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�� Introduction

Silicon detectors have had an enormous impact on the �eld of high ener�

gy physics over the last �� years� They are usually used to provide high

precision tracking information� A relatively recent addition to the standard

equipment of high energy physics experiments� they are now crucial for ma�

ny measurements� This lecture series tries to explain what silicon detectors

are� what they can do and what their future might be� No attempt of com�

pleteness is made� There are certainly many developments and applications

that could or perhaps should be mentioned� However� a selection has to be

made and so the author apologizes only half�heartedly� One goal of these

lectures is to clarify the terms that are frequently used in connection with

silicon detectors� Another goal is to explain the complexity of constructing

a real device using silicon detectors and to show that many decisions have

to be taken� Some guidelines on how to make the relevant decisions are also

given� The intricacies of the design of a real silicon detector and its produc�

tion are not discussed in full technical detail� Some selected applications are

presented instead� At the end� the limitations of silicon and some commonly

mentioned alternatives are discussed�

�� What are Silicon Detectors�

In principle� a silicon detector is a solid state ionization chamber� Thus it is

a member of the large family of detectors based on ionization� While most

of the family members work with ionization in gases� a silicon detector takes

advantage of the special electronic structure of a semi�conductor�
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Figure �� Principle of a vertex detector�

���� USAGE AS VERTEX DETECTORS

The most common application of silicon detectors in high energy physics

is as active elements of vertex detection systems� Figure � illustrates the

concept of such systems� Vertex detectors are the detector component posi�

tioned closest to the primary interaction point� also called primary vertex�

Some tracking device �nds tracks and these are extrapolated towards the

vertex region� The extrapolations are translated into regions of interest

where hits are searched for� These hits are assigned to the tracks and the

track parameters are recalculated� By this� the precision is improved such

that secondary vertices become distinguishable� hence the name vertex de�

tector� Such secondary vertices are associated with the decay of particles

and secondary interactions� Of course there are also tertiary and higher

order vertices� all of which should and can� in principle� be identi�ed�



�

Si Si

Si

Si

SiSi

Si

P

+
Donor

n silicon

Si Si

Si

Si

SiSi

Si

B

-
Acceptor

p silicon

valence

conduction

valence

conduction

Figure �� Semiconductor properties of defects in silicon�

���� SILICON� THE MATERIAL

For a good introduction into the solid state physics of semiconductors� please
have a look at Ref� ��� or Ref� ���� At room temperatures� the properties of
silicon are determined by impurities�see Fig��	� Totally pure silicon would
be an interesting material� but is basically unobtainable� It is easier to use
the impurities and control them by doping� Silicon has four valence electrons
and forms a hexagonal crystal� Defect atoms with 
 valence electrons� like
phosphor� act as so called donors� as they donate an electron to the crystal�
In the band structure� this electron sits within the band�gap� but close to the
conduction band� Silicon with excess donors is called n�type silicon� Defect
atoms with three valence atoms� like boron� act as so called acceptors� Here
an electron is caught by the boron and it then also sits in the band�gap�
but close to the valence band� In this case� somewhere else a hole is created
due to the missing electron� Silicon with excess acceptors is called p�type
silicon�

���� CONSTRUCTING A DIODE

A junction between p� and n�type silicon creates a diode� Figure � shows the
electron and hole densities as well as the electrostatic potentials in a diode
close to the junction� The application of an external potential as shown
in Fig� � is called reverse biasing� The currents in an ideal diode are also
described�

In an unbiased diode there are small and equal generation and recom�
bination currents� Some holes and electrons di�use through the potential
barrier� and as a result there is a certain electron density in the p� and hole
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Figure �� Electron and hole densities�top� and electrostatic potential�center� of un�
biased�left� and biased�right� diode close to the junction� The behavior of generation and
recombination current is indicated at the bottom�

density in the n�region� When an external potential is applied� the potential
barrier becomes higher and the di�usion and thus the recombination current
is suppressed� A zone depleted of all carriers forms and starts to grow� The
external bias voltage at which the whole diode is depleted is called the full
depletion voltage� The generation current in a perfect diode stays constant
up to a voltage called break�through voltage� at which the �eld becomes too
high for the internal structure of the diode� This current is referred to as
leakage current�

���� ELECTRONS AND HOLES

When a charged particle traverses silicon� it produces ionizing and non�
ionizing energy loss� The non�ionizing energy loss creates radiation dam�
age�Sec� ��	�
� and the ionization loss causes the creation of electron�hole
pairs which produce the signal �see Fig� ��� The number of pairs created de�
pends on the amount of ionization� and thereby on the absolute value of the
charge and momentum of the particle� and on the thickness of the crystal�
Silicon has a band gap of ����eV at 
���K� and a minimum ionizing particle
creates on average 
��� electron�hole pairs in ����m of silicon crystal�
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Figure �� Side�view of a p on n diode� A typical detector is around ����m thick� The
p�implantation is around ��m deep�

Once an external bias voltage exceeds the full depletion voltage all the
created charge can be collected� The holes drift to the p�side of the diode�
the electrons to the n�side�

���� DETECTORS

Basically� all silicon detectors are constructed as so called p on n diodes�
Nothing else will be discussed In these lectures� Such a diode consists typ�
ically of an around ����m thick n�type bulk� where on one side a layer
of p��doped material of about ��m thickness is implanted�see Fig� �	� p�

denotes that the defects of the n bulk are over�compensated� Depending on
the doping of the n material� a certain electron density is intrinsic before
biasing� When the diode is biased� the highest 
elds occur on the p�side of
the diode and the depletion zone grows from the p� towards the n�side�

Detectors are typically made from � inch wafers� The necessity to handle
the wafers� and the increase of wafer imperfections near the edge� limit the
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Figure �� Top view of �from left to right� strips on a single�sided� strips on a double�sided�
pads on a single�sided� pixels on a single�sided detector�

possible sizes of the resulting detectors� A maximum size of ���cm� or
���cm� is possible� depending whether a square or rectangular shape is
needed�

������ Single� and Double�sided p on n Detectors

In order to obtain spatial resolution� the p implantation of a simple p on n
diode can be structured�see left of Fig� �	� The result is a so called single

sided p on n detector� It is also possible to add a structured n� implantation
on the n
side of the diode� The resulting double
sided detector can measure
two independent projections�see Fig� � and �	� It is also possible to only
structure the n
side of the detector� resulting in a n on n single
sided de

tector� However� the construction of n on n single
sided detectors requires
work on the p
side of the diode� Thus� the technology of a double
sided de

tector is needed and has to be paid for� Figure � gives an overview of the
most common structures�

