HP Instrument BASIC
Users Handbook
Version 2.0

[cacicaro

HP Part No. E2083-50005
Printed in USA

Notice
The information contained in this document is subject to change without notice.

Hewlett-Packard Company (HP) shall not be liable for any errors contained in this document.
HP MAKES NO WARRANTIES OF ANY KIND WITH REGARD TO THIS BOCUMENT,
WHETHER EXPRESS OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPGSE. HP shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory, in connection with the
furnishing of this document or the use of the information in this document.

Warranty Information

A copy of the specific warranty terms applicable to your Hewlett-Packard product and
replacement parts can be obtained from your local Sales and Service Office.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to restrictions as set forth
in subparagraph (¢)(1)(i1) of the Rights in Technical Data and Computer Software clause of
DFARS 252.227-7013.

Use of this manual and magnetic media supplied for this produact are restricted. Additional
copies of the software can be made for security and backup purposes only. Resale of the
software in its present form or with alterations is expressly prohibited.

MS-DOS is a U.S. registered trademark of Microsoft Corporation.

© Copyright 1992 Hewlett-Packard Company. All rights reserved.

Printing History

This is the latest edition of the HP Instrument BASIC Users Handbook as of August 1992.
Changes in this manual include an expanded Language Reference section.

August 1992 - First Edition

Handbook Organization

Welcome

This manuval will introduce you to the HP Instrument BASIC programming language, provide
some helpful hints on getting the most use from it, and provide a general programming
reference. It is divided into three books, HP Insirument BASIC Programming Techniques, HP
Instrument BASIC Interfacing Techniques, and HP Instrument BASIC Language Reference.
The first two books provide some introductory material on programming and interfacing.
However, if you have no programming knowledge, vou might find it helpful to study a
beginning-level programming book.

This manual assumes that you are familiar with the operation of HP Instrument BASIC’s
front-panel interface or keyboard and have read or reviewed the manual that describes the
operation of HP Instrument BASIC with vour specific instrement,

HP Instrument BASIC is implemented ag an “embedded controlier”—that is; a computer
residing inside an instrument. Hence, all references in this manual to the “computer” also
refer to IIP Instrument BASIC installed in an instrument.

What’s In This Handbook?

HP Instrument BASIC Programming Technigues contains explanations and programming
hints organized by concepts and topics. 1% is not a complete keyword reference. Instead it
covers programming concepts, showing how to use the HP Instrument BASIC language.

For explanations and hints regarding interfacing, see the HFP Instrument BASIC Interfacing
Techniques book.

HP Instrument BASIC Language Reference contains a detailed keyword reference.

Handbook Organization 1

For HP BASIC Programmers

Many programmers already familiar with HP Series 200/300 BASIC will want to use the HP
Instrument BASIC manual set to look up keywords and find specifics about the way HP
Instrument BASIC is implemented. If this is your situation, you may want to refer to the
following instrument-specific manuals and sections as needed:

- m The graphics section of your instrument-specific manual for information on using the display
for graphics and text program output.

e Your instrument-specific manuval to learn how HP Insirument BASIC interfaces with the
host device, (if using an embedded controller) and its external HP-IB port.

w Your instrument-specific manual for a description of how to transfer data between external
and internal programs, how to upload and download programs and how to conirol HP
Instrument BASIC programs from an external controller.

§ “Keyword Guide to Porting” at the end of HP Instrument BASIC Programming Technigues
for a quick determination of what commands are implemented and how they relate to recent
versions of the corresponding HP Series 200/300 BASIC command.

Most importantly, vou will find a complete command reference and a list of error messages in
the HP Instrument BASIC Language Reference. 1f yvou need to refresh your memory on any
other topics, consult the manuals on programming and interfacing techniques as needed.

2 Handbook Organization

HP Instrument BASIC
Programming Techniques

A cackarc

Printed in USA August 1992

(© Copyright 1992 Hewlett-Packard Company. All rights reserved.

Contents

1. Manual Organization
Welcome . . . e e e e e
What’s In This Mar;ual e e e e e
Overview of Chapters -
What’s Not in this Manual

2. ?rogram Structure and Flow

Halting Program Executmn
The END Statement
The STOP Statement
The PAUSE Statement

Simple Branching .

Using GOTO .
Using GOSUB
Selection . . .

Conditional Exec u‘f]on of One Segment
Prohibited Statements
Conditional Branching e e
Multiple-Line Counditional Segments

Choosing One of Two Segments . . .

Choosing One of Many Segments

Repetition

Fixed Number of Itemmons Ce e

Conditional Number of Iterations . .

Arhitrary Exit Points

Event-Initiated Branching

Types of Events

Deactivating Fvents .

Disabling Events

Chaining Programs
Using GET
Example of Chaining w:lth GET

Program-to-Program Communications . .

....... Coe e 1-1
....... e 1-1
....... e 1-1

1-2

..... G 2-10
2-10

C e e e 2-11
,,,,, e 2-11
......... 2-12
......... 2-12

Contents-1

3. Numeric Computation
Numeric Data Types o . oL 3-1
INTEGER Data Type o 3-1
REAL Data Type o Lo 3-1

Declaring Variables 3-1
Assigning Variables L Lo Lo 3-2
Implicit Type Conversions 3-2
Evaluating Scalar Expressions 3-3
The Hierarchy 3-3
Operators oo e e e e e e 3-5
Expressions as Pass Parameters L. 3-5
Strings in Numeric Expressiozzs e e e e e 3-6
Step Fanciions . . . e e e e e e e e e e e e e e 3-6
Comparing REAL l\umbcr&, G e e e e e 3-6
Resident Numerical Funections 3-7
Arithmetic Fanctions L L. Lo 3-7
Exponential Fenctions L. 3-7
Trigonometric Functions . . . e e e e e 3-8
Trigonometric Modes: Derfrce,s and Ra.cilans C e e e e e 3-8
Binary Functions 0 o 0 L o o e oo 3-8
Limit Functions oL L oo 3-9
Rounding Functions o . Lo 3-9
Random Number Function 3-9
Time and Date Functions 3-9
Base Conversion Funetions L. 3-10
General Functions oL . Lo oo 3-10

4, Numeric Arrays

Dimensioning an Array oo o 00 4-1
Some Examples of Arrays oL 4-2
Preblems with Implicit Dimensionding 4-4

Finding Out the Dimensions of an Array 4-4

Using Individual Array Elements 4-5
Agsigning an Individual Array Flement L. 4-5
Extracting Single Valwes From Arrays 4-5

Filling Arrays . . . C e e e e 4-5
Assigning FEvery EJPmem in an Az"z”a*v %he Same Vaéue Ce e e e e 4-5

Using the READ Statement to Fill an Entire Array 4-6
Copying Entire Arrays into Other Arrays 4-6
Printing Arrays Lo oo 4-7
Printing an Entire Array B e e e e e e 4-7
Examples of Formatting Arrays for 3)1*3;)[e e e e e 4-7
Passing Entire Arrays oL Lo 4-9
Copying Subarrays L . L . ..o 4-9
Subarray Specifier e e e e e e e e e 4-9
Copying an Array into a buba;rmy e e e e e e e e 4-11

Copying a Subarray info an Array 4-11
Copying a Subarray into Another Subarray 4-12
Copying a Portion of an Arrayinto Itself 4-13
Rules for Copying Subarrays 4-14
Redimensioning Arrays L . oL oo 4-14

