
Serial to Parallel Shifting-Out with a 74HC595
Learning Examples | Foundations | Hacking | Links

Started by Carlyn Maw and Tom Igoe Nov, 06

Shifting Out & the 595 chip

At sometime or another you may run out of pins on your Arduino board and need to extend it with
shift registers. This example is based on the 74HC595. The datasheet refers to the 74HC595 as an "8-
bit serial-in, serial or parallel-out shift register with output latches; 3-state." In other words, you can
use it to control 8 outputs at a time while only taking up a few pins on your microcontroller. You can
link multiple registers together to extend your output even more. (Users may also wish to search for
other driver chips with "595" or "596" in their part numbers, there are many. The STP16C596 for
example will drive 16 LED's and eliminates the series resistors with built-in constant current sources.)

How this all works is through something called "synchronous serial communication," i.e. you can pulse
one pin up and down thereby communicating a data byte to the register bit by bit. It's by pulsing
second pin, the clock pin, that you delineate between bits. This is in contrast to using the
"asynchronous serial communication" of the Serial.begin() function which relies on the sender and the
receiver to be set independently to an agreed upon specified data rate. Once the whole byte is
transmitted to the register the HIGH or LOW messages held in each bit get parceled out to each of the
individual output pins. This is the "parallel output" part, having all the pins do what you want them to
do all at once.

The "serial output" part of this component comes from its extra pin which can pass the serial
information received from the microcontroller out again unchanged. This means you can transmit 16
bits in a row (2 bytes) and the first 8 will flow through the first register into the second register and be
expressed there. You can learn to do that from the second example.

"3 states" refers to the fact that you can set the output pins as either high, low or "high impedance."
Unlike the HIGH and LOW states, you can"t set pins to their high impedance state individually. You
can only set the whole chip together. This is a pretty specialized thing to do -- Think of an LED array
that might need to be controlled by completely different microcontrollers depending on a specific
mode setting built into your project. Neither example takes advantage of this feature and you won"t
usually need to worry about getting a chip that has it.

Here is a table explaining the pin-outs adapted from the Phillip's datasheet.

PINS 1-7, 15 Q0 " Q7 Output Pins

PIN 8 GND Ground, Vss
PIN 9 Q7" Serial Out

http://arduino.cc/en/Tutorial/HomePage
http://arduino.cc/en/Tutorial/Foundations
http://arduino.cc/en/Hacking/HomePage
http://arduino.cc/en/Tutorial/Links
http://en.wikipedia.org/wiki/High_impedance
http://arduino.cc/en/uploads/Tutorial/595datasheet.pdf

PIN 10 MR Master Reclear, active low
PIN 11 SH_CP Shift register clock pin
PIN 12 ST_CP Storage register clock pin (latch pin)
PIN 13 OE Output enable, active low
PIN 14 DS Serial data input
PIN 16 Vcc Positive supply voltage

Example 1: One Shift Register

The first step is to extend your Arduino with one shift register.

The Circuit

1. Turning it on

Make the following connections:

GND (pin 8) to ground,
Vcc (pin 16) to 5V
OE (pin 13) to ground
MR (pin 10) to 5V

This set up makes all of the output pins active and addressable all the time. The one flaw of this set up
is that you end up with the lights turning on to their last state or something arbitrary every time you
first power up the circuit before the program starts to run. You can get around this by controlling the
MR and OE pins from your Arduino board too, but this way will work and leave you with more open
pins.

2. Connect to Arduino

DS (pin 14) to Ardunio DigitalPin 11 (blue wire)
SH_CP (pin 11) to to Ardunio DigitalPin 12 (yellow wire)
ST_CP (pin 12) to Ardunio DigitalPin 8 (green wire)

From now on those will be refered to as the dataPin, the clockPin and the latchPin respectively. Notice
the 0.1"f capacitor on the latchPin, if you have some flicker when the latch pin pulses you can use a
capacitor to even it out.

