
Siddharth D’Souza, Davide Scola & Laura Newton

Applied Measurement and Control,
Rhine-Waal University of Applied Science - 11.07.17

Background

● Environmental Monitoring - LANUV visit

● Measure air quality

● Specifically NO
2

● Develop a small portable device

● Use knowledge from class

w
al

lp
ap

er
sa

fa
ri.

co
m

ht
tp

://
w

w
w

.b
m

vi
.d

e

Source: Government of Australia
2017, Bureau of Meteorology

The original
Stevenson Screen

The CANARY

L. Newton

● Protection from the
elements

● Stable and sturdy
● Ensure airflow
● Laser cut 6 mm plywood

Making the box

What’s inside?

Battery pack GPS Bee

LED Seeeduino board

Circuit board SD Card

The NO
2
 sensor

MiCS-2714

● Semiconductor Sensor
● Sensing layer: Meso-porous Silicon (PS)
● Sensing Resistance: 0.8 -20 k Ω
● NO2 Detection Range: 0.05- 10 ppm

Working of the Sensor Layer

● Molecules of NO2 act as
acceptors.

● Once adsorbed to PS, there
is an increase in carriers
(holes) leading to increase
in conductivity.

Connecting the Sensor

● Heating Layer
● Sensing Layer

Use of a pull-down resistor

● Pulls floating state down to GND
ww.learningaboutresistors.cm

Sensor response to NO2

● Standard resistance in air Ro is
measured under controlled
ambient conditions, i.e. synthetic
air at 23 ± 5°C and ≤5% RH.

● Sensitivity factor SR is defined as
RS at 0.25 ppm of NO2, divided by
RS in air.

Rs/Ro is a function of NO2 at 40% RH
and 25°C

The Seeeduino Code

GPS signal processing

State machine

NO
2
 signal processing

Blinker custom function

SD card management

#include <SoftwareSerial.h> //Include SoftwareSerial library for communication
SoftwareSerial GPS(6, 7); //Set pins 6 and 7 as RX and TX for the SoftwareSerial
char c; //Define variable - character
char buff[100]; //Define variable - character array
GPS.begin(9600); //Within the setup start the serial communication at a baud rate of 9600
void loop() {
 if (GPS.available()) //Check if serial communication is working {
 c = GPS.read(); //Read one character of the digital message being received
 if (c == '$') //Check if it is the “Start” character {
 GPS.readBytes(buff, 6); //Store the next 6 characters in an array
 if (buff[2] == 'R') //Check if it is the correct string {
 GPS.readBytes(buff, 99); //Store the next 99 characters in an array
 if ((char)buff[11] == 'A') //Check for valid signal {
 for (int i = 0; i < 99; i++) {
 if ((char)buff[i + 2] == '$') //Check for next line {
 break;
 }
 if (myFile) //Check if SD available{
 myFile.print(buff[i]); //Write message onto SD ...}...}...}...}...}...}...}

GPS signal processing

int power = 9; //Define pin variable
int NO2pin = A0; //Define pin variable
float NO2resistance; //Define variable - decimal value
int NO2seriesResistor = 22000; //Define variable - integer value
float NO2measure = 0; //Define variable - decimal value
pinMode(NO2pin, INPUT); //Within the setup set pin A0 as input
pinMode(power, OUTPUT); //Within the setup set pin 9 as output
digitalWrite(power, HIGH); //NO2 sensor ON

void loop() {
 if (GPS.available()) { [...]
 if ((char)buff[11] == 'A') //Check for valid GPS signal {
 if (myFile) //Check if SD available {
 int NO2rawInput = analogRead(NO2pin); //Read the voltage at pin A0
 NO2resistance = NO2seriesResistor * ((1023.0 / NO2rawInput) - 1.0); //Calculate
the resistance of the sensor
 NO2measure = NO2resistance / 100; //Make the result more user friendly
 myFile.print(','); //Write ‘,’ onto SD
 myFile.println(NO2measure); //Write value onto SD [...] }...}...}

NO
2
 signal processing

#include <SD.h> //Include SD library for communication
File myFile; //Define variable - file
void setup() {
 pinMode(4, OUTPUT); //Within the setup set pin 4 as output
 digitalWrite(4, LOW); //SD Card ON
 Serial.print("Load SD card..."); //Visual feedback
 if (!SD.begin(10)) //Check if SD card can be initialized {
 Serial.println("SD Card could not be initialized, or not found"); //Visual feedback
 return; }
 Serial.println("SD Card found and initialized."); //Visual feedback
 myFile = SD.open("GPSlog.CSV", FILE_WRITE); //Open/create a file on the SD card, start
writing }
void loop() {
 myFile.close(); //Close/save the file on the SD card
 delay(500); //Wait 0.5s
 myFile = SD.open("GPSlog.CSV", FILE_WRITE); //Open/create a file on the SD card, start
writing
 delay(500); //Wait 0.5s }

