binary coded decimal or "B C D " characters according to the BCD code presented in
Book II. A computer programmed to understand BCD can translate the three letters of the word
"A D D " into a combination of 0's and 1 's.

Letters BCD Equivalents

ADD 0 1 00 01 010 100010 100

Once the word "A D D " has been converted into binary information using the BCD code, the
BCD equivalent of the word "A D D " may be stored in a storage register of the computer. An in­
terpretive program may then translate the BCD into a binary operating code which the com­
puter interprets as an instruction directing it to utilize certain pre-programmed circuits in a speci­
fied way.

There are as many different interpretive routines as there are different computers. Most
large computers have interpretive programs written for them so that they are able to receive in­
structions in the form of letters such as the "add" combination above and translate these letters
into binary bits using BCD. Through the interpretive program, the computer can then translate the
coded binary bits into a single instruction code which the computer interprets as an instruction

46

directing it to use certain logical or arithmetic circuits which have been pre-programmed into the
computer. Once the interpretive program has reduced the letters into a simple instruction code,
the large computer is operating with a basic input signal such that a 0 in the instruction code is
comparable to a pushbutton in the up position on M IN IVA C and a 1 in the instruction code is
comparable to a pushbutton in the down position on M IN IVAC .

The interpretive program converts information communicated to it in letters which the hu­
man operator can understand into simple 0 and 1 signals which the machine can interpret as
basic instructions. These basic instructions determine which pre-programmed circuits will be used,
to effect the action which the human operator desires.

Some examples from the basic language routine used in conjunction with the IBM 7090
computer will be used to demonstrate the functions of an interpretive program. The combina­
tions of letters below are a portion of a program prepared for communication to the 7090 using
the alphabetically coded language which is translated by the interpretive program prepared for
operation on that computer.

C A L A
SUB B
STO C

A PTH
B PTW
C PZE

A "SCAT" CODED 7090 PROGRAM

The letters on each line of the program are punched on a single input card. As the cards
are read into the computer, each of the letters is translated into a BCD representation which is
stored in the computer. A decoding program then interprets the BCD code and establishes the
meaning for each of the instructions explained below.

CAL A This instruction is interpreted by the computer as: define one register in storage as
register "A " . Clear the processing register (set all of the bits of the processing register to zero)
and add the contents of storage register " A " to the processing register. If we consider the push­
buttons of M IN IVA C to be register " A " , this is equivalent to telling the 7090 to select a circuit
comparable to one which will permit the contents of the pushbuttons to be entered in the proc­
essing relays.

SUB B This instruction is interpreted by the computer as: define a single register of storage
as register "B " . Then subtract the contents of storage register " B " from the contents of the proc­
essing register. If we consider the pushbuttons of M IN IVA C to be storage register " B " , this in­
struction is equivalent to telling the large computer to perform that operation wherein the contents
of the pushbuttons are subtracted from the contents previously stored in the processing relays.

STO C This instruction is interpreted by the 7090 as: define a single storage register as reg­
ister "C " . Then transfer the contents of the processing register to storage register "C " . If the
binary output lights of M IN IVAC are defined as storage register "C " , this is equivalent to di­
recting M IN IVA C to display the contents of the processing relays on the binary output lights.

The last three instructions in the program indicated above are used to direct the 7090 to
store specific numerical values in the registers which it has defined as A , B, and C, respectively.

PTH Indicates that binary 3 is to be stored in the register defined as storage register " A " .
PTW indicates that a binary 2 is to be stored in the register defined as storage register "B " .
PZE d irects the 7090 to make the initial contents of storage register C equivalent to a positive
0.

Many instructions in addition to those indicated in the example above may be used to com­
municate programming ideas to the 7090. In each case the instruction is first converted to the
BCD code so that it may be stored in binary form in the computer. The BCD code is then trans­

47

lated by the interpretive routine into a simple binary instruction which can be performed by the
computer.

The binary instruction signals the large computer just as pushing a pushbutton on M INI-
VAC signals it to select certain pre-programmed circuitry and perform the operations which the
program is prepared to execute.