Contents-2

5. String Manipulation

String Storage L L Lo Ce e 5-2
String Arrays L L L. e e e e 5-2
Evaluating Expressions C(mtammg Strings Ce e a-3
Evaluation Hierarchy 5-3
String Concatenation Ce e 5-3
Relational Operations Ce e 5-3
Substrings . . e . e e e Ce e h-4
Single- Subsgnpt Sui)sirmgs e e e e e 5-4
Double-Sebscript Substrings L L L. Ce e 5-5
Special Considerations L . . . Lo 5-6
String-Related Fanctions, e 5-6
Current String Length, Ce e 5-6
Substring Position L. e e e e Ce e 56
String-to-Numeric Conversion e 5-7
Numeric-to-String Conversion e e e e e 57
String Funetions e e e e 57
String Reverse Lo oL 5-8
String Repeat00 o 0oL o Coe 5-8
Trimming a String e e e e e Coe e 5-8
Case Conversion e e e e e Co 5-8
Number-Base Conversion C e e e e e e e e Co 5-9
6. Subprograms and User-Defined Functions

Benefits of Subprograms oL L0 Ce e 6-1
A Closer Look at Subprograms Ce 6-1
Calling and Executing a Subprogram . . . C e e S 6-1
Differences Between Subprograms and Su’broutmc,s 6-2
Suebprogram Location . . . e e e e e 6-2
Subprogram and User-Defined anctjon N&meb C e e e e e e 6-2
Difference Between a User-Defined Function and a Subprogram 6-2
RFEAL Precision Functions and String Functions 6-3
Program/Subprogram Communication C e e 6-4
Parameter Lists C e e e e e e e e 6-4
Formal Parameter Lists e e 6-4
Pass Parameter Lists e e e e e 6-5
Passing By Value vs. Passing By Reference e e G 6-5
Example Pass and Corresponding Formal Parameter Lists 6-6
COM Blocks . . . e e e e e 6-7
COM vs. Pass Para,metezb e e e e e e e 6-7
Hints for Using COM Blocks 6-8
Context Switching e e e e Coe 6-9
Variable Initialization 6-10
Subprograms and Softkeys . . . C e e e e e 6-10
Subprograms and the RECOVER Statem(,nt C e e e e e, - 6-10
Editing Subprograms o Lo oL L. .o 6-10
Inserting Subprograms C e e 6-10
Loading Subprograms . . . B, e e 6-11
Loading Subprograms One at a Tune C e e e e C e e 6-11
Loading Several Subprograms at Once Coe e 6-11
Loading Subprograms Prior to Execution C e e 6-12

Contents-3

Deleting Subprograms
Merging Subprograms
SUBEND and FNEND

Recursion

Data Storage and Retrieval

Storing Data in Programs

Storing Data in Variables

Data Input by the User . .

Using DATA and READ btatoments
Examples e
Storage and Retrieval of Arrays e e e e e
Moving the Data Pointer

File Input and Output (I/0)

Brief Comparison of Available File Types P

Creating Data Files

Overview of File I/O Ce e

A Closer Look at General File Access
Opening an /O Path
Assigning Attributes o . . . oL L.
Closing I/0 Paths . . . e e e

A Closer Look at Using ASCII F;les

Example of ASCII File I/O

Data Representations in ASCII Files

Formatted OUTPUT with ASCII Files .
Using VALY

Formatted ENTER with ASCII Files . .

A Closer Look at BDAT and HP-UX or DOS Fﬁes

Data Representations Available

Random vs. Serial Access . . . Coe

Data Representations Used in BDAT F z]es R
BDAT Internal Representations (FORMAT OFF)
ASCII and Custom Data Re;)resenéauons .

Data Representations with HP-UX and DOS Files

BDAT File System Sector

Defined Records o .
Specifying Record Size (B DAT Files Only) . . .
Choosing a Record Length {BDAT Files Only)

Writing Data to BDAT, HP-UX and DOS Files

Sequential {Serial) OUTPUT
Random QUTPUT
Reading Data from BDAT, HP-UX and DOS Fﬂes

Reading String Data from a File

Serial ENTER C e e e e e

Random ENTER Ce e
Accessing Files with Single-Byte Records C e
Accessing Directories C e e e
Sending Catalogs to External Printers

Contents-4

...........

...........

.......

.....

.......

.......

........

...........

...........

6-12
6-12
6-13
6-13

-
;

Tt
S

P

P IR T T SR P 1
T TR

o |

—\1—\3‘?}%]
W00 OO 1 O OO B L L

-
et
o]

711
7-11
7-12
7-13
7-15
7-15
7-16
7-16
7-16
7-16
7-17
7-18
7-18
7-19
7-19
719
7-20
7-21
7-22
7-22
7-23
7-23
7-23
7-24
7-25
7-26
7-26

8. Using a Printer

Selecting the System Printer o, e e 81
Device Selectors . . . e e Ce e 8-1
Using Device Selectors to Select sztors e Ce e e -2

Using Control Characters and Fscape Sequences 8-2
Control Charaeters 8-2
Escape-Code Sequences C e e e e 8-3

Formatted Printing Coe e 8-3
Using Images . . . e e e e e e e C e e e 8-4

Numeric Image Spemﬁe;s e e e e C e e e 8-5
String Image Specifiers L. 8-6
Additional Image Specifiers oL L. R-7

Special Considerations e e 3-8

9. Handling Errors

Anticipating Operator Errors00 9-1
Boundary Conditions C e e 9-1
Trapping Errors e e e e e e 9-2
ON/OFF ERROR [9-2
Choosing a Branch Type e e e e e e Coe e 9-2

ON ERROR Execution at Run- j“}me e e e C e e e 9-2

ON ERROR Priority . . e e e C e 9-2
Disabling Error Trapping (OE}? E]{ROR} C e e 9-3
ERRN, ERRLN, ERRL, ERRDS, ERRMS$ Ce e e 9-3
ON ERROR GOSEEB e e e e e Ce 9-4
ON ERROR GOTO Coe e 9-4
ON ERROR CALL o oo 9-5
Using FRRLN and ERRL in Subpmgmms 9-5

ON ERROR RECOVER Ce e 9-6

168. Keyword Guide to Porting

Index

Contents-5

Manual Organization

Welcome

This purpose of this manual is to introduce you to the HP Instrument BASIC programming
language and to provide some helpful hints on getting the most use from it. This manual
assumes that you are familiar with the operation of HP Instrument BASIC’s front-panel
interface or keyboard and have read or reviewed the manuval that came with vour instrument
that describes operation of HP Iustrument BASIC with your specific instrument. Most topics
concerning running, recording, loading, saving and debugging programs are covered there.

This manual serves as a general language reference and programming tutorial for those with
a rudimentary knowledge of programming in BASIC or another language. If you have no
programming knowledge, you may find it helpful to study a beginning level programming
book. However, some beginners may find that they are able to start in this manual by
concentrating on the fundamentals presented in the first few chapters.

If you are a programming expert or are already familiar with the BASIC language of other HP
computers, you may start faster by going directly to the HP Insirument BASIC Language
Reference and checking the keywords you normally use.

HP Instrument BASIC is implemented as an “embedded controller”—that is, a computer
residing inside an instrument. Hence, all references in this manual to the “computer” also
refer to HP Instrument BASIC instalied in an instrument.

