
//Get off your butt timer using LEDs and ATtiny 45

//Created by: Jonathan Bush

//Last Updated: 4/19/2017

//Schematic description:

//Reset button tied to pin 1 (reset) and pulled high. Reset when pin 1 sees low.

//Acknowledge/activity button tied to pin 2 (digital 3) and pulled high.

//Pin 4 (gnd) tied to GND

//Stand up LED tied to pin 6 (digital 1)

//Walk LED tied to pin 7 (digital 2)

//Pin 8 (Vcc) tied to 5v

#define WALK_LED 2 //Pin controlling LED behind the walking guy

#define STAND_LED 1 //Pin controlling LED behind the up arrow

#define BUTTON 3 //Pin reading acknowledge/activity button

#define BTN_DELAY 250 //To be used in our program to "debounce" the cheap buttons

int BTN_PRESSED = 0; //Define that the button is not initially pressed

unsigned long mark; //to track when button last pushed

unsigned long ONE_HOUR = 3600000; //one hour equals 1000 * 60 * 60 milliseconds

void setup(){

 pinMode(BUTTON, INPUT); //Define pin as an input

 pinMode(STAND_LED, OUTPUT); //Define pin as an output

 pinMode(WALK_LED, OUTPUT); //Define pin as an output

 //This for loop flashes the Stand/Walk LED back and forth to provide feedback that

the program has started over

 //Handy confirmation that the pressing the reset button was successful or that you

have power when initially plugged in

 for(int i=0;i<3;i++){

 digitalWrite(STAND_LED, HIGH);

 digitalWrite(WALK_LED, LOW);

 delay(500);

 digitalWrite(STAND_LED, LOW);

 digitalWrite(WALK_LED, HIGH);

 delay(500);

 }

 digitalWrite(STAND_LED, LOW); //turn both LEDs off before main part of code runs

 digitalWrite(WALK_LED, LOW);

}

void loop(){ //where all the super simplistic magic happens

 chkBtn(digitalRead(BUTTON)); //check to see if button is pressed every loop by

running this code

 //If it has been more than one hour since you walked, get up and walk around

 if((millis()-mark)> ONE_HOUR){ //calculation to see if it has ben greater than one

hour

 digitalWrite(WALK_LED,HIGH);

 }else{

 digitalWrite(WALK_LED,LOW);

 }

 //Stand after one hour, stand for one hour then sit for two, repeat all day.

 if(millis()>ONE_HOUR && millis()<(ONE_HOUR * 2)){

 digitalWrite(STAND_LED,HIGH);

 }else if(millis()>(ONE_HOUR * 4) && millis() < (ONE_HOUR *5)){

 digitalWrite(STAND_LED,HIGH);

 }else if(millis()>(ONE_HOUR * 7) && millis() < (ONE_HOUR *8)){

 digitalWrite(STAND_LED,HIGH);

 }else if(millis()>(ONE_HOUR * 10) && millis() < (ONE_HOUR *11)){

 digitalWrite(STAND_LED,HIGH);

 }else if(millis()>(ONE_HOUR * 13) && millis() < (ONE_HOUR *14)){

 digitalWrite(STAND_LED,HIGH);

 }else if(millis()>(ONE_HOUR * 16) && millis() < (ONE_HOUR *17)){

 digitalWrite(STAND_LED,HIGH);

 }else{

 digitalWrite(STAND_LED,LOW);

 }

}

boolean chkBtn(int buttonState) { //

 if (buttonState == LOW && (millis() - mark) > BTN_DELAY) { //check to see if

button has been pressed and that it is longer than delay to get rid of bouncing.

 mark = millis(); //set mark equal to current value of millis

 BTN_PRESSED = 1; //not needed, remnant from prior code I pulled this from.

 return true; //not needed, remnant from prior code I pulled this from.

 }

 else { return false; } //not needed, remnant from prior code I pulled this from.

}

