Make sure you have the correct libraries included. These should all be included in the Arduino
IDE.

SAInclude the necezzary libraries.
$include <SPT.ho|

#include <WiFi.h> 1
#include <WiFiUdp.l-

First, we define our Wifi variables. Make sure to add your information for your ssid, password,
keylndex, and localPort or else you will not be able to connect to your wireless network.

AAWifl Wariables

int status = WL_IDLE_ STATUS: 2

char ssid[] = "YOURNETWORE™: // +wour network 3310 (name)

char pass[] = "YOURPAISWORD™; A4 wour network password (use for WPA, or use as key Lor WEF)
int keyIndex = 0; A4 wour network kevy Index number (needed only for WEFP)

unsigned int localPort = 2390; J4 local port to listen on
char packetBuffer[255]: //buffer to hold incoming packet

WiFilDF TUdp:

Next, we define our motor control variables. Each motor needs a PWM and enable pin. Make
sure you clearly label each pin for each motor so you don’t get them confused. Variables 1X, 1Y,
rX, and rY are integers for later when we parse the wireless packet.

S/ HMotor Control Variables

int PWM1 = 9; 3
int EMAELEl = &:

int PWMZ = 5;

int EMABLEZ = 1:

int PWM3 = 3;

int ENABLE3 = 0O:

int PUM4 = 6&;

int ENABLEL = Z:

int 1, 1¥, rx, r¥:

In the setup function, we set the enable pins for each motor as output. Then we check for the wifi
shield, and if it is connected, we begin the Udp protocol.

wvold setup () !
SAIF YO0 WANT TO TEST YOUR SHIELD AND JEE INFORMATION 0N THE SERIAL MONTIOR,
SAUNCOMMENT THE FOLLOWING FUNCTION.
AAIF YO WANT TO BUN THE MOTORS, COMMENT IT OUT AGLTHN.
AiBerial begin(2600) ;

AA5er pinMode for the enable pins
pintode (EMABLEL, OUTPITT) :
pintode (EMABLEZ, OUTPITT)
pintlode (EMAELEZ, OUTPIIT) ;
pintlode (ENABLE4, OUTPITT) ;

AAUDP Conficuration

4 check for the prezence of the shield:

if (WiFi.status() == WL_NO_SHIELD) {
Serial.println("WiFi shield not present’™):
A4 don't continue:
while(true);

AS oattenmpt to connect to Wifi network:
while [status != WL_CONNECTED) |
Serial.print|("Attenpting to connect to S3ID: "):
Serial.printlnissid);
A4 Connect to WPAAWPAZ network. Change thiz line if using open or WEP network:
ztatus = WiFi.begin(ssid,pass);

A/ wait 10 zeconds for connection:
delaw (10000 ;
!

Serial.println("Comnected to wifi™):
AiprintWififtatus (),

Serial.println(™\n3tarting connectioh Lo SeEver..." 1!
A5 1f you get a connection, report back wia serial:
Udp.begin(localPort) ;

In the loop function, the wifi shield will read a packet when it is received. Four numbers, one for
each of the X and Y axes of the left and right joysticks, should be received with each packet. The
packet is then tokenized, using the space (“ *“) as the delimiter. The code takes the four numbers
and assigns them to a variable (IX, 1Y, rX, and rY) based on which token the numbers are. This
information is then used to command the motors.

volid loopi() {

A4 1f there's data awvailable, read a packet

int packetl3ize = Udp.parsePacket();

if (packetiize) Ei

i
Serial.print("RBeceiwved packet of size "):
Serial.printlnipacketiize) ;
Serial.print("From ") ;
IPiddress remotelp = Udp.rewoteIP():
Serial.printiremotelIn)
Serial.print{™, port "):
Serial.println(Udp. remoteFort{))

A4 read the packet into packetBufffer
int len = Udp.read{packetBuffer,2Z55);
if [len =0) packetBuffer[len]=0;
Serial.println("Contents: ™) ;
Serial.println(packetbBuffer):

char® pch;
pch = strtok (packetBuffer,”™ "):

forf{int 1 = 0; 1 < 4; i+
{

if{i == 0} 1¥ = atei(pch):
if{i == 1} 1Y = atoi(pch):
if{i == 2} X = atoi(pch):
if{i == 3) rY¥ = atoi(pch):

pch = strtok (NULL,™):

'
ConmandMotors (1Y, x7) ;

CommandMotors is a helper function. Each joystick has a range from 0 to 255 in the X and Y
direction. For tank-style steering, only the Y values are used. Each direction has a “dead zone,”
the center where the robot will stop. We found that the joystick does not necessarily always go
back to the exact center (127), so a range of 120-135 is used to ensure that the robot stops when
the joystick is near the center.

The digitalWrite function is used to turn the motor forward (HIGH) and backward (LOW).

When the joystick is pushed up (Y < 120), the formula (Y-120)*-2.125 is used because the speed
should increase as Y decreases. When Y = 0, the speed should equal 255, and when Y = 120, the
speed should equal zero. When the joystick is pushed down (Y > 135), the formula (Y-
135)*2.125 is used because the speed should increase as Y increases. When Y = 255, the speed

should equal 255, and when Y = 135, the speed should equal zero. The robot will stop when the
joystick is in the dead zone, so the speed is set to zero.

void CommandMotors(int LY, int RY)
{ 6
1E(LY « 1200 {
digitalllrite (ENABLELl, HIGH):
digitalllrite (ENABLE4, HIGH):
analogiivite (PUWML1, (LY¥-120)%-2,125):
analogiirite (PUM4, (LY¥-120)%-2,125):
}
iE(LY = 135) !
digitallWlrite (ENABLEL, LOW);:
digitallWrite (ENABLE4, LOW);:
analoglirice (PUML, [(LY-135)%&.125);
analoglirice (PUM4, [(LY-135)%2.125):;
}
1E(RY « 1200 !
digitalllrite (ENABLEZ, HIGH):
digitalllrite (ENABLE3, HIGH):
analogiivite (PUMZ, (R¥Y-120)*%-2,125);
analoglivice (PUM3, (RY-120)%-2.125):
}
1if(RY = 135) !
digitallWlrite (ENABLEZ, LOW):
digitalllrite (ENABLE3Z, LOW):
analogirite (PUMZ, [(RY-135)%2.125):
analoglrite (PUM3, [(RY-135)%2.125):
h

SABTOP

i£ (LY = 120 && LY < 135) !
analogilrite (FUML1, 0):
analogilrite (PUM4, 0):

}

if(R¥Y = 120 s BY < 135) !
analogiiritce (PUM2, 0);
analoglritce (PUM3, 0);

}

printWifiStatus() is another helper function that prints information about the network on the
serial monitor and is used when testing out the wireless network connection. This code comes

straight from the samples in the Arduino libraries.

volid printWifi3tatusi) {
A print the 351D of the network vwou're attached to:
Serial.print("353ID: "):
Serial.println(WiFi.33ID()1); .?

A print your WiFi shield's IP address:
TPAddress ip = WiFi.locallIP():
Serial.print("IPF Addres=z: "):
Serial.println(ip):

A4 print the received signal strength:
long rssi = WiF1i.R23I();
Serial.printi"signal strength (B33I):7);
Serial.printirssi):

Serial.println(™ dBm™):