Coding languages may be used to communicate logical as well as arithmetic instructions to a
computer. The first sequence of instructions below is interpreted by the interpretive program of
the 7090— and a series of binary instructions are generated. These instructions cause the 7090
to perform an "A N D " operation with the contents of storage register " C " set equal to the con­
tents of storage register " B " AND the contents of storage register " A " . The second program causes
the computer to store the contents of storage register " B " combined according to the rules of
the "OR" function with the contents of storage register " A " in storage register "C " .

Program 1: Program 2:
C A L A C A L A
A N A B ORA B
STO C STO C

TWO SCAT-CODED LOGICAL PROGRAMS

The interpretive programs discussed so fa r permit instructions to be given to the computer
expressed as a combination of letters, rather than as binary words. More complex interpretive
programs have been developed to permit the computer to perform an additional step in trans­
lating information communicated to it by the human programmer. These programs translate
information into binary control words which the computer can interpret as control instructions
directing it to select specific pre-programmed operating circuits. An example of one such "com­
piler program" is the "Fortran" System prepared for use with the IBM 7090. The statement be­
low is a Fortran coded representation of the relationships expressed in the SCAT coded 7090
program discussed at the beginning of this section.

C = A — B

The "Fortran" statement which is punched on a single input card is a mathematical state­
ment of the relationship which the computer is to represent by the steps in its program. The For­
tran compiler first reads the alphabetic and special characters punched on the card and inter­
prets them using BCD into a series of 0's and l 's which can be stored in the registers of the
computer. The compiler program then interprets each of the special characters (in the example
above the " —" sign and the " = " sign) as directions to establish a series of instructions equiva­
lent to the SCAT coded 7090 program instructions.

Once a series of instructions equivalent to the SCAT coded instructions are established by
the compiler, an interpretive routine directly equivalent to that used to interpret the SCAT coded
program is employed to establish the equivalent instructions which are then executed by the
computer.

The examples above are simple ones. The capabilities of the various programming languages
developed for use with large scale machines are quite comprehensive. Although these languages
solve some problems by making it unnecessary to communicate to the machine directly in binary
language which the machine can understand, they create others by making it necessary to com­
ply with a number of conventions in a specific manner. These conventions are necessary in order
to insure that the interpretive routine will interpert the letters given to it on the punch cards in
exactly the manner in which the programmer wishes to have them interpreted.

The important point to remember in considering the variety of machine coding systems
which exist is that they are not read or executed by the computer in the form in which they are
communicated to it. Compiling and interpretive routines are used to translate the information
presented to the computer into the basic 0 and 1 codes which the computer is able to use as a basis
for its operation.

48

The example below provides a summary of the basic steps performed by a compiler and
interpretive routine in translating a single card containing a Fortran statement into instructions
which the 7090 is able to perform.

The FORTRAN Expression

C = (A + B) * D + F/(E - A)

is interpreted by the compiler program as equivalent to the following series of SCAT instructions.

C LA E C LA A
FSB A FAD B
STO Temp X C A
CLA F FMP D
FDP Temp FAD Temp
STO Temp STO C

Once this series has been generated, each instruction is assigned to a storage register in
which the binary code representing that instruction will be stored. The binary code is not the BCD
coding of the letters of the instruction but a code representing the BCD instruction. For example,
C LA E which is BCD coded by the machine as 010 01 1 100 011 011 001 010 101 is coded by the
interpretive routine as 000 000 111— 101 000 000— 000 000 001 where storage register 001 has
been assigned to Variable "E " and the instruction "C LA E " has been assigned storage register
111. The code 101 000 000 is the operation code derived from "C L A " which indicates to the ma­
chine "select the pre-programmed circuitry designed to place the contents of the indicated data
register in the processing register (Accumulator)."

