
Energy Monitoring Lamp
James Fotherby, February 2021

End Result



Introduction
The concept is simple, the lamp glows a colour that represents the instantaneous electricity
usage of the house. Blue obviously means good things whereas red means you're an evil
environmental sadist (or perhaps baking some muffins).

The inspiration behind this project was me recently moving into a flat entirely powered by
electricity. It was winter at first with sub-zero temperatures outside and it quickly became
apparent how expensive electric radiator heating can be. To be precise, 5 times more expensive
than gas. But I also quite like the simplicity of just the one energy supply.

I actually built this exact lamp and concept when I was 18 but it’s been sitting in a cupboard for
years. I had lost the original transmitter unit and it ran using a Propeller microcontroller made by
parallax. I have long since stopped using that particular MCU so have retrofitted the original
lamp with an Arduino and a few fresh ideas.

Transmitter Unit
Most digital electricity meters have a little red light that flashes 1000 times per kWh used. Hence
the rate of flashing represents the rate of energy usage (ie. the power consumption).

Figure 1 - Your classical electricity meter, the transmitter circuit for detecting flashes

It’s simple enough to bluetack a photoresistor over this and write a simple program to run on an
Arduino to detect the flashes. By using a RF transceiver unit we can broadcast these flashes to
the neighbourhood. Here’s the transmitter code on Github.

https://github.com/fotherja/RGB_Energy_Monitoring_Lamp/blob/main/Electricity_Monitoring_Lamp_Tx.ino


Figure 2 - Pulses as measured by photoresistor. Width ~200ms. At this moment I’m using
4.32kW of power as there is 833ms between the pulses (dishwasher + dryer)

I used a pair of SiK telemetry transceiver units which were super easy to interface with. They
basically provide a wireless UART port and have a micro USB which I could plug a 5V power
adapter into.

Figure 3 - Transmitter setup, photoresistor bluetacked to meter

https://ardupilot.org/copter/docs/common-sik-telemetry-radio.html


Receiver Unit
The receiver unit has a couple jobs:

1. Time the interval between received flashes to calculate the power usage
2. Based on the current power usage, select a colour to glow (the hue)
3. PWM the RGB LEDs to produce the colour we want

Figure 4 - Lamp innards - LED drive circuitry, transceiver and arduino pro mini (That chip in the
bottom right corner is not connected to anything)

We use PWM at 62.5kHz to modulate the current through the LEDs. A buck converter circuit is
employed for each LED. This is better than simply PWMing the LEDs directly from the 12v
supply through a resistor because it’s much more efficient.



Figure 5 - Buck converter used to drive each LED

When the transistor switches on, the current through the LED ramps up due to the 220uH
inductance. When switched off the current freewheels through the diode and the LED current
decays. This gives a classical triangular waveform as shown in the figure.

Figure 6 - Triangular LED drive current waveform (+ interference)

The 4.7R resistor is important. The reason is not immediately obvious but without the resistance
it becomes difficult to predict the current for a given duty cycle. If we had a current sensor in the



loop we could adjust our PWM duty based on the measured current. However that adds a lot of
complexity for little benefit over this setup.

Figure 7 - LED drive currents for different duty cycles

The forward voltage drop of the LED is approximately 3V. With a 100% duty cycle the LED
current would be I = (12 - 3) / 4.7 = 1.9Amps. I’ve used these LEDs which have a maximum
current of 700mA. So it’s important never to apply anywhere close to 100% duty!

I took current measurements for each LED against different duty cycles. These are plotted in the
graph. We can see that at 60/256 (23% duty) we get a current of 365mA through the red LED
and 285mA through the green and blue LEDs. The red LED has a smaller forward voltage drop
accounting for the difference. If the 4.7R resistor was decreased it would steepen the gradient of
these trendlines in the graph, smaller changes in duty cycle would result in larger changes in
current which isn’t good.