What’s In This Manual

This manual contains explanations and programming hints organized by concepts and topics.
It is not an exhaustive keyword reference. Instead it covers programming concepts, showing
how to use the HP Instrument BASIC language. HP Instrument BASIC Language Reference
contains a detailed keyword reference. For explanations and hints regarding interfacing, see
the HP Instrument BASIC Inierfacing Techniques book.

The following section gives an overview of the chapters in this manual.

Overview of Chapters

Chapter Topics

Chapter 2: Program This chapter describes program flow and how to control it.
Structure and Flow

Chapter 3: Numeric This chapter covers mathemastical operations and the use of
Computation numeric variables.

Chapter 4: Numeric Arrays This chapter covers numeric array operations.

Manual Organization 1-1

Chapter 5: String
Manipulation

Chapter 6: Subprograms and
User-Defined Punctions

Chapter 7: Data Storage and
Retrieval

Chapter 8: Using a Printer
Chapter 9: Handling Errors

Chapter 10: Keyword Guide
to Porting

What’s Not in this Manual

This chapter explaing the techniques used for the processing of
characters, words, and text in vour program.

This chapter describes using alternate contexts (or
environments}, available as user-defined functions or
subprograms.

This chapter shows many of the alternatives available for
storing the data that is intended as program input or created
as program output.

This chapter tells how {0 use an external prinier, and how to
use formatted printing for both printer and CRT output.

This chapter discusses techniques for intercepting errors that
might occur while a program is running.

This chapter summarizes the HP Instrument BASIC kevwords
by categories, with differences between HP Instrument BASIC
and HP Series 200/300 BASIC.

This is a manual of programming techniques, helpful hints, and explanations of capabilities.

It is not a rigorous tutorial of the HP Instrument BASIC language. Any statements

appropriate to the topic being discussed are included in each chapter, whether they have
been previously introduced or not. Since most users will not read this manual from cover to
cover, the approach chosen should not present any significant problems. In cases where you
have difficulty getting the meaning of certain items from context, consult the Index to find

additional information.

1-2 Manual Organization

Program Structure and Flow

There are four general categories of program flow. These are:
®m Sequence

m Selection (conditional execution)

m Repetition

m Event-Initiated Branching

This chapter tells you how to use these types of program flow.

Sequence

The simplest form of sequence is linear flow. Linear flow allows many program lines
to be grouped together to perform a specific task in a predictable manner. Keep these
characteristics of linear flow in mind:

s Linear flow involves no decision making. Unless there is an error condition, the program
lines will always be executed in exactly the same order.

» Linear flow is the default mode of program execution. Unless you include a statement that
stops or alters program flow, the computer will always execute the next higher-numbered
line after finishing the line it is on.

Halting Program Execution
There are three statements that can halt program flow: END, STOP, and PAUSE.

The END Siatement

The primary purpose of the END statement is to mark the end of the main program. When
an END statement is executed, program flow stops and the program moves info the stopped
{non-continuable) state.

The STOP Statement

The STOP statement acts like an END statement in that it stops program flow. You can use
a STOP statement to halt program flow at some point other than the end of the program.
When a STOP statement is executed, program flow stops and the program moves into the
stopped (non-continuable) state.

Program Structure and Flow 2-1

The PAUSE Statement

Use the PAUSE statement to temporariy halt program execution, leaving the program
variables intact. Execution halts until instructed to continue by the operator.

Following is an example of the use of PAUSE:

160 Radigs=5

110 Circam=Pl*2+*Radius
120 PRINT IAT(Circum)
130 PAUSE

140 Arvea~PI#Radius”2
180 PRINT INT(Area)
160 END

When the program runs, the computer prints 31 on the CRT. Then when you continue, the
computer prints 78 on the CRT. One common use for the PAUSE statement is in program
troubleshooting and debugging. Another use for PAUSE is to allow time for the computer
user to read messages or follow instructions.

Simple Branching

An alternative to linear flow is branching. Branching is simply a redirection of sequential flow.
The simplest form of branching uses the statements GOTO and GOSUB. Both statements
cause an uncouditional branch to a specified location in a program.

Using GOTO

The GOTO statement causes the program to hranch to either a line number or the line label.
Ioliowing are examples of the GOTO statement:

30 REM GOTO branchez here
109 GGTOD 30
150 GOTO Label xyz

300 Label xyz:...

Using GOSUB

The GOSUB statement transfers program execution to a subroutine. A subroutine is simply a
segment of a program that is entered with a GOSUB and exited with a RETURN. There are
no parameters passed and no local variables are allowed in the subroutine.

The GOSUB is very useful in structuring and controlling programs. It is similar to a
procedure call in that program flow automatically returns to the line following the GOSUB
statement. The GOSUR statement can specify either the line label or the line number of the
desired subroutine entry point. The following are examples of GOSUB statements:

2-2 Program Structure and Flow

100 GOSUB 1000
200 GOSUB Label_abc

1000 REM subroutine begins here
1010 Label_abc:

1540 RETURH

Remember that each time a subroutine is called by a GOSUB, control returns to the line
immediately following the GOSUB when the RETURN is encountered in the subroutine. Note
that if you omit the RETURN statement in a subroutine the program will continue executing
beyond the point at which vou expected it to return, until it encounters another RETURN or
one of the halting statements (PAUSE, STOP, or END).

Selection

The heart of a computer’s decision-making power is the category of program flow called
selection, or conditional execution. As the name implies, a certain segment of the program
either is or is not executed according to the results of a test or condition. This section
presents the conditional-execution statements according to various applications. The followin
is a summary of these groupings.

wm Conditional execution of one segment.
m Conditionally choosing one of two segments.

m Conditionally choosing one of many segments.

Conditional Execution of One Segment

'The basic decision to execute or not execute a program segment is made by the [F ... THEN

statement. This statement includes a numeric expression that is evalnated as being either true
or false. I true (non-zero), the conditional segment is executed. If false {zero), the conditional
segment is bypassed. Note that any valid numeric expression is allowed for the test expression.

The conditional segment can be either a single HP Instrument BASIC statement or a program
segment containing any number of statements. The first example shows conditional execution
of a single statement.

100 IF Ph>7.7 THEN PRINT "Ph Value has been exceeded!”

Notice the test (Ph>7.7) and the conditional statement (Print “Ph Value ... ”) that appear
on either side of the keyword THEN. When the computer executes this program line, it
evaluates the expression Ph>7.7. If the value contained in the variable Ph is 7.7 or less, the
expression evaluates to 0 (false), and the lire is exited. If the value contained in the variable
Ph is greater than 7.7, the expression evaluates as 1 (true), and the PRINT statement is
executed.

Program Structure and Flow 2-3

Prohibited Statements

Certain statements are not allowed as the conditional statement in a single-line 1¥ ... THEN.
The following statements are not allowed in a single-line II" ... THEN.

Keywords used in the declaration of variables:

COM DIM INTEGER REAL

Keywords that define context boundaries:

DEF FN FNEND SUB SUBEND END

Keywords that define program structures:

CASE END LOOP FOR REPEAT
CASE ELSE END SELECT IF SELECT
ELSE END WHILE LOOP UNTIL
END IF EXIT IF NEXT WHILE

Keywords used to identify lines that are literals:

DATA REM

Conditional Branching

Powerful control structures can be developed by using branching statements in an
IF ... THEN. For example:

110 IF Free_space<10¢ THEN GOSUB Exzpand file
120 ! The line after is always executed

This statement checks the value of a variable called Free_space, and executes a file-expansion
subroutine if the value tested is not large enough. One important feature of this structure

is that the program flow is essentially linear, except for the conditional “side trip” to a
subroutine and back.