SD card management
Used to store data

#define READING 0 //Define constant value
#define CLOSED 1 //Define constant value
byte state; //Define variable - byte
byte times_wrote = 0; //Define variable - byte
 state = READING; //Within the setup set state as READING
void loop() {
 if (state == READING) //Check if the state is READING {
 if (times_wrote > 9) //Check if times_wrote is greater than 9 {
 state = CLOSED; //Set state as CLOSED
 times_wrote = 0; //Reset counter
 }
 if (GPS.available()) { [...]
 if ((char)buff[11] == 'A') //Check for valid GPS signal {

 //Write data onto the SD card
 Times_wrote++; //Increase counter by 1

 [...]}...}
 if (state == CLOSED) //Check if the state is CLOSED {
 //Save the file
 state = READING; //Set state as READING ...}...}

State machine

int LED = 8; //Define pin variable
pinMode(LED, OUTPUT); //Within the setup set pin 8 as output

void blinker (int duration, int npulse) //Define arguments {
 for (int i = 0; i < npulse; i++) {
 digitalWrite(LED, HIGH); //LED ON
 delay(duration / 2);
 digitalWrite(LED, LOW); //LED OFF
 delay(duration / 2);
 }
}
SD card not initialized successfully: blinker(6000, 2); 2 long
Waiting for GPS fix: blinker(125, 8); 8 short
Logging GPS + NO2 signal: blinker(1000, 1); 1 medium

Blinker custom function
Used to indicate when the system is working

Source:
batsocks.co.uk

L. Newton

The GPS Data: NMEA

Raw data in NMEA (National Marine
Electronics Association) form RMC - Recommended minimum

data for gps

● Latitude
● Longitude
● Time
● Date
● Speed
● Track angle

$GPGGA,064823.000,5129.9927,N,00632.7823,E,1,7,1.27,49.9,M,47.4,M,,*64
$GPGSA,A,3,12,19,13,15,17,24,18,,,,,,2.62,1.27,2.29*0D
$GPGSV,4,1,13,15,64,207,45,24,59,282,41,13,39,150,40,17,37,085,47*7F
$GPGSV,4,2,13,19,33,116,42,12,30,218,43,33,27,207,27,18,25,284,21*7F
$GPGSV,4,3,13,10,21,312,,28,20,050,,20,07,216,,01,03,031,19*7B
$GPGSV,4,4,13,11,02,018,*40
$GPRMC,064823.000,A,5129.9927,N,00632.7823,E,0.00,343.00,200617,,,A*60

$GPGGA,064824.000,5129.9927,N,00632.7823,E,1,7,1.27,49.9,M,47.4,M,,*63
$GPGSA,A,3,12,19,13,15,17,24,18,,,,,,2.62,1.27,2.29*0D
$GPGSV,4,1,13,15,64,207,45,24,59,282,41,13,39,150,40,17,37,085,47*7F
$GPGSV,4,2,13,19,33,116,42,12,30,218,43,33,27,207,26,18,25,284,21*7E
$GPGSV,4,3,13,10,21,312,,28,20,050,,20,07,216,,01,03,031,18*7A
$GPGSV,4,4,13,11,02,018,*40
$GPRMC,064824.000,A,5129.9927,N,00632.7823,E,0.00,343.00,200617,,,A*67

