```
/* THE CIRCUIT
```

```
UltrasoundSensor
                      Arduino
                                 LED
 VCC
                +5V/+3.3V
 Gnd
                Gnd
 Trig
               9
 Echo
                4
                       Long lead of Led1
              11
                       Long lead of Led2
              12
                       Long lead of Led3
              13
                        Smaller lead of all LEDS
              Gnd
*/
//u may need a breadboard for the above circuit
//u may choose to connect a resistor
//across all the LEDs (i have not chosen to do so)
int Trig= 9;//could connect to any- i have chosen 9
//connected to trigger pin on UltraSound sensor
int Led1=11;
int Led2= 12;
int Led3= 13;
/*Led Connected to these pin -
LED3 connected to 13 - to get blink on startup
other leds are connected randomly -
u may have to change the numbers
based on the pins u wish to use
```

```
int Echo= 4;//PulseIn pin
unsigned long echo = 4;
unsigned long final = 4;
//declaring terms on pin 4 - used for pulseIn
void setup() {
Serial.begin(9600);/*
this is required if u want data to be
read onto yourr serial Monitor
- more on that, later in the code
*/
pinMode(Led1, OUTPUT);
pinMode(Led2, OUTPUT);
pinMode(Led3, OUTPUT);
pinMode(Trig, OUTPUT);
//defining OUTPUTs on Pins (that are output)
// - all pins are by default, INPUT
}
unsigned long Value() /*defining 'Value'
- note this is not part of void setup()
{
 digitalWrite(Trig, LOW); // Send low signal
 delayMicroseconds(1); // Wait for 1 microseconds
 digitalWrite(Trig, HIGH); // Send high signal
 delayMicroseconds(10); /* delay 10 microseconds -
```

```
to trigger UltraSound Sensor
 */
 digitalWrite(Trig, LOW);
 //Switch to low again - to complete triggering pulse
 echo = pulseIn(Echo, HIGH,8824);
 //using timeout of 8824 or 150cm approx
 final = (echo*0.017); //dist in cm
 return final;
 /* delay(500) [or more/less]
 could be introduced for slowing down inputs -
 may be required for more
 complex systems (so as to not
 overwhelm the arduino with data)
*/
}
void loop() {
int x;
x = Value();/*defining 'x' variable
in loop() segment.
Defining x as 'Value ()' function defined above
*/
Serial.println(x);
```

```
/*Value() commands are run and values
are printed onto the
serial monitor (crtl+shift+M)
this can be omited -
i have put this in for checking
reliabilty of raw Ultrasound values,
and change delay and
other code segments accordingly
*/
if(x \le 20 \&\& x > 0)
{
 digitalWrite(Led1, HIGH);
 close proximity alert - led can be replaced by buzzer
 (note relay or arduino shield may be required,
 if buzzer is demanding)
 */
 digitalWrite(Led3, LOW);
 digitalWrite(Led2, LOW);
 delay(100);
 /*since proximity is close,
 new data input should be fast
 (closer the proximity -
 greater should be the update rate
 of the feedback loop)
```

```
*/
}
if(x<=75 && x>20)
digitalWrite(Led1, LOW);
digitalWrite(Led2, HIGH);//medium proximity LED
digitalWrite(Led3, LOW);
delay(200);
/*since proximity is 'medium'
data input is slower
*/
}
if(x>75)
{
digitalWrite(Led1, LOW);
digitalWrite(Led2, LOW);
digitalWrite(Led3, HIGH);//distant obstacle alert
delay(300);
/*data update is slower for distant objects.
Fast update is not required - puts undue stress on system
*/
}
else
{/*else is used and not another if function
```

```
to cover timeout '0' values - else function
defines "out of range" and "error" codes
*/
 digitalWrite(Led1,LOW);
 digitalWrite(Led2, LOW);
 digitalWrite(Led3, LOW);
 delayMicroseconds(100);
 /*
 delay is random very small number
 - if error there is an error in reading values
 faster data input provides more reliabilty,
 and less 'incorrect'/'undesirable' outputs
 */
}
}
/* closing brace brackets from void loop()
thereby completing all syntax requirements
code is ready to upload
*/
```

//pls refer to video - to see observations after carrying out the project.