3. Add 8 LEDs.

In this case you should connect the cathode (short pin) of each LED to a common ground, and the
anode (long pin) of each LED to its respective shift register output pin. Using the shift register to
supply power like this is called sourcing current. Some shift registers can't source current, they can
only do what is called sinking current. If you have one of those it means you will have to flip the
direction of the LEDs, putting the anodes directly to power and the cathodes (ground pins) to the shift
register outputs. You should check the your specific datasheet if you aren"t using a 595 series chip.
Don"t forget to add a 220-ohm resistor in series to protect the LEDs from being overloaded.

Circuit Diagram

The Code

Here are three code examples. The first is just some "hello world" code that simply outputs a byte value
from 0 to 255. The second program lights one LED at a time. The third cycles through an array.

The code is based on two pieces of information in the datasheet: the timing diagram and the logic table.
The logic table is what tells you that basically everything important happens on an up beat. When the
clockPin goes from low to high, the shift register reads the state of the data pin. As the data gets shifted
in it is saved in an internal memory register. When the latchPin goes from low to high the sent data
gets moved from the shift registers aforementioned memory register into the output pins, lighting the
LEDs.

Code Sample 1.1 Hello World
Code Sample 1.2 One by One
Code Sample 1.3 Using an array

Example 2

In this example you'll add a second shift register, doubling the number of output pins you have while
still using the same number of pins from the Arduino.

The Circuit

http://arduino.cc/en/Tutorial/ShftOut11
http://arduino.cc/en/Tutorial/ShftOut12
http://arduino.cc/en/Tutorial/ShftOut13

1. Add a second shift register.

Starting from the previous example, you should put a second shift register on the board. It should have
the same leads to power and ground.

2. Connect the 2 registers.

Two of these connections simply extend the same clock and latch signal from the Arduino to the second
shift register (yellow and green wires). The blue wire is going from the serial out pin (pin 9) of the first
shift register to the serial data input (pin 14) of the second register.

3. Add a second set of LEDs.

In this case I added green ones so when reading the code it is clear which byte is going to which set of
LEDs

Circuit Diagram

The Code

Here again are three code samples. If you are curious, you might want to try the samples from the first
example with this circuit set up just to see what happens.

Code Sample 2.1 Dual Binary Counters
There is only one extra line of code compared to the first code sample from Example 1. It sends out a
second byte. This forces the first shift register, the one directly attached to the Arduino, to pass the first
byte sent through to the second register, lighting the green LEDs. The second byte will then show up on
the red LEDs.

http://arduino.cc/en/Tutorial/ShftOut21

Code Sample 2.2 2 Byte One By One
Comparing this code to the similar code from Example 1 you see that a little bit more has had to
change. The blinkAll() function has been changed to the blinkAll_2Bytes() function to reflect the fact
that now there are 16 LEDs to control. Also, in version 1 the pulsings of the latchPin were situated
inside the subfunctions lightShiftPinA and lightShiftPinB(). Here they need to be moved back into the
main loop to accommodate needing to run each subfunction twice in a row, once for the green LEDs
and once for the red ones.

Code Sample 2.3 - Dual Defined Arrays
Like sample 2.2, sample 2.3 also takes advantage of the new blinkAll_2bytes() function. 2.3's big
difference from sample 1.3 is only that instead of just a single variable called "data" and a single array
called "dataArray" you have to have a dataRED, a dataGREEN, dataArrayRED, dataArrayGREEN
defined up front. This means that line

data = dataArray[j];

becomes

dataRED = dataArrayRED[j];
dataGREEN = dataArrayGREEN[j];

and

shiftOut(dataPin, clockPin, data);

becomes

shiftOut(dataPin, clockPin, dataGREEN);
shiftOut(dataPin, clockPin, dataRED);

http://arduino.cc/en/Tutorial/ShftOut22
http://arduino.cc/en/Tutorial/ShftOut23