The conditional GOTO is such a commonly used technigue that the computer allows a special
case of syntax to specify it. Assuming that line number 200 is Iabeled “Start”, the following
staternents will all cause a branch to Hne 200 if X is equal to 3.

TF X=3 THEY GOTG 200

I¥ X=3 THEN GOTG Start

IF ¥=3 THENW 200
IF X=3 THEN Start

When a line number or line label is specified immediately after THEN, the computer assumes
a GOTO statement for that line. This improves the readability of programs.
Multiple-Line Conditional Segments

If the conditional program segment requires more than one statement, a slightly different
structure is used. For example:

2-4 Program Structure and Flow

100 IF Ph>7.7 THEW

110 PRINT "The walue of Ph has been exceededg!”
120 PRINT "Final Ph =";Ph

136 GOSUB Hext_tube

140 END IF

150 ! Program continues here

If Ph is less than or equal to 7.7 the program skins all of the stafements between the
IF.THEN and the END IF statements and continues with the line following the END IF

- statement. If Ph is greater than 7.7, the computer executes the three statements between the
IF ... THEN and END IF statements. Program flow then continues at line 150. Any number
of program lines can be placed between a THEN and an END IF statement including other
IF.END IT statements. Including other IF. END I} statements is called nesting or nested
constructs. For example:

1000 IF Flag THENW
1010 IF End_of_page THEE

1020 FOR T=1 T8 Skip_length
1030 PRINT

1040 Lines=Lines+1

1050 HEXT I

1060 END IF

1070 ERD IF

Choosing One of Two Segments

Often you want a program flow that passes through only one of two paths depending upon a
condition. This type of decision is shown in the following diagram:

I

| 400 IF Flag THEN -
I
!

410 R=R+2 |
420 Area=PI*R~2 |
~== 430 ELSE L
! 440 Width=Width+1 I
| 450 Length=Length+l |
| 480 Area=Width*Length |
| 470 EED IF I
-=> 480 Primt "Area =";Area
| 490 ¢ Program continues
b v

HP Ipstrument BASIC has an IF ... THEN ... ELSE structure that makes the one-of-fwo
choice easy and readabie.

Choosing One of Many Segments

The SELECT ... END SELECT is similar to the IF ... THEN ... ELSE ... END IF
construct, but allows the definition of several conditional program segments. Only one
segment executes each time the construct is entered. Each segment starts after a CASE or
CASE ELSE statement, and ends when the next program line is a CASE, CASE ELSE, or
END SELECT statement.

Consider for example, the processing of readings from a voltmeter. Readings have been
entered that contain a function code. These function codes identify the type of reading and
are shown in the following table:

Program Structure and Flow 2-5

Function Code Type of Reading
DV DC Volis
AV AC Volis
DI DC Current
AT AC Current
OM Ohme

This example shows the use of the SELECT construct. The function code is contained in the
variable Funct$. The rules about illegal statements and proper nesting are the same as those
for the IF ... THEN statement.

2000 SELECT Funct$
2018 CASE "hye

2020 !

2030 ! Processing for BC Volts
2040 t

2050 CASE "AV"

2060 !

2070 ! Processing for AC Voits
2080 4

2080 CASE '"DI"

2100 !

2110 ! Processing for DC Amps
21290 ;

2130 CASE '"aI"

2140 !

2150 ! Processing for AC Amps
2160 !

2170 CASE "OM"

2180 !

2190 ! Processing for Ohms
2200 !

2210 CASE ELSE

2220 BEEP

2230 PRINT "INVALTD READING"
2240 END SELECT
2250 ! Program execution continues here

Notice that the SELECT construct starts with a SELECT statement specifying the variable
to be tested and ends with an END SELECT statement. The anticipated values are placed
in CASE statements. Although this example shows a string tested against simple literals,
the SELECT statement works for numeric or string variables or expressions. The CASE
statermnents can contain constants, variables, expressions, comparison operators, or a range
specification. The anticipated values, or mateh items, must be of the same type (numeric or
string) as the tested variable.

The CASE ELSE statement is optional. It defines a program segment that is executed if the
tested variable does not match any of the cases. If CASE FELSE is not included and no match
is found, program execution simply continues with the line following END SELECT.

2-6 Program Sfructure and Flow

A CASE statement can also specify multiple matches by separating them with commas, as
follows: '

CASE -1,1,3T0 7,>15

If an error occurs when the compuier tries to evaluate an expression in a CASE statement,
the error is reported for the line containing the SELECT statement. An error message
pointing to a SELECT statement actually means that there was an error in that line or in one
of the CASE statements following it.

Repetition

There are four structures available for creating repetition. The FOR ... NEXT structure
repeats a program segment a predetermined number of times. Two other structures,
REPEAT ... UNTIL and WIHILE ... END WHILE, repeat a program segment indefinitely,
waiting for a specified condition to occur. The LOOP ... EXIT IF structure is used to create
an iterative structure that allows multiple exit points at arbitrary locations.

Fixed Number of lterations

The general concept of repetitive program flow can be shown with the FOR ... NEXT
structure. The FOR statement marks the beginning of the repeated segment and establishes
the number of repetitions. The NEXT statement marks the end of the repeated segment.
This structure uses a numeric variable as a loop counter. This variable is available for use
within the loop, if desired. The following example shows the basic elements of a FOR ...
NEXT loop. '

10 FOR X=10 TO 0 STEP -1

20 BEEP

30 PRIKT X
40 WAIT 1
b0 KEXT X
60 END

In this example, X is the loop counter, 10 is the starting value, 0 is the final value, -1 is the
step size and the repeated segment is composed of lines 20 through 50. Note that if the step
counter is not apecified, a default valne of 1 is assumed.

When all variables involved are integers, the number of iterations can be predicted using the
following formula:

IAT{(Step_S8ize + Final Value - Starting Yalue}/(Step, Size))

Thus, the number of iterations in the example above is 11.

Program Structure and Flow 2.7

Conditional Number of lterations

Some applications need a loop that is executed until a certain condition is true regardless of
the number of loop tferations required. The REPEAT ... UNTIL and the WHILE ... END
WHILE structures provide this flexibility.

The REPEAT loop and the WHILE loop differ only in their location of the loop exit test,
The REPEAT loop has its test at the end of the loop. Therefore, the loop will always be
_executed once because the condition is not tested untii the end of the loop. The WHILE
loop has its test at the beginning of the loop, so the test is made before the loop is entered.
Therefore, it is possible for a WHILE loop to be skipped entirely.

For example, suppose vou wat to print successive powers of two, but want to stop once the
value is greater than 1000. Consider the following exampies programs:
REPEAT loop

i0 X=2

20 PRINT X;

30 REPEAT

40 X=X#2

50 PRINT X;
60 URNTIL X>1000
70 END

WHILY loop

10 X=2

20 PRINT X;

30 WHILE X<1000
40 X=X#*2

50 PRINT X;
60 END WHILE

70 END

If you ran either of these programs, the results would be:
2 4 8 16 32 64 286 512 1024
However, if you replace line 10 in each program with
10 X=1024
then the repeas loop would produce
1024 2048
whereas the WHILE loop would produce
1024

Arbitrary Exit Points

The looping structures discussed so far allow only one exit point. There are times when this is
not the desired program flow. The LOOP._EXIT IF construct allows you to have any number
of conditional exits points. Also, the EXIT IF statement can be at the top or bottom of the
Ioop. This means that the LOOP structure can serve the same purposes as REPEAT ...
UNTIL and WHILE ... END WHILE.