The Machine language coding of the entire SCAT program appears below:

Instruction Location Operation Code Data Location

000 000 111 101 000 000 000 000 001
000 001 000 011 000 010 000 000 010
000 001 001 110 000 001 000 010 100
000 001 010 101 000 000 000 000 011
000 001 011 010 100 001 000 010 100
000 001 100 110 000 000 000 010 100
000 001 101 101 000 000 000 000 010
000 001 110 011 000 000 000 000 100
000 001 111 001 011 001 000 000 000
000 010 000 010 110 000 000 000 101
000 010 001 011 000 000 000 010 100
000 010 010 100 000 001 000 000 110

This machine language representation of the program is the only form of the program which
the computer can actually execute. Until this form is derived the computer— in running the com­
piler and interpretive programs used to reduce the FORTRAN statement given above to the Ma­
chine language— is simply translating BCD data and coding this data in accordance with a series
of procedures which it has been previously programmed to follow. Once it has produced the ma­
chine language program above it can be given this new program and directed to execute the in­
dicated instructions.

49

BOOK VI

MIN I VAC Games

PREFACE

This book contains examples of several types of games which can be played using M INI-
VAC 601. Once you have become acquainted with these games you will discover that many d if­
ferent games can be developed using the gaming capabilities of the M IN IVAC . Realizing that
hundreds of games have been designed using the 52 cards of a deck of playing cards, you can
imagine the number of games which can be developed using the hundreds of contact points on
the M IN IV A C 601. Each of the games appearing in this book demonstrates a principle of com­
puter gaming which may be expanded to produce additional games.

Most of the games with and against M IN IV A C depend either on the players' skill (as in the
"reaction time tester" or "philosophic tug of w ar") or M IN IVAC 's " sk ill" (as in the "Match
Game" or "Tic-Tac-Toe"). Some games depend on chance and make use of M IN IVA C as a source
of random numbers (as in the "Fortune Te lle r" program).

1. MINIVAC AS AN OPPONENT

The Secret Code
The object of the game is to find the code; that is, the correct order in which the push­

buttons must be pushed to make the "Code Solved" light come on. Using the slide switches, you
can generate 63 different codes; by simple re-programming you can generate 720 different
codes.

Basic to this game as well as to the two games which follow, is a sequence recognition circuit.
Once this basic circuit is wired, different games can be created using the pushbuttons, game
matrix, rotary switch and slide switches. For the secret code, the slide switches and pushbuttons
are used.
The program for the basic sequence recognition circuit is:

1A/1G 2F/3K 3com/4L 5F/6K
IB/1— 2H/3G 4C/5C 5H/6G
1C/2C 2N/3N 4F/4G 5N/6N
1F/1G 2com/3L 4F/5K 5com/6L
1F/2K 3C/4C 4H/5G 6A/6J
1H/2G 3F/3G 4N/5N 6 B /6 -
lcom/2L 3F/4K 4com/5L 6 C /6 -
2C/3C 3H/4G 5C/6C 6E/6N
2F/2G 3N/4N 5F/5G 6F/6G

Code, add the following connections:
1R/6V 2V/3R 4T/4U 6R/6W
1R/1W 2Y/3Y 4V/5R 6T/6U
1S/1X 3R/3W 4Y/5Y 6Y/6+
1T/1U 3S/3X 5R/5W 2T/1com*
1T/2S 3T/3U 5S/5X 6W/2com‘
1V/2X 3T/4S 5T/5U 4T/3com*
1Y/2Y 3V/4X 5T/6S 2W/4com*
2R/2W 3Y/4Y 5V/6X 6T/5com*
2T/2U 4R/4W 5Y/6Y 4W/6com'1

6F/6com
6H/6+

51

* These connections may be interchanged for new codes. Be sure though, that there are connec­
tions to each of the six common terminals.

To use the Secret Code program:

W ire the basic circuit onto the M IN IV A C ; then add the connections directly above. Pro­
gram a code by setting the slide switches in various positions. For example, with the above pro­
gram and all six slide switches to the right, the code is solved by pushing the pushbuttons in
sequence from 6 through 1. When the code has been correctly solved, light 1 comes on indicat­
ing "code Solved." If light 6 comes on, an error has been made and M IN IV A C will automatically
re-set for the next attempt.