$GPRMC,064823.000,A,5129.9927,N,00632.7823,E,5.65,343.00,200617,,,A*60

RMC - Recommended
minimum data for gps

Time stamp

Latitude &
Longitude

Date stamp

Track angle

Speed

Interpreting the NMEA data

Checksum

GPS status
A=active V=void

The Python Parser
import csv //Include csv library to handle the files
originalfile = open('GPSlog.csv') //Define variable - file
csv_f = csv.reader(originalfile) //Read the csv file generated by the Seeeduino
temp_csv = [] //Define variable - array
newfile = open('GPSlogParsed.csv', 'w') //Create new file
wr = csv.writer(newfile) //Start writing on the new file
wr.writerow(["N","E","Measurement","Time","Date","Speed","Track Angle"]) //Write headers for values
for row in csv_f: //Open a loop to access every row in the original file once
 a = int(row[2][:2])+((float(row[2][2:]))/60) //Parse N coordinate - conversion to degrees
 a2 = "{:.8f}".format(a) //Convert N coordinate to a string up to the 8th decimal
 b = int(row[4][:3])+((float(row[4][3:]))/60)//Parse E coordinate - conversion to degrees
 b2 = "{:.8f}".format(b) //Convert E coordinate to a string up to the 8th decimal
 c = row[0][:2]+":"+row[0][2:4]+":"+row[0][4:] //Reformat time
 d = row[8][:2]+"/"+row[8][2:4]+"/"+row[8][4:] //Reformat date
 e = row[12] //Parse NO2 measurement
 f = row[6] //Parse speed
 g = row[7] //Parse track angle
 temp_csv.append(a2) //Add N coordinate to last slot of array
 temp_csv.append(b2) //Add E coordinate to last slot of array
 temp_csv.append(e) //Add NO2 measurement to last slot of array
 temp_csv.append(c[:8]) //Add first 8 characters of time to last slot of array
 temp_csv.append(d) //Add date to last slot of array
 temp_csv.append(f) //Add speed to last slot of array
 temp_csv.append(g) //Add track angle to last slot of array
 wr.writerow(temp_csv) //Insert the array as a new row in the new csv file
 temp_csv = [] //Clear the array
newfile.close() //Close the new csv file
originalfile.close() //Close the csv file generated by the Seeeduino

Input:

163709.000,A,5129.9548,N,00632.7603,E,2.40,44.88,070717,,,A*5C,167.37

Output:

N,E,Measurement,Time,Date,Speed,Track Angle

51.49924667,6.546005,167.37,16:37:09,07/07/17,2.40,44.88

The Result

Testing our idea!!!
20 minute bike ride
through a residential
areas as well heavily

trafficked areas

Source: D’Souza

Visual representation of the data collected

Source: qgis.org

Source: QGIS, D’Souza, Newton, Scola

The Result

Spikes due to cars passing by
on heavily trafficked road
(Friedrich-Heinrich Allee)

Lower values in residential
areas with low traffic

(park and around Pappelsee)

Lichens as natural air quality sensors

Close to the road 100m from the road

● Lichens that are
dust resistant &
nitrogen-loving
tend to grow

● Sparse growth

● Dry and brittle

● More dense
growth pattern

● More varieties of
lichens

● “Furry” growth
indicating good
air quality

Reliability of our relative measurements

Data measured by
our sensor in
Kamp-Lintfort on
the 7th of July

Data measured by
LANUV in Moers on
the 7th of July8:30 12:30 22:30

And because we want the CANARY to live on..

https://www.instructables.com/id/The-CANARY-Arduino-Based-NO2-Sensor-and-Mapper/

https://www.instructables.com/id/The-CANARY-Arduino-Based-NO2-Sensor-and-Mapper/
https://www.instructables.com/id/The-CANARY-Arduino-Based-NO2-Sensor-and-Mapper/
https://www.instructables.com/id/The-CANARY-Arduino-Based-NO2-Sensor-and-Mapper/

References

● https://www.qgis.org/it/site/forusers/visualchangelog218/index.html
● http://www.bom.gov.au/climate/cdo/about/airtemp-measure.shtml
● http://www.batsocks.co.uk/img/XMega/LED_blink_320.gif
● Very sensitive porous silicon NO2 sensor, L. Pancheri et al.
● https://www.sgxsensortech.com/content/uploads/2014/08/1107_Datasheet-MiCS

-2714.pdf

https://www.qgis.org/it/site/forusers/visualchangelog218/index.html
https://www.qgis.org/it/site/forusers/visualchangelog218/index.html
http://www.bom.gov.au/climate/cdo/about/airtemp-measure.shtml
http://www.bom.gov.au/climate/cdo/about/airtemp-measure.shtml
http://www.batsocks.co.uk/img/XMega/LED_blink_320.gif
http://www.batsocks.co.uk/img/XMega/LED_blink_320.gif
https://www.sgxsensortech.com/content/uploads/2014/08/1107_Datasheet-MiCS-2714.pdf
https://www.sgxsensortech.com/content/uploads/2014/08/1107_Datasheet-MiCS-2714.pdf
https://www.sgxsensortech.com/content/uploads/2014/08/1107_Datasheet-MiCS-2714.pdf