The EXIT IF statement must appear at the same nesting level as the LOOP statement for a
given loop. This is best shown with an example. In the “WRONG” example, the EXIT IF

2-8 Program Structure and Flow

statement has been nested one level deeper than the LOOP statement because it was placed
inan IF ... THEN structere,

WRONG:

600 LOGP
610 Tegt=RND-.b
620 IF Test<0 THEN

630 GOSUB Negative
640 ELSE

650 EXIT IF Test>.4
660 GOSUR Positive

670 ERD IF
680 EED LOOP

RIGHT:
Here is the proper structure to use.

600 LOGP

610 Test=RND-.5
620 EXIT IF Test>.4
630 IF Test<{ THEN

640 GOSUB Negative
650 ELSE
660 GOSUB Positive

670 EXD IF
680 EED LOOP

Event-Initiated Branching

HP Instrument BASIC provides a tool called event-initiated branching that uses interrupts

to redirect program flow. Each time the program finishes a line, the computer executes an
“event-checking” routine. If an enabled event has occurred, then this “event-checking” routine
causes the program to branch to a specified statement.

Types of Events

Event-initiated branching is established by the ON..event statements. Here is a Hst of the
statements:

ON ERROR an interrupt generated by a run-time error
ON INTR an interrupt generated by an an interface
ON KEY an interrupt generated by pressing a softkey

ON TIMEOUT an interrupt generated when an interface or device has taken longer than a
specified time to respond to a data-transfer handshake

Program Structure and Flow 2-9

The following example demonstrates an event-initiated branch using the ON KEY statement.

1060 ON KEY 1 LABEL "Ine™ GDSUB Plus
110 ON EEY 5 LABEL "Dec” GDSUB Minus
120 ON KEY 8 LABEL "Abort" GOTO Bye

130 !

140 Spin: DISP X
159 GOTO Spin
1690 !

179 Pius: X=X+l
180 RETURN

190 !

200 Minus: X=X-1
219 RETURN

220 Bye: END

The ON KEY statements are executed only once at the start of the program. Once defined,
these event-initiated branches remain in effeet for the rest of the program.

The program segment labeled “Spin” is an infinite loop. If it weren’t for interrupts,

this program couldn’t do anything except display a zero. However, there is an implied

“IF ... THEN" at the end of each program line due o the ON KEY action. As a result of
softkey presses, either the “Plus” or the “Minus” subroutines are selected or the program
branches to the END statement and terminates. If no softkey is pressed, the computer
continues to display the value of X,

The following section of “pseudo-code” shows what the program flow of the “Spin” segment
actually looks like 1o the compuier.
Spin: display X
if Keyl then gosub Plus
if Keyb then gosub Minus

if Key? then goto Bye
goto Spin

The labels are arranged to correspond to the layout of the softkeys. The labels are displayed
when the softkeys are active and are not displaved when the softkeys are not active. Any
label that vour program has not defined is blank. The label areas are defined in the QN KEY
statement by using the keyword LABEL foliowed by a string.

Deactivating Events

ATl the “ON-event” statements have a corresponding “OFF-event” statement. This is one
way to deactivate an interrupt source. For example OFF KEY deactivates interrupts from the
softkeys. Pressing a softkey while deactivated does nothing.

Pisabling Events

It is also possible to temporarily disable an event-initiated branch. This is done when an
active event is desired in a process, but there is a special section of the program that you
don’t want to be interrupted. Since it is impossible to predict when an external event will
occur, the special section of code can be “protected” with a DISABLE statement,

2-10 Program Structure and Flow

100 OGN KEY 9 LABEL ' ABORT" GOTO Leave

110 H
120 Print_line: !
13¢ DISABLE

14¢ FOR I=1 TO 10
150 PRINT I;
160 WATT .3

17¢ HEXT I

18¢ PRIKT

19¢ ENABLE

200 GOTO Print_line
210 !

220 Leave: END

This example shows a DISABLE and ENABLE statement used to “frame” the Print_line
segment of the program. The “ABORT” key is active during the entire program, but the
branch to exit the routine will not be taken until an entire line is printed. The operator can
press the “ABORT” key at any time. The key press will be logged, or remembered, by the
computer. Then when the ENABLE statement is executed, the event-initiated branch is
taken.

Chaining Programs

With HP Instrument BASIC, it is also possible to “chain” programs together; that is, one
program may be executed, which, in turn, loads and runs another. This method is often used
when you have several large program segments that will not all fit into memory at the same
time. This section deseribes program chaining methods.

Using GET

The GET command brings in programs or program seginents from an ASCII file, with the
options of appending them to an existing program and/or beginning program execution at a
specified line,

The following statement:
GET "George",100

first deletes all program lines from 100 to the end of the program, then appends the lines in
the file named “George” to the lines that remained at the beginning of the program. The
program lines in file “George” would be renumbered to start with line 100.

GET can also specify where program execution begins. This is done by specifying two line
identifiers. For example:

160 GET "RATES" ,Append.line,Run_line
specifies that:

i. Existing program lines from the line label “Append_line” to the end of the program are to
be deleted.

2. Program lines in the file named “RATES” are to be appended to the current program,
beginning at the lire labeled “Append_line”; lines of “RATES” are renumbered if
necessary.

Program Structure and Flow 2-11

3. Program execution is to resume at the line labeled “Run_line”.

Although any combination of line identifiers is allowed, the line specified as the start of
execution must be in the main program segment {not in a SUB or user-defined function).
Execution will not begin if there was an error during the GET operation.

Example of Chaining with GET

A large program can be divided into smaller segments that are run separately by using GET.
The following example shows a technique for implementing this method.

First Program Segment:

10 COM Dhms,Amps,Volts
20 COhms=120

30 Yolts=240

40 Amps=Volts/UOhms

50 GET "Wattage"

60 END

Program Segment in File Named “Wattage”:

10 COM Ghme, Amps,Volts

20 Watts=Amps*Volts

30 PRINT "Resistance (in ohms)
40 PRINT "Power usage (in watts)
50 TN

ol 0

"y Chms
TrWatts

il #

Lines 10 through 40 of the first program are executed in normal, serial fashion. Upon reaching
line 50, the system deletes all program lines of the program, then GETs the lines of the
“Wattage” program. Note that since they have similar COM declarations, the COM variables
are preserved and used by the second program. This feature is very handy to have while
chairing programs.

Program-to-Program Communications

As shown in the preceding example, if chained programs are to communicate with one
another, you can place values to be communicated in COM variables. The only restriction
is that these COM declarations must maich ezactly, or the existing COM will be cleared
when the chained program is loaded. For a description of using COM declarations, see the
“Sabprograms” chapter of this manual.

One important point to note is the use of the COM statement. The COM statement places
variables in a section of memory that is preserved during the GE'T operation. Since the
program saved in the file named “Wattage” also has a COM statement that contains three
scalar REAL variables, the COM is preserved (it matches the COM declaration of the
“Wattage” program being appended with GET).

If the program segments did not contain matehing COM declarations, all variables in the
mismatched COM statements would be destroved by the “pre-run” that the system performs
after appending the new lines but before running the first program line.