Once you have set the code by moving the slide switches, you can challenge your friends
to "break the code." They can then try to find the correct sequence of pushing the six pushbut­
tons to break the code. When your code is broken, you can change it by moving the slide switches.

If you want to create more new codes, you can interchange the starred connections to the
common terminals. For example, by changing:

2 T /1 com to 2T/2com
and

6W/2com to 6 W /1 com
you will be able to generate 63 different codes.

The Combination Lock
Using the basic sequence recognition circuit of the Secret Code, in combination with the

rotary switch dial, you can design an electronic combination lock which works just like those
used on vaults, padlocks, etc.

Light 1 comes on to indicate that the code has been solved; light 6 comes on when an
error is made, and the machine then automatically re-sets for the next attempt.

First, program the basic sequence recognition circuit:
IA/1G 2H/3G 4F/4G 5N/6N
IB/1 — 2N/3N 4F/5K 5com/6L
1C/2C 2com/3L 4H/5G 5A/6J
1F/1G 3C/4C 4N/5N 6B/6—
1F/2K 3F/3G 4com/5L 6C/6—
1H/2G 3F/4K 5C/6C 6E/6N
lcom/2L 3H/4G 5F/5G 6F/6G
2C/3C 3N/4N 5F/6K 6F/6com
2F/2G 3com/4L 5H/6G 6H/6+
2F/3K 4C/5C

(This is the same basic circuit as was used in the previous game)
Now add the connection D16/M-j-

Now, design a combination and program it as follows:

Combination Connections
left to 13 D13/6com
right to 2 D2/5com
left to 10 D1l/4com

D10/3com
right to 6 D6/2com
left to 9 D 9/lcom

D8/6E*

* This last connection is optional; it will cause the machine to indicate an error if 8 is passed at
any point.

52

When you are designing a combination, you must not include any connection which will
touch off a connection further along. Also, you must make connections to each of the six common
terminals in order.

Once you have designed a combination and programmed it onto M IN IVA C , you can chal­
lenge your friends to attempt to solve the combination. Light 1 will come on when the combina­
tion is successfully solved; light 6 will come on to indicate an error, and the player must start
over again.

You may wish to add dummy connections to the rotary switch dial so that the pertinent con­
nections will not be obvious.

The Electronic Maze
Again using the basic sequence recognition circuit, this time in combination with the game

matrix, we can design another game. The object of this game is to find the correct path through
the game matrix. Light 1 indicates success; light 6 indicates error and re-set.
First, program the basic sequence recognition circuit:

1A/1G 2H/3G 4F/4G 5N/6N
1 B/1 — 2N/3N 4F/5K 5com/6L
1C/2C 2com/3L 4H/5G 6A/6J
1F/1G 3C/4C 4N/5N 6B/6—
1F/2K 3F/3G 4com/5L 6C/6—
1H/2G 3F/4K 5C/6C 6E/6N
lcom/2L 3H/4G 5F/5G 6F/6G
2C/3C 3N/4N 5F/6K 6F/6com
2F/2G 3com/4L 5H/6G 6H/6+
2F/3K 4C/5C

(This is the same basic circuit as was used in the two previous games.)
Now add a programming wire at M-f-, leaving one end free.
This is the "play w ire ."
Design a path through the game matrix. For example: from 8 to 1 to 2 to 9 to 6 to 5

This is programmed as follows:
from 8 M8t/6com
to 1 M 1 t/5com
to 2 M2t/4com
to 9 M9t/3com
to 6 M6t/2com
to 5 M 5 t/1 com

53

The player now takes the free end of the "p lay w ire" which is connected to M-f- and touches
it to the top terminals of the game matrix squares. (The wire need not be plugged into the ter­
minal; touching the terminal will make the contact.) You may tell the player his STA R T and
GOAL points; if you wish to make the game more d ifficult, however, you need not give him this
information.