I’ve limited the LED duties to keep the maximum current below about 500-600mA. This is the
absolute maximum rating specified on the datasheet.

http://www.farnell.com/datasheets/385402.pdf


Figure 8 - The lampshade is removable, under it sits some heatsinked LEDs

The software for the receiver unit is on GitHub. A few things to say about it:

● I found some code on Stackoverflow to convert HSV (Hue, Saturation, Value) to RGB
values. This makes it a lot easier to generate the colours. We always want the saturation
(S) and brightness (V) to be maximum. This leaves just one variable (H) to adjust.
Compare this against an RGB setting. What values of R, G and B do you need to make
yellow? How do you gradually adjust these values to transition from orange to red!? The
HSV colour system makes things straightforward.

Figure 9 - The HSV colour scale

● What colour do we choose for what power? Initially I tried a linear scaling however I later
decided a logarithmic scale would be better. I wanted to see the difference between 50W

https://github.com/fotherja/RGB_Energy_Monitoring_Lamp/blob/main/Electricity_Monitoring_Lamp_rx.ino
https://stackoverflow.com/questions/3018313/algorithm-to-convert-rgb-to-hsv-and-hsv-to-rgb-in-range-0-255-for-both


and 100W whereas I wasn’t so bothered about 5000W and 5050W. I felt like it’d be
better to have higher resolution at lower power usages and I’m pleased by the results.

Figure 10 - Linear vs Logarithmic scaling for colour choice

Future Ideas
I’d like to incorporate a Raspberry Pi in the lamp to upload the electricity usage throughout the
day to a web server. Then it’d be possible to record the usage and display it as a graph. That
wouldn’t be too tricky...

Update March 2021 - Raspberry Pi
I enjoyed working on this update. I have configured a RPi3 to receive the flash counts from the
Arduino over UART. I used a simple resistor divider to level shift the arduino’s 5v signal to a 3.3v
one suitable for the Pi. There’s also a buck converter to produce 5v for the Pi from our 12v input.



The Pi logs the energy used during each minute of the day to a .txt file. It runs apache and
some PHP to serve up the data in the format of a graph.



Figure 11 - The webpage used to display the energy used throughout the day

I’m always so rusty when it comes to writing web pages using HTML/CCS/Javascript/PHP so I
rely heavily on examples, Stack Overflow and www.w3schools.com. I thought I’d try to
document how it all works. I don’t claim it to be a masterpiece - I’m no web developer.

● There’s a python daemon that is configured to automatically run on Pi startup. I did this
using cron by following this handy guide.

○ The python daemon is very simple. It waits for serial input from the arduino and
writes the flash count (ie. energy used) each minute to a date stamped text file. A
new file is created each day and will gradually fill with 60x24 = 1440 entries.

● Stored in the /var/www/html/ directory are the web server files:
○ Index.html

■ Renders the page using the CSS in style.css and adds the javascript

○ style.css

○ Z1.js
■ This uses XMLHttpRequest() to grab data from the server for the day of

interest. It then uses chart.js to plot the data nicely

○ Data_parser.php
■ When data is requested by the client for a certain day, this reads the

respective log (created by the python daemon) and packages the data
ready for transmission

http://www.w3schools.com
https://github.com/fotherja/RGB_Energy_Monitoring_Lamp/blob/main/LoggerDaemon.py
https://www.raspberrypi-spy.co.uk/2013/07/running-a-python-script-at-boot-using-cron/
https://github.com/fotherja/RGB_Energy_Monitoring_Lamp/blob/main/index.html
https://github.com/fotherja/RGB_Energy_Monitoring_Lamp/blob/main/style.css
https://github.com/fotherja/RGB_Energy_Monitoring_Lamp/blob/main/Z1.js
https://www.chartjs.org/
https://github.com/fotherja/RGB_Energy_Monitoring_Lamp/blob/main/data_parser.php


Final bits and bobs
I had a smart meter installed and it has 2 IMP lights next to each other. One 2000/kWhours and
one for 2000/kvarh. Initially I had some strange behaviour. I then realised my photoresistor
setup was too sensitive and capturing flashes from both IMP lights because they were close to
one another. I switched the pull down resistor in the Tx unit for a 47K one and that fixed the
“cross talk” issue.