2-12 Program Structure and Flow

Numeric Computation

Numeric computations deal exclusively with numeric values. Adding two numbers and finding
a sine or a logarithm are all numeric operations, but converting bases and converting a
number to a string or a string to a number are not.

Numeric Data Types

There are two numeric data types available in HP Instrument BASIC: INTEGER, and REAL.
Any numeric variable not declared INTEGER. is a REAL variable. This seciion covers these
two numeric data types.

INTEGER Data Type
An INTEGER variable can have any whole-number value from 32 768 through -+32 767.

REAL Data Type

A REAL variable can be any value from :—1.797 693 134 862 315 x 10°°% through
1.797 693 134 862 315 x 10%°8. The smallest non-zero RIEAL value allowed is approximately
4+ 2,225 073 858 507 202 x 107308,

A REAL can also have the value of zero.

REAL and INTEGER variables may be declared as arrays.

Declaring Variables

You can declare variables to be of a particular type by using the INTEGER and REAL
statements. For example, the statements:

INTEGER I, J, Days(B), Weeks(5:17)
REAL X, Y, Voltage(4), Hours(5,8:13)

each declare two scalar and two array variables. A scalar variable represents a single value.
An array is a subscripted variable that contains multiple values accessed by subscripts. You
can specify both the lower and upper bounds of an array or specify the upper bound only, and
use the default lower bound of 0. You can also declare an array using the DIM statement.

DIM R{4,5)

Numeric Computation 3-1

Assigning Variables

The most fundamental numeric operation is the assignment operation, achieved with the LET
statemen:. The LET statement may be used with or without the keyword LET. Thus, the
following statements are equivalent:

IET A=4+1
A= A+1

Implicit Type Conversions

The computer will automatically convert between REAL and INTEGER values in assignment
statements and when parameters are passed by value in function and subprogram calls. When
a value is assigned to a variable, the value is converted to the data type of that variable.

For example, the following program shows a RIEAL value being converted to an INTEGER:

10¢ REAL Real _var

11G INTEGER Integer_var

126 Real _var = 2.34

130 Integer_var = Real _var ! Type conversicn occurs here.
14C DISP Real_var, Integer_var

150 END

Executing this program returns the following result:
2.34 2

When parameters are passed by value, the type conversion is from the data type of the calling
statement’s parameter to the data type of the subprogram’s parameter. When parameters are
passed by reference, the type conversion is not made and a TYPE MISMATCH error will be
reported if the calling parameter and the subprogram parameters are different types.

When a REAL number is converted to an INTEGER, the fractional part is lost and the
REAL number is rounded to the closest INTEGER value. Converting the number back to a
REAL will not restore the fractional part. Also, because of the differences in ranges between
these two data types, not all REAL values can be rounded into an equivalent INTEGER
value, This problem can generate INTEGER OVERFLOW errors.

The rounding problem does not generate an execution error. The range problem can generate
an execution error, and you should protect yourself from this possibility.

The following program segment shows a method to protect against INTEGER overflow errors
(note that the variable X is REAL and Y is INTEGER):

200 IF (-32768<=X) AND (X<=32767) THEW
210 Y=X

220 ELSE

230 GOSUB Jut_of_range

240 END IF

It is possible to achieve the same effect vsing MAX and MIN functions:
200 Y=MAX (MIH(x,32767),-32768)

Both these methods avoid the overfiow errors, but only the first includes the fact that
the values were originally out of range. If out-of-range is a meaningful condition, an error
handling trap is more appropriate.

3-2 Numeric Computation

Evaluating Scalar Expressions
‘T'his section covers the following topics as they relate to evaluating scalar expressions.
a Hierarchy of expression evaluation

m HP Instrument BASIC operators: monadic, dyadic, and relational

The Hierarchy

If you look at the expression 2-+4/2--6, it can be interpreted several ways:
w 2-4{4/2)46 = 10

w(2+4)/246 =9

m 24+4/(246) = 2.5

w (2+4)/(246) = .75

To eliminate this ambignity HP Instrument BASIC uses a hierarchy for evaluating expressions.
In order to understand how HP Instrument BASIC evaluates these expressions, let’s examine
the valid elements in an expression and the evaluation hierarchy (the order of evaluation of the
elements).

Six items can appear in a numeric expression:

» Operators (4, —, etc.)—modify other elements of the expression.

m Constants (7.5, 10, etc.)—represent literal, non-changing numeric values.
m Variables { Amount, X_coord, etc.)—represent changeable numeric values.

w [ntrinsic functions (SQRT, DIV, ete.)—return a value that replaces them in the evaluation
ol the expression.

m User-defined functions (FNMy_func, FNReturn.val, etc.)—also return a value that replaces
them in the evaluation of the expression.

m Parentheses—are used to modify the evaluation hierarchy.

Numeric Computation 3-3

T'he following table defines the hierarchy used by the computer in evaluating numeric
expressions,

Math Hierarchy

Precedence Operator

Highest Parentheses; they may be used to force any order of operation
Funetions, both user-defined and infrinsic

Exponentiation: ~

Multiplication and division: * / MOD DIV MODULO
Addition, subtraction, monadic plus and minus: + -
Relational Operators: = <> < > <= >=

NOT

AND

Lowest OR, EXOR

When an expression is being evaluated it is read from left to right and operations are
performed as encountered, unless a higher precedence operation is found immediately to
the right of the operation encountered, or unless the hierarchy is modified by parentheses.
If HP Instrument BASIC cannot deal immediately with the operation, it is stacked, and the
evaluator continues to read until it encounters an operation it can perform. It is easier fo

understand if vou see an example of how an expression is actually evaluated.

T'he following expression is complex enough to demonstrate most of what goes on in
expression evaluation.

A = 543%(4+42) /SIN(X)+Xx (1>X)+FliNeg 1% (X<5 AND X>0)

To evaluate this expression, it is necegsary to have some historical data. We will assume that
DEG has been executed earlier, that X= 90, and that FNNegl returns -1. Evaluation proceeds
as tollows:

3-4 . Numeric Computation

E+3%{4+2) /SIN(X)+X# (1>X) +Fillegi# {X<5 AWD X>0)
5+3%6/SIN(X)+X* (1>X) +FlilNegl+ (<5 AND X>0)
B+18/SIN (L) +X* (1>X)+Flllegd* (<5 AND X>0)
5+18/1+X* (1>X)+Fillegl* (X<5 AND X>0)
5+18+X* (1>X)+FHNegi (X<E AKD X>0)

23+% (1>X) +FNHegl+(X<5 AKD X>0)
23+X%0+FHEegl+ (X<E AND X>0)
23+0+FNNegix (X<5 AND X>0)

283-+Fllleglx (X<E AKD X>0)

23+-1#(X<5 AND X>0)

23+-1%(0 AND X>0)

23+-1%(0 AND 1)

23+~1%9

23+0

23

Operators
There are three types of operators in HP Instrument BASIC: monadic, dyadic, and relational.

m A monadic operator performs its operation on the expression immediately to its right. + -
ROT

m A dyadic operator performs its operation on the two values it is between. The operators are
as follows: =, *, /, MDD, DIV, +, -, =, <>, €, >, <=, >=, AlND, UR, and EXOR.

x A relational operator returns & 1 (true} or a 0 {false} based on the result of a relational test
of the operands it separates. The relational operators are a subset of the dvadic operators
that are considered to produce Boolean results. These operators are as follows: <, », <=,
>=, =, and <.