Since connections are made only to those squares which are a part of the path, you may
wish to add dummy connections to those not involved in the actual maze. For example, in the
above program, you could add:

M 3t/6R
M 4t/6S
M 7t/6T

This will not affect the maze, but conceals the fact that squares 3, 4 and 7 are not part of
the path.

If you wish to program a path which has less than six steps, connect this path to the lower
common terminals and manually push the remaining relays to the left before beginning play. For
example, consider the following path:

from 8 to 9 to 4:

Make the connections:

from 8 M8t/3com
to 9 M9t/2com
to 4 M 4t/lcom

Before beginning the play, manually push relays 4, 5 and 6 to the left. Whenever an error is
made, relays 4, 5 and 6 must be pushed to the left before play is resumed.

The Match Game
In the original game two players alternate in taking matches from a pile. At each move a

player can take either one or two matches. The object is to take the last match. This program per­
mits the M IN IV A C to play against a human opponent. The number of matches is represented by
the rotary switch dial.

The game is started with the rotary switch dial at 15. The player takes the first move and
indicates his move (1 or 2 matches taken) by pushing the appropriate pushbutton. M IN IVA C 601
will always win.

54

The program for the Match Game is:

3A/3E 4Y/5Y 6Y/&+
3B/3— 5C/6C D1/D4
3E/3G 5E/D13 D2/D5
3F/3— 5F/5X D3/D6
3G/D0 5F/5G D4/D7
3H/3Z 5H/6H D5/D8
3Y/4Y 5K/6K D6/D9
4C/5C 5L/6L D7/D10
4E/D14 5Y/6Y D8/D11
4F/4X 6 C /6 - D9/D12
4F/4G 6E/D15 D10/D13
4H/4L 6F/6X D11/D14
4H/5H 6F/6G D12/D15
4K/5K 6H/6+ D16/M+
4L/5L 6K/D18 D17/M—

Pushbutton 3 is the re-set button.
Pushbutton 4 is used for "player removes 1 match."
Pushbutton 5 is used for "player removes 2 matches."
Pushbutton 6 is used for "machine moves."

Light 3 is the "w in" indicator. The last player to move before light 3 comes on wins the game.

To play the Match Game:

Push the re-set button (pushbutton 3). The rotary switch dial will turn to 15, indicating
that there are 15 matches in the pile.

Player makes the first move and indicates:
removing 1 match by pushing pushbutton 4

or
removing 2 matches by pushing pushbutton 5

After the player indicates his move, the rotary switch dial will indicate the number of
matches remaining.

M IN IVA C moves next: player must push pushbutton 6; the rotary switch will turn to the
number of matches remaining after the machine's move.

Play continues as above, with the player and M IN IV A C removing matches in turn.
Light 3 will come on after the last move has been made. The last player to move before light

3 comes on wins the game.
To start another game, push the re-set button (pushbutton 3).

Tic-Tae-Toe

M IN IVA C can be programmed to play tic-tac-toe against a human opponent. A warning
though: with this program, M IN IVA C can not lose. The human opponent may tie the game, but
he can never win. This is because of the decision rules which are the basis of the program.

The M IN IVA C is so programmed that the machine will move 5 squares to the right of its
own last move if and only if the human opponent has blocked that last move by moving 4 squares
to the right of the machine's last move. If the human player did not move 4 squares to the right
of the machine's last move, M IN IVA C will move into that square and indicate a win. If the hu­
man player consistently follows the "move 4 to the right" rule, every game will end in a tie.

This program requires that M IN IVA C make the first move; the machine's first move will
always be to the center of the game matrix. A program which would allow the human opponent
to move first would require more storage and processing capacity than is available on M IN IVA C
601. Such a program would, of course, be much more complex than the program which permits
the machine to move first.