Strips are the most common structures used on silicon detectors� They
can be equally spaced or not� parallel to the edges or not� and have typical
pitches between ���m and ����m� In principle� strips could have any form
and can wind arbitrarily all over the detector� For some applications� this
makes sense� However� straight strips with equal spacing are de
nitely the
most common�

Pads and Pixels are featured on single
sided detectors� A pixel is a small
pad� Typical pad sizes are ��������m� to ���mm�� Pixels are typically
��� ���m� to ��������m�� Again� it would be easy to make any shape
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Figure �� Side view of strips contacted directly �left� or through a SiO� and a Si�N�

layer �right��

of pad or pixel� but in practice people mostly choose rectangular pads and
pixels� A special case of pixel detectors are charged�coupled devices� CCDs
�see Ref� ���	�


���
� Signal Retrieval

In order to collect a signal from an implanted structure that structure� has
to be connected to the outside world�see Fig� �	� The easiest is to just put
down a metal strip on top of the implantation� The disadvantage is that
any current generated in the diode 
ows through that contact� and� if no
external capacitor is used� right into the ampli�er� Many ampli�ers don�t
really like that� Some ampli�ers do not mind� but generally this current
still creates unwanted noise� Therefore� in most cases� capacitive coupling
is chosen� In modern applications� the capacitors are integrated into the
detector� This is desirable� as external capacitors are often di�cult to �t�
and they double the number of contacts� In the following� I will always
talk about detectors with internal capacitors� Internal capacitors are built
by having an oxide layer separating the implantation and the aluminum
strip� Such a layer is about ��nm to 
��nm thick� A failure in the oxide is
called a pin�hole� Such a failure is very undesirable� as the resulting currents
a�ect more than one strip� An extra layer of silicon nitrite �around ��nm
to ���nm	 can provide extra security� The resulting capacitors are good for
voltage di�erences of up to ��� Volts�see Sec� 
����	� In many applications�
the voltage drop across the capacitors is controlled and kept to a few volts
during normal operation� For a double�sided detector� that means that the
electronics has to be 
oating on at least one side� Only if a double�sided
detector is operated at bias voltages small compared to the break�through
voltage of the internal capacitors� can the electronics on both sides work
with the same ground�
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������ Resolution

The intrinsic resolution of a strip detector depends on the pitch and whether
digital or analogue read�out information is used� A simple strip detector
with pitch a and digital read�out has an intrinsic resolution of � � a�

p
���

The intrinsic resolution can be improved with analogue read�out� As the
charge created between two implanted strips is linearly divided between the
strips	 the position of a hit can be reconstructed by calculating the center
of gravity of the observed charges� However	 if the implantation itself is hit	
basically all the charge remains within this strip� Only a small portion is
capacitively coupled to the two neighboring strips� In order to optimize the
resolution for a given pitch	 the implantation width should thus be small�
However	 that creates large gaps between implantations	 where the poten�
tial is in
uenced by the back�side� That can cause the loss of some of the
charge� In addition	 the �eld at the point indicated by an arrow in the left
picture of Fig� � increases� At a certain gap width	 the internal p�n�junction
breaks before the full depletion voltage is reached and the detector becomes
inoperable� Thus the implantation width cannot be very small compared
to the pitch� As a result	 one has to decrease the read�out pitch in order
to achieve better intrinsic resolution	 or introduce intermediate strips 
see
Fig� ��� The pitch cannot be made arbitrarily small	 because that increases
the input capacitance that the read�out electronics sees	 and thereby the
noise
see Sec� ��������

The pitch of the silicon strip detectors for a particular application is usu�
ally chosen such	 that the intrinsic resolution of the detectors is irrelevantly
small� The overall resolution of the system is limited by multiple scattering�
Very small pitches are mainly used to separate tracks close to each other�
For pattern recognition	 it is undesirable to have more than one track hit
the same strip�

������ Intermediate Strips

Intermediate strips allow the construction of detectors with improved res�
olution at �xed read�out pitch�

In general	 it is desirable to keep the number of read�out channels as
small as possible	 because read�out channels are expensive and work intens�
ive� It is also technically di�cult to achieve read�out pitches below ���m	
as there is basically no lateral space left for contacts to the outside world�
In addition	 it is hard to get front�end pre�ampli�er chips that have input
pitches of less than ���m�

Detectors with one	 two or even three intermediate strips have been used�
The signal is capacitively coupled to the � nearest read�out strips� That
distributes the signal ofr a particle traversing a region between two read�out
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Figure ��� Measured charged division in a detector with one intermediate strip� The
schematic of the detector is shown on top� A laser beam is moved across the detector� The
dashed line is the charge seen by the strip on the left ������ The full line is the charge
seen by the strip on the right ������ The x axis is the position of the laser beam� The
deep minima right on the read�out strips result from the re	ection of the laser light from
the aluminum read�out strip�
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Figure ��� Side view of a �realistic� detector with structured n�side� On the left� so
called p�stops isolate the n� strips� On the right side a p�spray implantation does the
same job�

strips more evenly than a wide read�out strip geometry would� Figure ��
shows the measured charge division in a detector with one intermediate
strip ���� For the measurement� a laser�beam with a wavelength of 	
�nm
was moved across the detector in ��m steps� The strip pitch is ���m� Shown
are the collected charges of two adjacent read�out strips while the laser�
beam was moved across� Clearly distinguishable are the positions where the
laser beam gets re
ected by the aluminum strips� Between implantations�
the linear dependence between position and charge sharing is well realized�
When the intermediate strip is hit� the charge is shared equally between
the two neighboring read�out strips� In this case there is no information for
where the hit occured within the intermediate strip�

������ n�sides� p�stops and p�spray

A closer look at the n�side of a detector reveals that as simple a device as
described above cannot work� There would be charges induced in the oxide
layer that would short out the n� implantations� There are two commonly
used ways to prevent this�see Fig� ���� In each case� a p implantation insu�
lates the n��strips� In the p�stop version� separate implantations are used�
That basically doubles the number of structures to be made� Especially with
intermediate strips� that can get very crowded� In the p�spray option the
whole area is implanted� This option has the principle advantage of not
introducing more structures� and it has the lower internal �elds� However�
the doping in p�stops is easier to control during manufacturing� and at this
point in time p�stops are more common than p�sprays�
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������ Biasing