While the use of most operators is obvious from the descriptions in the language reference,
some of the operators have uses and side effects that are not always apparent.
Expressions as Pass Parameters

All numeric expressions are passed by value to subprograms. Thus, 54X is obviously passed
by value. Not quite so obviously, +X is also passed by value. The monadic operator makes it
an expression.

For more information on pass parameters, read the chapter entitled “Subprograms and
User-Defined Functions.”

Numeric Computation 3-5

Strings in Numeric Expressions

String expressions can be directly included in numeric expressions if they are separated by
relational operators. The relational operators always yield Boolean results, and Boolean
results are numeric values in HP Instrument BASIC. For example:

110 Day.number=1*{Day$="Sun")+2x(Day$="Mon")

Executing the program line above would result in Day_number being equal to 1 if Day$ equals
“Sun” and 2 if Day$ equals "Mon" (or 0 otherwise).

Step Functions

The comparison operators are useful for conditional branching (IF ... THEN statements), but
are also valuable for creating numeric expressions representing step functions. For example,
suppose you want to output certain values depending on the value, or range of values of a
single variable. This is shown as follows:

w If variable < § then output =0
m If 0 < variable < 1 then output equals the square root of (A2 + B?).
m If variable > 1 then output = 15

It is possible to generate the required response through a series of IF ... THEN statements,
but it can also be done with the following expression {where X is the variable and Y is the
output):

¥={X<0) #0+{X>=0 AND X<1)* SOR(A"24B"2)+(X>=1)#15

The Boolean expressions each return a I or 0, which is then multiplied by the accompanying
expression. Expressions not matching the selection return 0, and are not included in the
result. The value assigned to the variable (X) before the expression is evaluated determines
the computation placed in the result.

Comparing REAL Numbers

When vou compare INTEGER numbers, no gpecial precautions are necessary since these
values are represented exactly. However, when you compare REAL numbers, especially those
that are the results of calculations and functions, it is possible to run into problems due to
rounding. For example, consider the use of comparison operators in IF ... THEN statements
to check for equality in any situation resembling the following:

100 DEG

110 2=25.3765477
120 IF SIN(A) 2+COS(A)"2=1.0 THEN

130 PRINT "Equal®

146 ELSE

15¢ PRINT "Not Equal®
166 END IF

You will find that the equality test fails due to rounding errors. Irrational numbers and most
repeating decimals cannot be represented exactly in any finite machine, and most rational
decimal numbers with fractional parts cannot be represented exactly with binary numbers,
which HP Instrament BASIC uses internally.

3-6 Numeric Computation

Resident Numerical Functions

The resident functions are the functions that are part of the HP Instrument BASIC langunage,
Numerous functions are included to make mathematical operations easier. This section covers
these functions by placing them in the categories given below.

& Arithmetic Fonctions

w Ixponential Functions

n Trigonometric Functions

m Binary Functions

® Limit Fenctions

a Rounding Functions

m Random Number Function

m Base Conversion Functions

a General Functions

Arithmetic Functions

HP Instrument BASIC provides you with the following functions:

ABS

FRACT

Iny

MAXREAL

MINREAL

SQRT or SQR

SGHN

Returns the absolute value of an expression. Takes a REAL, or INTEGER
number as its argument.

Returns the “fractional” part of the argument.

Returns the greatest integer that is less than or equal to an expression.
The result is of the same type (INTEGER or REAL) as the original
nutaber.

Returns the largest positive REAL number available in HP Instrument
BASIC. Its value is approximately 1.797 693 134 862 32E4-308.

Returns the smallest positive REAL number available in HP Instrument
BASIC. Its value is approximately 2.225 073 858 507 24E—~308.

Return the square root of an expression. Takes a REAL or INTEGER
number as their argument.

Returns the sign of an expression: 1 if positive, 0 if 0, —1 if negative.

Exponential Functions

These functions determine the natural and common logarithm of an expression, as well as the
Napierian e raised to the power of an expression. Note that all exponential functions take
REAL, or INTEGER numbers as their argument,.

EXP
LGT
LaG

Raise the Napierian e to an power. e = 2.718 281 828 459 (5.
Returns the base 10 logarithm of an expression.

Returns the natural logarithm (Napierian base e) of an expression.

Numeric Computation 3-7

Trigonometric Functions

Six trigonometric functions and the constant 7 are provided for dealing with angles and
angular measure, Note that all trigonometric functions take REAL or INTEGER numbers as
their argument,

ACS Returns the arccosine of an expression.

ASH Returns the aresine of an expression.

ATN Returns the arctangent of an expression.

cos Returns the cosine of the angle represented by the expression.

SIN Returns the sine of the angle represented by an expression.

TAN Returns the tangent of the angle represented by an expression.

PI Returns the constant 3,141 592 653 589 79, an approximate value for pi.

Trigenometric Modes: Degrees and Radians

The default mode for all angular measure is radians, Degrees can be selected with the DEG
statement. Radians may be reselected by the RAD statement. If is a good idea to explicitly
set a mode for any angular caleulations, even if you are using the default (radian) mode. This
is especially important in writing sabprograms, as the subprogram inherits the angular mode
from the context that calls it. The angle mode is part of the calling context.

Binary Functions

All operations that HP Instrument BASIC performs use a binary number representation. You
usually don’t see this, because HP Instrument BASIC changes decimal numbers you input
into its own binary representation, performs operations using these binary numbers, and then
changes them back to their decimal representation before displaying or printing them.

The following HF Instrument BASIC functiong deal with binary numbers:

BINAND Returns the bit-by-bit “logical and™ of two arguments.

BINCHMP Returns the bit-by-bit “complement” of its argument.

BINEOR Returns the bit-by-bit “exclusive or” of two arguments.

BINIOR Returns the bit-by-bit “inclusive or” of two arguments.

BIT Returns the state of a specified bit of the argument.

ROTATE Returns a value obtained by shifting an INTEGER. representation of an

argument a specific number of bit positions, with wraparound.

SHIFT Returas a value obtained by shifting an INTEGER representation of an
argument a specific number of bit positions, without wraparound.

When any of these functions are used, the arguments are first converted to INTEGER (if they
are not already in the correct form}, then the specified operation is performed. It is best to
restrict bit-oriented binary operations to be declared INTEGERs. If it is necessary to operate
on a REAL, make sure the precautions described under “Conversions,” at the beginning of
this chapter, are employed to avoid INTEGER overflow.

3-8 Numeric Computation

Limit Functions

It is sometimes necessary to find the range of values in a list of variables. HP Instrument
BASIC provides two functions for this purpose:

MAX Returns a value equal to the greatest value in the list of arguments.

MIN Returns a value equal to the least value in the list of argauments.

Rounding Functions

Sometimes it is necessary to round a number in a calculation to eliminate unwanted
resolution. There are two basic types of rounding, rounding to a total number of decimal
digits and rounding to a number of decimal places (limiting {ractional information). Both
types of rounding have their own application in programming.

The functions that perform the types of rounding mentioned above are as follows:

DROUND Rounds a numeric expression to the specified number of digits. If the
specified number of digits is greater than 15, no rounding takes place. If
the number of digits specified is less than 1, zero is returned.

PROUND Returns the value of the argument rounded to a specified power of {en.