55

The program forTic-Tac-Toe is:

1A/1N 2L/D18 4F/5F 5L/M4t
1 B/l — 2N/D19 4G/D5 5G/6N
1C/2C 2X/3X 4H/M1 b 5Y/M10
1F/M11 2Y/3Y 4H/M5t 6+ /6Y
1G/2A 3C/4C 4J/4K 6— /6C
1H/5X 3F/4F 4K/D6 6G/D1
1J/2F 3G/D7 4L/M2b 6H/Mlt
1L/1Z 3G/4N 4L/M6t 6H/M5b
1N/3F 3H/M3b 4G/5N 6J/6K
1X/2H 3H/M7t 4Y/5Y 6K/D2
1X/2X 3J/3K 5C/6C 6L/M2t
1Y/2Y 3K/D8 5F/6F 6L/M6b
1Y/2G 3L/M4b 5G/D3 6X/M10
2B/2— 3L/M8t 5H/M7b 6com/D9
2C/3C 3N/6G 5H/M3t M9b/Ml 1
2E/D16 3X/4X 5J/5K M—/D17
2F/2H 3Y/4Y 5K/D4 Ml 0/free’
2G/2K 4C/5C 5L/M8b Ml 1 /free*

* this is the machine's "p lay" wire
** this is the player's "p lay" wire
To play:

(Note: it will probably be most convenient to keep track of the game on a piece of paper.)
Turn power ON.
Place the free end of the machine's "p lay" wire in 6 com.
Push pushbutton 6 and hold pushbutton 6 down while you push pushbutton 1. The pointer

knob will turn to indicate the machine's first move.
Release both pushbuttons 1 and 6.

A ll succeeding moves are made as follows:
Place the free end of the machine's "p lay" wire in the bottom contact of the m atrix ter­

minal corresponding to the machine's last move (as indicated by the pointer knob).
Player now selects his move and indicates this move by placing the free end of the player's

"p lay" wire in the top contact of the matrix terminal corresponding to his move.
Push pushbutton 6 and hold pushbutton 6 down while you push the pushbutton correspond­

ing to the move (pushbutton 2 the second time, pushbutton 3 the third time, etc.)
The play continues as above until either light 1 comeson— indicating that M IN IVA C wins;

or light 2 comes on— indicating a tie.
To begin another game, be sure that the player's "p lay" wire and the machine's "p lay"

wire are both free.

2. MINIVAC AS A REFEREE

The Philosophie Tug of War
This game is played with two persons; M IN IVAC acts as the game board and referee. The

object of the game is to make the rotary switch dial stop at the W IN position for the player. If the
dial stops at 9, player 1 wins; if the dial stops at 7, player 2 wins.

Player 1 uses pushbutton 1; player 2 uses pushbutton 6. The rotary switch knob turns:
counterclockwise (towards 9) if pushbuttons 1 and 6 are in the same position (both up or

both down.)
clockwise (towards 7) if pushbuttons 1 and 6 are in different positions.
In other words, player 1 tries to match his pushbutton position to that of player 2's. At the

same time, player 2 tries to keep his pushbutton position opposite to that of player 1 's.

56

The program for the Philosophic Tug of W ar is:

IX/6X
1Y/1 +
1Z/6Z
4Y/D18

4Z/D9
6E/6Y
6 F / 6 -
6F/6L

6G/6N
6H/6+
6J/6K
6J/D17

6N/D18
D7/D8
D8/D9
D16/D19

To play:

Player 1 uses pushbutton 1
Player 2 uses pushbutton 6

To start:

Push pushbutton 4; this is the re-set button. Release pushbutton 4 as the rotary switch knob
starts to turn. As soon as the knob starts to turn, each player tries to control its direction
using his pushbutton. Player 1 will win if the knob reaches 9; player 2 will win if the knob
reaches 7.

The game continues with player 1 trying to match his pushbutton position to that of player
2, while player 2 is trying to keep his pushbutton position different from that of player 1.

The game ends when the pointer knob stops— either at 9 (player 1 wins) or at 7 (player 2
wins).

To start another game, push the re-set button (pushbutton 4).

The Mind Reading Trick
The "M ind Reading Program" of Book III is repeated here with a variation you may wish to

try. (See Book III for the development of the program.)