A detector has to be fully depleted in order to deliver the full signal� The
full depletion voltage depends on the resistivity of the material used� It is
typically between �� Volts and ��� Volts� It is advisable to run at least
�� to �� Volts above full depletion voltage� because a higher 	eld speeds
up the signal� which is very important for applications with fast electronics

peaking times of less than ���ns��

The individual strips are taken to the desired potential through bias
resistors� This resembles any bus system used to distribute voltages� The
voltage is brought from the external world to a bias structure� usually a ring�
from which it is internally distributed� There are three di�erent choices on
the market
 polysilicon resistors� punch�through structures and implanted
resistors� Table � lists advantages and disadvantages of the three options�

Biasing Choice Advantages Disadvantages

Polysilicon radiation hard takes space

easy to operate expensive

Punch�Through cheap not radiation hard

di�cult to operate

Implantation cheap works only on p�side

radiation hard � single�sided detectors only

TABLE �� Advantages and disadvantages of di�erent bias methods�

The choice of biasing method really depends on the application and on
the budget available� One of the main inputs to the decision is the radiation
dose that the detector is most likely to see�

������ I�V Characteristics

Ever since the beginning of Sec� ���� I claimed that a silicon detector is
basically a structured diode� Therefore� the leakage current it draws versus
the bias voltage should show the typical diode behavior�see Sec� ����� In
practice� most detectors are not perfect� And this is re�ected in their IV�
curves� Figure �� shows IV�curves for three double�sided detectors� Each one
has a break�through voltage much higher than the full depletion voltage�
A �perfect� detector shows a small rise in current at the beginning and
then a long plateau up to the break�through voltage� The small rise at the
beginning is connected to the oxide charges� Some imperfections can cause
the current to rise with voltage� Quite often� these rises are linear� i�e��
resistive behavior is observed� Imperfections on the p�side are immediately
visible� while n�side imperfections only take e�ect after the detector is fully
depleted� Some imperfections only take e�ect at voltages much higher than
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Figure ��� Typical IV�curves for silicon detectors� The curves shown are those of ���cm�

double�sided detectors designed for the HERA�B experiment�Sec� ��	�	
� All three detect�
ors are fully depleted at around ���V� Detector a
 is as close to a diode as they come�
Detector b
 has an imperfection on the p�side
 re�ected in a steady rise of current even
before it is fully depleted� Detector c
 has an imperfection on the n�side
 which becomes
visible as soon as the depletion zone reaches it�

full depletion voltage� Such imperfections are irrelevant for detectors that

are not subjected to irradiation�

������ Radiation Damage and Full Depletion Voltage

Silicon detectors are damaged by charged and neutral particles� The damage

is caused by non�ionizing energy loss� Charged particles mainly damage

the bulk material� Neutral particles� especially soft ones� also damage the

surface structures�

For strip detectors� the bulk damage is the more important e�ect� The

crystal itself is damaged such that donors are removed and acceptors are

created� This happens through the dislocation of lattice atoms� A damaged

crystal has some self�healing ability called annealing� However� on a longer

time�scale it also gets even sicker� This is called anti�annealing� Annealing

can be quite well understood and is connected to di�usion� There are sev�

eral models for anti�annealing� However� none of them is quite complete or

convincing�

The operational consequence of radiation damage is that at any 	xed

voltage the leakage current goes up as I
I��Id � �� where soon the original

current I� becomes totally negligible� The size of Id depends on many factors�

but� even after a moderate radiation dose �� the resulting leakage current I



��

Figure ��� Development of the full depletion voltage with integrated radiation dose� here
given as the number of minimum ionizing particles per cm��

this makes silicon

more radiation

resistent than any

other kind of

detector.

Figure ��� Multiple guard�rings gradually take down the voltage between the active area
and the edge�

can easily increase by a factor of ���� In addition� the full depletion voltage
changes� Figure �� shows that the full depletion voltage �rst decreases and
then� after a point called type inversion� increases� In order to still fully
deplete the device� higher and higher voltages have to be applied� As real
detectors are usually not perfect diodes�see Sec� ��	�
�� the leakage current
increases accordingly� By how much� depends on the quality of the device�
The full depletion voltage after a severe radiation dose� lets say 	�����

minimum ionizing particles� can be 	�� Volts or more� Detectors are made
to be able to work at that kind of voltage by guard�rings that shield the
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active area from the voltage drop around the edge� The voltage is taken
down gradually from one ring to the next� Figure �� is a sketch of such a
guard�ring structure� Design engineers have very strong opinions about the
number and width of the guard�rings� Details are important� but there is
more than one solution�

It is very important to remember that there is no such thing as �radiation
hard� silicon� Silicon is always damaged when exposed to radiation� The
trick is to design the detectors such that it still works even though damaged�
Well designed silicon detectors can survive longer than any other ionization
devices currently available at mass production levels�

��	�
� Radiation Bursts and Pin�Holes

In some applications� silicon detectors are periodically exposed to bursts of
radiation� In accelerators� this is often related to beam losses� Such bursts
can create an enormous amount of charge inside the detector� This charge
can dissipate only through the resistive bias structure� The time constants
involved can temporarily cause a large voltage drop across the silicon�oxide
and nitrite layers� which might then locally break� This creates so called
pin�holes� Therefore� the internal capacitors are built to withstand relatively
high voltage drops of up to ���V� External capacitors break down at far
smaller voltages�

��	���� Read�Out

Some remarks about retrieving the signal were already made in Sections
��	�� and ��	��� The general goal is to get the resolution needed with the
fewest read�out channels possible� Most applications� but by far not all�
are best served with a capacitively coupled silicon detector and a charge
integrating pre�ampli�er� Depending on the technological choices and the
needed resolution� a detector may have intermediate strips or not� However�
quite often a read�out pitch of around 	��m or ����m turns out to be
optimal� The pre�ampli�ers are usually packaged in custom made chips� The
peaking time has to match the repetition rate of the experiment� The faster
the pre�ampli�ers have to be� the more di
cult they are to get� Modern chips
have typically �� or ��� channels� Some chips have integrated pipelines that
store the data for a while� This is needed for high frequency experiments
where the silicon is read out only after a �rst level trigger has decided that
the event under consideration is worth it�

The silicon detectors that are right now being conceived� or already in
use� usually involve quite large systems� A double�sided detector can have
���� or more channels� and a complete system has often more than ���
�LHC more than ����� detectors� This creates hundreds of thousands of
channels� all of which have to be connected to pre�ampli�er chips� which
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then have to be connected to the outside world� The connections between
detector and chip is made by wire bonding� often through a fan�out� A fan�
out doubles the number of wire bonds� but it allows for pitch adjustment�
which is sometimes necessary� Even though chips are custom made for high
energy physics� and very often for a speci�c experiment� they are used under
slightly di�erent geometrical conditions� In most applications� there is very
little space available for the pre�ampli�cation electronics� which adds to the
fun of designing a complete system�

The connections to the outside world also have to be considered carefully�
especially in �� detectors� Here the cables have to be threaded through the
outer shells of the detector� The cables create holes in the acceptance and
can add material in front of the outer shells� It is therefore desirable to
multiplex the signals before routing them to the outside world� An intrinsic
multiplexing is done for the pixels in a CCD� But CCDs are quite slow� In
all applications with tight timing conditions� the speed of the link� has to
increase with the number of multiplexed channels� The higher the speed of
a link the more di	cult it becomes� A reasonable compromise has to be
made depending on the constraints of the application�

A fundamental decision to be made for any detector system is whether
to read out the analogue information� and� if so� to what accuracy� In prin�
ciple� the digital information 
hit� or 
no hit� would be enough for most
applications� However� in practice a phenomenon called 
common mode�
makes digital read�out often unusable� When real silicon detectors are con�
nected to real ampli�er chips� the baseline of the chips can jump for some
events� These jumps can be higher than the signal from a minimum�ionizing
particle� This makes it impossible to adjust a single threshold for digital
read�out� The reason for common mode is not well understood� The ground
of the detector couples in one way or another to the ground of the chips�
and the whole assembly acts as an antenna or signal generator� It is believed
that the problem is best controlled by 
perfect� grounds� There is no �rm
belief� let alone knowledge� on how to achieve these 
perfect� grounds in
an experimental hall� If a su	cient number of bits is read out� usually � is
�ne� it is possible to monitor the common mode and subtract it online�


������ Signal to Noise

The distribution of the size of the signals in a ����m silicon detector cor�
responds to a Landau distribution with a mean of 
���� electrons�

The electron�equivalent noise as seen by the pre�ampli�er has several
components� white series� white parallel and ��f�

ENC� � a�
C�

inp

Tp
� a�ILTp � a�C

�

inp
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Figure ��� Cross section of a double�sided detector with polysilicon bias resistors

Cinp is the input capacitance� and determined by the layout of the de�
tector and fan�out� Tp is the peaking time of the pre�ampli�er� it has to be
chosen to match the repetition rate of the experiment� The constants ai are
dependent on the technology of the ampli�er chip� The only parameter that
can be tuned during operation is IL� the leakage current� At room temper�
ature the leakage current through the bulk is reduced by roughly a factor �
by cooling down by 	�C� This becomes important after irradiation�

Typically� the systems are con�gured such that at room temperature the
signal to noise ratio for an undamaged detector comes out to �
 to �� for
fast �Tp � 
�ns
� and 
� to ��� for slow� electronics�

��
���� Detector Production and Prices

The production of silicon detectors is not your typical �do it yourself job��
For a small scale production of a medium�complicated device� you need a
O���
M� silicon laboratory and a lot of expertise� Even though the prin�
ciples of a silicon detector are relatively straightforward� the details are
very involved� Figure �
 is a drawing showing a little more technical detail�
In reality� it is even more complicated� and small changes in layer thick�
nesses� distances between structures� doses or process temperatures� result
in catastrophic failures�

There are quite reliable commercial suppliers like Hamamatsu� CSEM
or Sintef �this list is incomplete by de�nition
� There are also unreliable
suppliers which will not be listed� because my legal insurance leaves a lot
to be desired� The price of a detector varies widely� depending on size and
requirements� For maximum area detectors from � inch wafers� the following
numbers are a very loose guideline� single�sided p on n detectors are between
�
�� and ������ Double�sided p on n detectors are between ����� and
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������ single�sided n on n detectors are almost as expensive as double�sided
detectors� as both sides of the wafer have to be worked on� The set�up costs
for a new line of detectors is signi	cant� A double�sided detector requires ��
or even more layers� and for each layer a so�called mask is required� Each
mask� depending on the needed accuracy� can cost more than O
�������
Total set�up charges of more than �
����� are not unheard of� It is clear
that a large silicon system is not inexpensive� Single detectors� however� are
per cm� even more expensive due to the set�up charge�

�����
� System Costs

In the last section it became clear that silicon costs money� But pieces of
silicon don�t make a detector system� In addition� a mechanical support
structure and a control and read�out system is required� That also costs
money�

Mechanical support structures are made out of low�Z materials� prefer�
ably with thermal expansion coe�cients close to silicon and a lot of strength�
Carbon 	ber and graphite constructions are common� Beryllium supports
are also often used� All these materials have in common the fact that they
are expensive� Detector cooling is often di�cult and involved� The resulting
systems also have a tendency to cost a lot of money�

The read�out systems consist of pre�ampli	ers� perhaps with pipelines�
pitch adaptors� optical links or twisted pair cables� A�D converters� plenty of
control electronics� and probably fast processors to deal with the raw data�
The detectors need power�supplies� and so does all the read�out electronics�
All this has to be controlled and monitored�

It can easily happen that the silicon itself does not dominate the system
cost� In the case of the HERA�B silicon vertex detector system� for ex�
ample
see Sec� 
������ the total cost is around �
M� while the actual silicon
detectors only cost �
��k�

������� Choices

In the previous sections words like �typically� and �usually� were not
uncommon� When building a silicon detector system� there are plenty of
choices� In many cases� there is no clear �best choice�� But there are usu�
ally some very bad choices� In large collaborations it can take longer to
make the choices than to actually build the device� Figure �� can be used
as a guideline on how to choose the �correct� piece of silicon� It should cer�
tainly enable the reader to hold his�her own in any collaboration or other
such meeting�

The standard solution is to use silicon strip detectors with a read�out
pitch adjusted to the resolution requirement of the application� If the track
density or the radiation level are too high� the prescribed cure is to go for
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Figure ��� Decision Flow Chart� This is an extreme simpli�cation�

pixels� It has to be noted� however� that� at the moment� no totally functional
read�out scheme for pixel detectors other than CCDs exits� CCDs can only
be used if the read�out rate is su�ciently low� In such a case of low read�
out rate� it is always worth to explore the CCD option� The measurement of
space�points is very attractive� and it makes track reconstruction easier and
more e�cient� Even with perfect hits in two projections� false assignments
occur that can be prevented by measuring space�points�see Fig� ��	�

The evaluation of di
erent solutions involving strip detectors very of�
ten focuses on double sided versus single�sided� Many people are afraid of
double�sided detectors because their operation demands a little more care
and thought� Some suppliers also have problems making double�sided detect�
ors while they are more successful with single�sided devices� Nevertheless� if
multiple scattering limits the overall performance of the envisioned system�
double�sided detectors should clearly be the choice�

�� Applications

Looking outside our �eld� the range of applications of silicon detectors is
quite large� CCDs� in particular� are used in many scienti�c and commer�
cial detection devices or cameras� This ranges from video cameras to X�ray
detectors in satellites �
�� A review of charge�coupled devices as particle
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Figure ��� The advantage of measuring space�points� A hit� even perfectly measured
in projections� has a higher probability of being assigned to the wrong track than a hit
measured as a space�point�

tracking detectors is given in ���� Strip detectors are not widely used in in�
dustry� but they are much more common in high energy physics� Basically�
every modern high energy physics experiment has a silicon based compon�
ent� an exception being neutrino detectors� Silicon is used mostly to satisfy
the requirements of high precision tracking close to the interaction point�
and as the active material in high density calorimeters�

���� SOME HISTORY

Silicon detectors are a relatively recent invention� Their development went in
parallel to the development of integrated circuits� Without the revolutionary
progress made in the last �	 years in the packaging of pre�ampli
ers� the
wide spread usage of silicon detectors would not have been possible�
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������ Fluxes

In �historical� times� as in the early eighties� silicon detectors were used to
measure particle 	uxes� In Ref� 
��� the use of silicon detectors at CERN
is described in detail� When a large number of charged particles traverse
a silicon diode� the induced charges create a sizable current that can be
measured� The current depends on the energy and angular distribution of
the particles� as well as on their charge� For a beam with a well known
energy and momentum spread� it is possible to calculate the 	ux from the
generated current� once the leakage current of the diode 
that has to be
subtracted� is known�

This principle was� for instance� used to calibrate neutrino 	uxes� Here�
the incident protons interact in a beryllium target to produce pions and
kaons� The mesons decay in 	ight� and produce a neutrino beam� The ac�
companying muons have to be stopped in a shield� Measuring the muon 	ux
in the shield is a way to measure the neutrino 	ux� Therefore� at the CERN
neutrino beam facility� silicon diodes� at that time called solid state detect�
ors� were positioned inside the shield and provided that 	ux measurement�
However� a cross�calibration with nuclear emulsions was necessary� as the
angular distribution of the beam could not be calculated well enough from
Monte Carlo
see Ref� 
���� The accuracy achieved for the neutrino 	ux was
about ���

Silicon diodes are still used as warning devices� Many experiments place
diodes close to the beam�pipe and monitor their currents� Either the long�
term dose is deduced from the increased leakage current� or sudden in�
creases in current are used as an early warning against special problems
such as beam�losses�

������ Dawn of the Age of Silicon� Charm Lifetimes

The �rst true silicon vertex detector was constructed in ���� for ACCMOR

NA���� an experiment at CERN designed to measure charm lifetimes 
���
The experiment used � single�sided detectors with ���m strip pitch� At that
time� the read�out was a major problem� It was basically not possible to
work with such a pitch in the external world� Therefore� only every third
strip was read out actively� These detectors� with their analogue read�out
actually achieved a spatial resolution of ��m� Thus� from the very beginning�
the point resolution of the devices was not the limiting factor for the overall
performance� Figure �� gives a schematic view of the NA�� setup� while
Fig� �� shows an event and the reconstructed charm decay� It should be
noted that another part of the same collaboration pioneered the usage of
CCDs as tracking detectors 
���
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Figure ��� Schematic of the vertex region of the NA�� detector�

Figure ��� Display of an NA�� event and its reconstructed charm decay�
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������ Silicon goes ��� B�lifetimes

The immediate success of silicon in �xed�target detectors was followed by
their usage in �� detectors� The main problem in �� detectors is to �nd space
for the read�out electronics� which in addition should not introduce too much
material into the acceptance� Without the rapid development in integrated
circuits� silicon detectors could not have been used in a �� geometry� In�
tegrated circuits have revolutionized the construction of all detectors� not
just silicon detectors� It should never be forgotten that the electronics is
as important as the detector itself� For simplicity� at the beginning most
experiments used single�sided detectors� The �rst �� experiment with a
vertex detector constructed from double�sided silicon was ALEPH 	�
� at
LEP� The barrel shaped detector was constructed out of �� faces deployed
in two layers
see Fig� �
�� Each face carried � detectors� each with an area
of ���cm�� The detectors had a strip pitch of ���m on both sides� The
read�out pitch was �
�m in the r � � and �

�m in the z�direction� The
intrinsic resolution was ���m and ���m� respectively� Again� the overall
performance of the detector was limited by multiple scattering� For muons�
residuals of �
�m in r�� and �
�m in z were achieved� A special chip� the
CAMEX�� 	��� was developed for the read�out�

All of the LEP detectors� as well as all �� detectors everywhere� were
eventually upgraded to have a large silicon vertex detector system� These
systems were a huge success� and established themselves very quickly as the
standard technology for vertexing� The �eld of b�physics was revolution�
ized� The improvement of the quality of B lifetime measurements can be
seen in Fig� �� 	���� It should be noted that the old measurements are all
systematically low� It looks like the systematic errors were underestimated�
The �rst group of measurements coming from LEP is a very tight cluster�
where every error bar overlaps with the old average� Only after really un�
derstanding their vertex detectors� did the LEP groups dare to measure a
longer B lifetime� Such historical developments are unfortunately not un�
common� However� any more along this line would belong in an entirely
di�erent lecture�

���� SELECTED EXAMPLES

The selected examples are in no way representative� They are rather extreme
cases where one particular choice of technology is pursued almost to the
limit� There are many other interesting and challenging systems in operation�
production� or in design� Just pick up any proposal or detector paper for a
LEP� B�factory� LHC� or a Tevatron detector�
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Figure ��� Schematic view of the �rst ALEPH vertex detector�

������ SLD

The SLD �Stanford Linear Detector� operates at the SLC �Stanford Linear
Collider� at the Stanford Linear Accelerator Center �SLAC�� SLD is designed
to operate at the Z� resonance� which determines its size� and at SLC� which
determines its overall timing� The SLC has a low� repetition rate of ���Hz�
As� in addition� the occupancy per beam crossing is very low and thus hits
from �	 beam crossings can be sorted out later� a CCD system that takes
more than ���ms to read out can be used� A full description of the SLD
vertex detector system can be found in Ref� ����� The 
rst complete system
called VXD� started to take data in early ����� and was a ��� Mpixel
device� Since ���	� the upgraded version� VXD�� a ��� Mpixel device� is in
use� Its point resolution is of the order of 
�m� The SLD vertex detector
upgrade�see Fig� ��� is similar to many other upgrades at 
� detectors�
for example� at LEP� The 
 detectors operating at LEP at CERN were
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Figure ��� Development of B lifetime measurements� Measurements without silicon
detectors dated before ���� are averaged separately� Silicon detectors signi�cantly reduced
the error bars�

also designed for Z� physics� All these detectors look very similar in design�

Some technical choices are di�erent� but the principle layers of the onion are

equivalent� All LEP detectors also have vertex detectors� tracking devices�

particle identi�cation devices� calorimeters and muon chambers� And the

�rst vertex detector built for all of them turned out to be too short� As many

interesting physics phenomena occur predominantly in forward�backward

direction� a large angular coverage� i�e�� a long barrel� is desirable� The

parameters achieved in the second version of a detector become often only

possible through the experience gathered while building the �rst detector�

The power of the SLD vertex detector is demonstrated in Fig� ��� Tracks

are shown as reconstructed with the central drift chamber� as well as with
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VXD 2 VXD 3�

Figure ��� Layout of the VXD� and VXD� SLD Vertex Detectors� VXD� is longer than
VXD�� thus increasing angular coverage� In addition� the placement of layers is improved�

Figure ��� Demonstration of the power of the SLD VXD� system� On the left are the
tracks as they penetrate the layers� On the right� a close up of the interaction region is
seen� The x�y projection is displayed� The top pictures show the tracks as reconstructed
with the central drift chamber� while the bottom ones depict them as reconstructed with
the help of the vertex detector�
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Figure ��� Event as seen by the VXD � detector�

Figure ��� Revealing secondary vertices� In both event hemispheres� the secondary
vertices can be seen clearly�
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Figure ��� Comparison of b�tag performance� The purity versus e�ciency for the SLD
VXD� detector is compared with results from VXD� and the � LEP detectors�

the improved track reconstruction after inclusion of the information from
the vertex detector �VXD��� Figure �� and Fig� �� show the x�y projection of
an event as seen by VXD	� The close�up in Fig� �� clearly reveals secondary
vertices�

The ability to identify secondary vertices opens up a wide 
eld of b�
quark physics� The events containing b�quarks are identi
ed�tagged� using
the visible decay length associated with B�mesons and b�baryons� All � LEP
detectors� as well as SLD� have widely explored that possibility� In the tag�
ging of b�quarks� it is also where SLD�s pixels pay o
� Figure �� gives
a comparison between di
erent LEP results and SLD ����� In all tagging
e
orts there is a trade�o
 between purity and e�ciency� As the c�quark
also has a signi
cant lifetime� any b�quark sample is threatened by c�quark
contamination� With its VXD	 detector� SLD achieves excellent purity for
up to almost ��� e�ciency� However� it should also be noted that SLD
has the additional advantage of small initial beam spots and a small dis�
tance���mm�� between the beam axis and the 
rst layer of CCDs� Good
b�tags translate into good results on measurements such as Rb and Rc� the
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fractions of Z decays into b� or c� quarks� respectively� Some comparisons
can be found in ���	�

The SLD vertex detector has the largest number of channels of any
high energy physics detector I know� 
�� million pixels have to be dealt
with� For the many technical details� such as mechanical support� cooling
and read�out� which are quite involved� please have a look at Ref� ��
	� It
is the only application of CCDs in a collider experiment� The detector was
operated very successfully� and helped SLD to overcome the disadvantage of
having lower statistics than the competing LEP experiments� CCDs are an
extremely attractive possibility for a vertex detector� if the experiment can
allow read�out times that are in the hundreds or perhaps tens of milliseconds�
and the radiation encountered is moderate�


����� HERA�B

The HERA�B detector is a forward spectrometer currently operating at
DESY in Hamburg� It is designed to study CP violation in B�meson decays�
The B�mesons are produced by proton interactions in wires placed within
the beam�pipe of the HERA proton ring� As at LEP� a silicon vertex detector
is used to identify the B�mesons through their visible decay lengths� which
at HERA�B are about �cm�

All particles are boosted into the extreme forward direction� Therefore�
the HERA�B vertex system takes the so�called 
Roman pot� design to an
extreme� Figure �� illustrates the idea� When a particle leaves the beam�pipe
at a small angle� it traverses a lot of material� The amount of matter tra�
versed is reduced by inserting pots into the beam�pipe� That also provides
a way to get closer to the beam axis� The HERA�B silicon detectors are
operated as close as �cm to the beam axis� Unfortunately� the HERA pro�
ton beam moves around during injection and acceleration� and therefore the
Roman pots have to be movable� The resulting mechanical system is quite
involved� A ���m long vessel carries the Roman pots and manipulators for

� silicon detector modules�see Fig� �� for a schematic and Fig� �� for a pic�
ture�� In order to further reduce the material in front of the silicon detectors�
the aluminum walls of the Roman pots are reduced to ����m� As ����m
thick aluminum cannot withstand atmospheric pressure� this requires a sec�
ondary vacuum inside the pots� The engineering of the modules themselves
is also not at all trivial� They have to �t into the very limited space inside
the pots and� due to the vacuum� they have to be cooled through their sup�
port structures� As the electronics produces much more heat than the silicon
detectors do� di�erent cooling paths for electronics and detectors have to be
provided� Everything has to be made out of carbon �ber and kapton because
the system is still limited by multiple scattering� The resulting construction
is depicted in Fig� 
�� A picture of a mounted module� ready to be inserted
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x/sin

x
beam-pipe

roman pots

for small angles

Figure ��� Schematics of a Roman pot� Particles produced at small angles � relative
to the beam axis have to traverse too much material to be tracked by normal detectors
placed outside of a beam�pipe� Roman pots are inserted into the aperture to circumvent
this problem�

into its pot� is shown in Fig� ��� Each module has two silicon detectors and
has more than ������ wire bonds� It costs about �������� The actual silicon
detectors� when purchased commercially make up about ��	 of that cost�
The total system cost is such that the silicon contributes only about ��	 to
the total� And it should be recognized thatthese silicon detectors are very
expensive and very complicated devices for mass production runs�

The silicon detectors for HERA
B are pushed to the limit in radiation
resistance� The expected dose at �cm distance to the beam axis is �� Mrad
per year� mainly caused by a �ux of � �������cm� minimum ionizing
particles� This is about the limit of what is feasible with current techno

logy� The signal to noise will be reduced to almost the limit of usability�
depending on the ability to reduce the leakage current through cooling
see
Sec� ����� It is not feasible to cool the silicon to optimum values� It is there

fore foreseen to replace the silicon every year� Even if it were possible to
cool the silicon to its optimum operational temperature of about 
���C� it
would not survive more than two years� as the full depletion voltage would
increase to unmanageable values� For more information check Ref� �����

������ Silicon Drift Detector in CERES

As mentioned before� all kinds of structures are possible on a silicon wafer�
It is also possible to construct a real drift detector� where the time of arrival
of the charge is used to measure one of the coordinates� Figure �� shows
a circular detector ���� constructed for the CERES�NA��� experiment at
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Figure ��� a� Schematic of the VDS vessel with the positions of the wire targets �T�
and the VDS super�layers �SL ����� b�c� Arrangement of the detectors around the beam
axis� The detectors are switched between positions b and c� so that the point of highest
irradiation 	black dots
 on the detector is changed regularly�

Figure ��� Picture of the HERA�B vertex vessel�
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Figure ��� Schematic of the HERA�B silicon vertex detector module� Two half�modules
are mounted together in one Roman pot�

Figure ��� Picture of a mounted module to be inserted into its Roman pot�

CERN� In this experiment� the beam passes through the hole in the middle

of the silicon detector� The radius and the angle � is measured for scattered

particles hitting the detector� The charge is pulled to the edge of the detector

by the �eld induced by ��	 circular �eld electrodes� The resolution in � is

given through �
	 signal anodes� The resolution in R is given by the drift
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Figure ��� Schematic of the silicon drift detector used in the CERES experiment�

time measurement� The nominal drift �eld is ��� Volts�cm resulting in a
maximum drift time of ��s� The resolution is less than ���m in R and
	� The special trick in the design are the sink anodes� Without them
 the
current would �ow into the signal anodes and cause too high a level of noise�

The big advantage of silicon drift detectors is that a relatively large area
can be covered with very few read�out channels� The big disadvantage is
that such a device is necessarily rather slow�

Very specialized designs
 such as the one presented here
 can be very
e
cient� However
 they don�t come cheap
 and can usually never be used
for anything else�

������ Silicon�Tungsten Calorimeters

Related to the historical �ux measurements are the modern calorimetric ap�
plications of silicon� Wherever there is little space and�or a lot of radiation

calorimeters made of dense materials
 with silicon as the active element
 can
be considered� The dense material is usually tungsten� The silicon detectors
usually feature pads� Such calorimeters are often used to measure the lumin�
osity of an electron ring by looking for electrons scattered at small angles�
Consequently
 they can be found for instance at LEP
SLC and HERA� The
standard geometry depicted in Fig� �� is only one possibility� Wedge shaped
objects forming rings
 and other more exotic constructions
 can be used�



��

Figure ��� Schematic of a standard silicon�tungsten calorimeter� Layers of tungsten and
silicon pad detectors form a sampling calorimeter�

�� Limitations of Silicon Detectors

���� BASIC PARAMETERS

������ Speed

The speed of silicon detectors will start to become an issue if event rates will
continue to rise� The speed depends on the drift �eld and thus on the bias
voltage� but� at normal operational parameters� electrons take about �ns
to traverse ����s� while holes need about �ns for the same distance� Thus�
	
ns is the minimum time needed when the p�side is read out� and the full
signal is required for a detector is that is ����m thick� In cases of very
low occupancy� several events can be read out together� Hits from di�erent
events are then separated through additiona
 information� This option has
rarely been used� but it should be looked into more often�

����	� Size

Many applications call for very large areas of silicon� Square�meters of sil�
icon are planned for LHC� and this trend will continue� Very often the
segmentation into small individual wafers causes problems� Basically� all
detectors today are manufactured from � inch ���cm� wafers� However� �
inch wafers have been used to produce detectors� and there is no physical
law preventing �� inch wafers� However� the over�all properties of a detector
can be ruined by a single defect� The probability for a defect is at least pro�
portional to the area of the device� It will be very di�cult to have a good
yield for very large detectors� and that will most likely result in forbidding
costs per cm��
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������ Resolution and Material Budget

As far as resolution is concerned� the limit is about ��m� That has been
achieved for strip detectors ���� and could be done with pixels� The corres	
ponding structures on the silicon are of the order �
�m� and pose no real
problem to good manufacturers� However� the actual resolution of a silicon
system is usually not limited by the intrinsic resolution of the detectors�
The main limitation of vertex detectors come from the material needed for
the beam pipe and the detector itself� This is why Roman pot systems�see
Fig� ��
 become increasingly popular� and some experiments try to use
thinner silicon detectors� Extremely important is the amount of material a
track has to traverse before its �rst hit can be recorded� The corresponding
contribution to the impact paramter resolution can be written as�

�ms � ����
MeV

c

�

p
D

s
X

X�

where p is the particle momentum� D the distance from the interaction
point� X�X� the fraction of a radiation length traversed� and ms is a re	
minder that multiple scattering is responsible� For somewhat normal values
like D ��
cm and p ��
��
�MeV�c� and a detector with �
�m intrinsic
resolution� multiple scattering starts to dominate at X�X� of 
�
��� That
translates into about �mm of aluminum�

Material pile	up is quite a problem� A typical system has more than
one layer� and following layers are a�ected by the �rst layers� Therefore� all
mechanical support structures� the read	out electronics close to the detect	
ors� and cooling devices� have to have as little material as possible� Many
designs start out being based on beryllium ��

�m � 
�
�� X�� and beryl	
lium oxide ��

�m � 
�
�� X��� However� both materials are di�cult to
handle and are very expensive� So most people use carbon �ber or graphite
support structures� Typical values for those are � 
��� X� for a thickness
of � �

�m� For a �

�m detector� the silicon itself adds 
��� X� In prin	
ciple� thinner detectors can be made� however� they are too fragile for mass
production� and thus cannot be used for large systems� In addition� the size
of the signal is proportional to the thickness of the detector� �

�m is usu	
ally a good choice� Generally� it can be argued that anything less than ��
of a radiation length per layer is very good�

���� RADIATION DAMAGE

������ Integral Dose

The amount of integral radiation a silicon detector can digest and still func	
tion is its serious limitation� As explained in Sec� ������ a detector can in
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principle function as long as it can hold the voltage necessary to fully de�
plete it� The well designed guard ring structures can certainly be made to
hold �kV or more� However� a single defect on the n�side can cause a single
strip to cause a break�through� Thus� perfect n�sides are needed in addi�
tion to good guard structures� Unfortunately� it is basically impossible to
conclusively test the n�sides before type inversion� There are indications for
n�side defects in the IV�curves�see Sec� ����	
� However� it is impossible to
predict whether and at what voltage the device will fail� However� we should
not forget that silicon detectors are by far the most radiation resistant de�
tectors we have in large�scale production right now� The current generation
of experiments expect to be able to use their silicon after a dose of up to
�� �����cm� minimum ionizing particles or ��Mrad�


����� Radiation Bursts

As explained in Sec� ������ radiation bursts can create pin�holes� The in�
ternal capacitors cannot be made to withstand signi�cantly more than ���V
without creating other problems� Thus� a detector will get destroyed if it
gets exposed to strong bursts creating voltage drops larger than ���V� The
system usually tolerates a couple of pin�holes� but at a certain point the
detector becomes unusable� It is necessary to control the environment such
that bursts do not become a habit�

���� COOLING

As mentioned before�see Sec� ������
� the current generated in the bulk of
a silicon detector at room temperature can be reduced by a factor of �
through cooling by 	�C� This is important after a detector is damaged by
irradiation and the increased leakage current reduces the signal to noise
ratio� Unfortunately� the geometrical and mechanical realities of a detector
system� as well as the heat produced by the read�out electronics� can limit
the ability to cool the silicon� The cooling capacity thus can limit the results
that can be achieved for the signal to noise ratio�

Cooling also suppresses anti�annealing�see Sec� �����
� That is bene�cial�
However� it also suppresses annealing� which is bad� Fortunately� the two
e�ects occur on di�erent time scales� days for annealing� months for anti�
annealing� Thus� it is useful to slightly warm up detectors from time to time
to let them anneal� and cool them down again before they can anti�anneal� It
is also useful to adjust the operation temperature such that annealing is not
totally suppressed� The optimum temperature turns out to be around ����C�
This is in many cases below the temperature achievable with a reasonable
and a�ordable technical e�ort�
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�� The Future of Silicon Detectors

���� SHORT�TERM FUTURE

Almost all of the next generation of experiments have a silicon detector
component� Some silicon systems are pure vertex detectors� where other
systems de�ne tracks� and hits in the silicon are attached to these tracks�
Others are trackers in their own right� They have many layers� and they
are used for stand�alone tracking� Many designs feature the classical strips�
some call for pads� and some for pixels� Some of the trackers will use several
square meters of silicon� and some vertex detectors will use the most re�ned
pieces of silicon ever made� Collider experiments generally want huge sil�
icon trackers� These many�layer designs are generally built because a drift
chamber could not operate in the environment at hand� Their resolution is
totally dominated by multiple scattering� and the silicon technology itself
can be rather crude�

A true vertex detector is used only when some other component already
�nds the tracks� and the information from the silicon is used only to re�ne
the track parameters� Such a detector is designed with minimal material and
optimized silicon detectors� The most delicate silicon detector designs can
be found in �xed�target applications� where a single detector can be placed
at a very special location�

Unfortunately� the design of many of the devices currently under con�
struction is not very well motivated� The systems are hybrids between track�
ers and vertex detectors� Quite often they are built before anybody had the
time to clearly specify what is needed or wanted� In some collaborations�
especially the very large ones� decisions may be more in�uenced by polit�
ical than by technical and physics considerations� This is not only true for
silicon detectors� but it is a clear trend in detector contruction that should
be reversed as soon as possible�

���� LONG�TERM FUTURE

DISCLAIMER�

Any prediction the author made in the past turned out to be wrong�

Silicon is actually not cheap� requires some expertise� and is not easy
to handle� Therefore� lots of people would like to replace it with something
else� However� there is no well developed something�technology at hand�
On top of this� all the technologies that are at the moment considered as
alternatives	see below
 are also expensive and di�cult� Therefore� I predict
that silicon detectors are going to stay� no matter what� Even in �
 years
they will have a wide range of applications in high energy physics� if there
will be high energy physics in �
 years�



��

The question remains whether a mode of operation can be found for
silicon detectors that allows their usage after radiation doses equivalent
to more than �����cm� minimum ionizing particles� Irradiated silicon at
nitrogen temperatures could be the way� At low temperatures� silicon itself
becomes an insulator with a small band�gap� The original defects in the
material are compensated by radiation defects� The resulting material is
something new� The research is ongoing 	�
� and we will have to see what
comes of it�

���� ALTERNATIVES

The �rst two of the following 
alternatives� are listed only because the
discussion about them resurfaces every time a silicon detector seems to be
too expensive or too di�cult� The other two technologies are not ready to
be used for the construction of a large device� However� they show some
promise�

������ GaAs

IThis was advertised as the technology of the future� As far as detectors
are concerned� it is now a technology of the past� It was supposed to be
radiation hard� However� that is only true for neutral irradiation� It is worse
than silicon under charged irradiation� Another draw�back of GaAs is that
the signal is small to start with� The average number of electron�hole pairs
is ���� for each ���� of a radiation length instead of 
���� Everything
considered� GaAs cannot any longer be counted as an alternative to silicon�

������ Scintillating Fibers

Scintillating �bers are used in tracking devices� for instance� in the D�
upgrade 	���� However� they cannot achieve the resolution wanted for vertex
detectors� They are also hard to read out� and they are not radiation hard�
So while they can be useful in a particular tracking device I do not consider
them an alternative to silicon�

������ Scintillating Capillaries

There is an impressive number of technological problems yet to be solved�
Most importantly� there is no clear scheme how to read them out e�ciently�
However� it might work one day�

������ Diamonds

The small size of the signal remains a problem� because the total thickness
of the substrate cannot contribute to it� However� the thickness of the layer
contributing is being constantly improved� There are still a number of tech�



��

nical problems to be solved before a large system can be designed� However�
diamond seems the most promising alternative at the moment �����

�� Conclusions

Silicon detectors are an extremely powerful� tool widely used in high energy
physics� Over the last ten years� they have become a standard piece of
equipment and they will continue to be so over the next ten years� I risk the
prediction that� as long as particles are tracked� there always will be a place
for silicon� At the moment� silicon detectors are the most radiation resistant
detectors that are available for large scale projects� That may remain so
for quite some time to come� Anybody designing a detector should study
diligently what requirements the vertex detector has to ful	ll� In order to
get the best possible detector� all choices have to be made carefully� That
is only possible when the requirements are known and clearly stated�
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