The program for the Mind Reading T rick is:

5V/4S 6V/5V 4W/5S D0/6N
4R/4A 6U/6C 5R/6H D1/6K
4B/4— 5U/5C 5T/6L D2/6J
5C/5A 5F/6F 6R/5H D3/6G
5 B /5 - 6 F /6 - 6T/5L D4/5N
6A/6C M—/D18 M + /6Y D5/5J
6B/6— D18/4V 6X/D17 D6/5K
6X/6V 4U/6S D16/D19 D7/5G

To use the program:

A sk a friend to think of a number between 0 and 7. Ask your friend to answer "yes" or
"no" to the following questions about the number:

A . Is the number greater than 3?
B. When the number is divided by 4, is the remainder greater than 1 ?
C. Is the number odd?

Indicate the answers to the questions as follows:
If the answer to question A is YES, move slide switch 4 to the LEFT.
If the answer to question A is NO, move slide switch 4 to the RIGHT.
If the answer to question B is YES , move slide switch 5 to the LEFT.
If the answer to question B is NO, move slide switch 5 to the RIGHT.
If the answer to question C is YES, move slide switch 6 to the LEFT .
If the answer to question C is NO, move slide switch 6 to the RIGHT.

A fter the replies to the questions have been indicated, push pushbutton 6. The pointer knob
of the rotary switch will turn to the number your friend had in mind.

57

A variation:
The same program can be used substituting names for numbers as follows:

0 = Karen
1 = David
2 = Catherine
3 = Robert
4 = Peggy
5 = Andy
6 = Dorothy
7 = Hartley

Ask a friend to mentally select one of the above names, and then ask him to answer the following
questions:

A . Does the name end in " Y " ?
B. Does the name have more than 5 letters?
C. Is the name a boy's name?

Indicate the replies to the questions exactly as before. Push pushbutton 6. The pointer knob will
turn to the number corresponding to the name which your friend selected.

The Fortune Teller
W ith this program, M IN IVAC will answer questions— after “ thinking" about them. The an­

swer to the question will appear on the lights as follows:
light 1— Absolutely No
light 2— Doubtful
light 3— Perhaps
light 4— Definitely Yes

Lights 5 and 6 are M IN IVAC 's "contemplation" lights.

The program for the Fortune Teller is:

1A/3G 3A/3J 5C/6C
IB/1 — 3 B /3 - 5E/6K
1C/3E 3C/4C 5F/6N
1E/2E 3F/5G 5F/5G
2A/3K 3H/4K 5H/5 +
2B/2— 3L/4N 5K/6F
2C/4E 3N/4A 5N/6E
2E/3C 4B/4— 6A/6E
2F/2X 4C/5C 6B/6—
2G/6L 4F/6G 6C/6—
2H/2L 4L/4X 6F/6G
2K/5L 4Y/4 + 6H/6+
2L/2Y 5A/5E
2Y/2+ 5 B /5 -

To use the Fortune Teller program:

Ask M IN IVA C a yes-or-no question.
Push the "contemplate" button (pushbutton 2). Hold the "contemplate" button down while

M IN IVAC considers the question. When you feel that M IN IVA C has had sufficient time to con­
sider the question, release the "contemplate" button and push the "answer" button (pushbutton
4).

M IN IVAC 's answer will appear in the lights as indicated above. (You may wish to label the
lights by placing a piece of paper with the appropriate indication above the lights).

58

The Random Number Generator
The program for the Fortune Teller can also be used for any game which requires generating

a random number from 1 through 4. Using the preceding program as a random number generator
is just the same as throwing a four-sided die, or spinning a dial with four possible stops.

To generate a random number:
Program M IN IVAC as for the Fortune Teller program. Push pushbutton 2 to allow M IN I­

VAC to generate a random number. Release pushbutton 2 and push pushbutton 4 to allow M IN I­
VAC to display the number it has generated. (Light 1 indicates "1 " , light 2 indicates " 2 " , light
3 indicates "3 " and light 4 indicates "4 " .)

Scissors, Paper or Stone
In this modern version of a very old game, M IN IVA C acts as referee and indicates "w in" or

"t ie " . Two people play the game, and each player indicates his play (scissors, paper or stone) by
pushing the appropriate pushbutton.

Player 1 Player 2

Scissors pushbutton 1 pushbutton 4
Paper pushbutton 2 pushbutton 5
Stone pushbutton 3 pushbutton 6

The rules of the game are:

Scissors cut paper (scissors will win over paper)
Paper covers stone (paper will win over stone)
Stone breaks scissors (stone will win over scissors)

A fter both players have indicated their moves, M IN IVAC will indicate that:

Player 1 wins: light 1 comeson
or
Player 2 wins: light 6 comes on
or
T ie : lights 3 and 4 come on

The program for Scissors, Paper or Stone is:

1A/1G 2C/4X 3F/4F 4G/6G
1 B /1 — 2F/3F 3G/5G 4Y/5Y
1C/2C 2G/4G 3H/6H 5C/6C
1F/2F 2H/5H 3K/5K 5F/6F
1G/3G 2X/3L 3L/5H 5Y/6Y
1H/4H 2Y/3Y 3X/5L 6A/6G
1H/5L 3A/5K 3Y/4Y 6B/6—
1K/3K 3A/4A 4B/4— 6C/6X
1L/1X 3B/4B 4C/5X 6F/6—
1L/3H 3 C/AC 4F/5F 6Y/6+
1Y/2Y

To Play:

Each player decides upon a move (scissors, paper or stone) and indicates it by pushing his
appropriate pushbutton. Player 1 should move just before player 2 moves since the relays will move
after player 2 indicates his move. M IN IVA C w ill indicate a win or a tie on the lights.

You may find it convenient to fix a tall piece of cardboard between pushbuttons 3 and 4 to
keep players from observing their opponent's move in advance.

59

Reaction Time Tester
This game uses M IN IVA C to judge which of two players has the faster reaction time. When

lights 3 and 4 come on, each player tries to push his pushbutton down first. M IN IVAC will indi­
cate a winner, and will also indicate a foul— that is, when a player moves before the signal lights
(3 and 4) come on.
Player 1 uses pushbutton 1
Player 2 uses pushbutton 6
Pushbutton 3 is the re-set button
Light 1 indicates that player 1 wins.
Light 2 indicates that player 1 has fouled.
Light 5 indicates that player 2 has fouled.
Light 6 indicates that player 2 wins.
Lights 3 and 4 give the signal "S T A R T ".
The program for the Reaction Time Tester is:

1A/3F 2B/2— 3G/5G 5 B /5 -
IB/) — 2E/3E 3H/4H 5E/6G
1E/2E 2F/2G 3J/6Y 5F/5—
1 E/1—- 2F/5A 3K/4K 5L/6X
1F/2A 2G/5N 3L/4L 6B/6—
1F/1G 2H/3H 3Y/3+ 6E/6G
1G/5J 2K/3K 3Z/6H 6E/D2
1H/2H 2L/3L 4B/4— 6 F /6 -
IH/3Z 3A/6K 4F/6A 6L/6+
1K/2K 3A/4A 4F/4G 6L/D17
1L/2L 3B/4B 4G/5K D16/D17
1X/5H 3E/4E 4K/D19 D18/M—
1Y/4J 3F/3G 4L/4—

To play:
Each player should be ready at his pushbutton.
Push the re-set button (pushbutton 3).
As soon as lights 3 and 4 come on, each player tries to be the first to push his pushbutton.

M IN IVA C will indicate the winner on the lights.
If either player pushes his pushbutton before lights 3 and 4 come on, M IN IVAC will indi­

cate who has fouled and the game must be begun again.
To start another game push the re-set button and proceed as above.

60

1

J

M IN IV A C 601 A N D THE M IN IV A C M AN UAL

AKE PRODUCTS O F:

CO RPO RATIO N

372 Main Street, Watertown, Massachusetts