Random Number Function

The RND function returns a pseudo-random number between 0 and 1. Since many
applications require random numbers with arbitrary ranges, it is necessary to scale the
numbers.

200 R= INT(RND*Range)+0ffset
The above statement will return an integer between Offset and Offset + Range.

The random number generator is seeded with the value 37 480 660 at power-on, SCRATCH,
SCRATCH A, and pre-run. The pattern period is 2°! — 2. You can change the seed with the
RANDOMIZE statement, which will give a new pattern of numbers.

Time and Date Functions
The following functions return the time and date in seconds:
TIMEDATE Returns the current clock value (in Julian seconds).
For example, the statement
TIMEDATE
returns a value in seconds similar to the following:

2.11404868285E+11

Numeri¢ Computation 3-8

Base Conversion Functions

The two functions IVAL and DVAL convert a binary, octal, decimal, or hexadecimal string
value into a decimal nuwmber.

IVAL returns the INTEGER decimal value of a binary, octal, decimal, or hexadecimal
16-bit integer. The first argument is a string and the second argument is the radix
or base to convert from. For example,

IVAL("12740",8)
returns the following numeric value
5600

DVAL returns the decimal whole number value of a binary, octal, decimal, or hexadecimal
32-bit integer. The first argument is a string and the second argument ig the radix
or base to convert from. For example,

DVAL("$1111111311141141311311311111100",2)
returns the following numeric value:
-4

For more information and examples of these functions, read the section “Number-Base
Conversion” found in the “String Manipulation” chapter.

General Functions

When you are specifying select code and device selector numbers, it is more descriptive to use
a function to represent that device as opposed to a numeric value. For example, the following
command allows you to enter a numeric value from the keyboard.

ENTER 2;Numeric_value

The above statement used in a program is not as easy to read as this one is:
ENTER KBD ;Numeric_value

where you know the function KBD must stand for kevboard.

Functions that refurn a select code or device selector are Hsted helow:

CRT Returns the INTEGER. 1. This is the select code of the internal CRT.
KBD Returns the INTEGER 2. This is the select code of the keyhoard.
PRT Returns the INTEGER 701.

3-10 Numeric Computation

4

Numeric Arrays

An array is a multi-dimensioned structure of variables that are given a common name. The
array can have one to six dimensions. Each location in an array contains one value, and each
value has the characteristics of a single variable, either REAL or INTEGER (string arrays are
discussed in the chapter, “Siring Manipulation”).

A one-dimensional array consists of n elements, each identified by a single subscript. A
two-dimensional array congists of m times n elements where m and n are the maximum
number of elements in the two respective dimensions. Arrays require a subscript in each
dimension, in order to locate a given element of the array. Arrays are limited to six
dimensious, and the subscript range for each dimension must lie between -32767 and 32767.
REAL arrays require eight bytes of memory for each element, plus overhead. It is easy to see
that large arrays can demand massive memory resources.

An undeclared array is given as many dimensions as it has subscripts in its lowest-numbered
occurrence. Each dimension of an undeclared array has an upper bound of ten. Space for
these elements is reserved whether you use them or not.

Dimensioning an Array

Before you use an array, you should tell the system how much memory to reserve for it. This
is called “dimensioning” an array. You can dimension arrays with the DIM, COM, ALLOCATE,
INTEGER or REAL statements. For example:

REAL Array_complex(2,4)

An array is a type of variable and as such follows all rules for variable names. Unless you
explicitly specify INTEGER type in the dimensioning statement, arrays default to REAL type.
The same array can only be dimensioned once in a context (there is one exception to this
rule: If you ALLOCATE an array, and then DEALLOCATE it, you can dimension the array again).
However, as we explain later in this section, arrays can be REDIMensioned.

When you dimension an array, the system reserves space in internal memory for it. The
system also sets up a table which it uses o locate each element in the array. The location
of each element is designated by a unique combination of subscripts, one subscript for each
dimension. For a two-dimensional array, for instance, each element is identified by two
subscript values. An example of dimensioning a two-dimensional array is as follows:

OPTION BASE 0 defoull numbering of subscripts begins with
DIM Array(3,5) declaves elements (0,0) to (3,5)

OPTION BASE 1 defowll numbering of subscripls begins with 1
hrray(2,3) defines elements (1,1} to (2,3}

DPTION BASE 0 default numbering of subscripts begins with 0
DIM A(1:4,1:4,1:4) explicitly defines elements (1,1,1) {o ({,4,4)

Numeric Arrays 4-1

Each context defaults to an option base of 0 (but arrays appearing in COM statements with
an () keep their original hase. However, you can set the option base to 1 using the OPTION
BASE statement. You can have only one OPTIOK BASE statement in a context, and it must
precede all explicit variable declarations.

Some Examples of Arrays

When we discuss two-dimensional arrays, the first dimension will always represent rows, and
the second dimension will always represent columns. Note also in the above example that the
first two dimensions use the default setting of 1 for the lower bound, while the third dimension
explicitly defines 0 as the lower bound. The numbers in parentheses are the subscript values
for the particular elements. These are the mumbers you use to identify each array element.

The following examples illustrate some of the flexibility you have in dimensioning arrays.

10 OPTION BASE 1
20 DIM A(3,4,0:2)

0) (2.1,0) \ (2,1.0) \

=
o
2 IS e QI
~ |- ~
%% (1.2,0) \\\\\\\\\ {1,1,2) (2,2,0) \\\\\\\\\ (2.1,2) (3.2.4) \\\‘\\\\\ {3,?,2)
2 \(3,2,1) \ {(2,2.1) (3.2.1)
{1,3,0) (2,3.0) (3,3,0)
(1,2,2) (2,2,2) (3,2,2)
\ (1,3.1) (2,31 (3.3.1)
¥l (140 (2,4,0) (3,4,0)
(1,3,2) (2,3.2) (3,3,2)
(1,4,13 \ (2,4,1) \ (3.4,1) \
T
e a;\\ (1.4,2) \ (2.4.2) \ (3.4.2)
I
\lS]QN \ \

Y

tst DIMENSION
Planes of a Three-Dimensional REAL Array

Dimension Size Lower Bound Upper Bound
st 3 1 3
2nd 4 1 ‘ 4
3rd 3 0 2

1¢ OBPTION BASE 1
20 COM B(1:5,2:6)

4-2 Numeric Arrays

Two-Dimensional REAL ARRAY

(1,2) (1,3) (14) (1,5) (1.6)
{2,2) (2,3) (2,4) {2,5) {2,6)
(3,2) (3.3 (3.4 {3.5) {3.6)
(4,2) (4,3) {4,4) {4.5) {4,6)
(5.2) (5,3) (5,4) {5,9) (5,6)
Dimnension I Size Lower Bound Upper Bound
st D 5
Znd) 6

10 OPTION BASE 1

20 ALLBCATE INTEGER C(2:4,-2:2)

A Dynamically Allocated, Two-Dimensional INTEGER Array

22 | ey | ey | ey |oe2
Dimension | Size Lower Bound Upper Bound
Ist 3 4
2nd 5 2

Numeric Arrays 4-3

Note Throughout this chapter we will be nusing DIM statements without specilying
what the current option bhase setiing is. Unless explicitly specified otherwise,
all examples in this chapter use option base 1.

As an example of a four-dimensional array, consider a five-story library. On each floor there
are 20 stacks, each stack contains 10 sheives, and each shelf holds 100 books. To specify the
location of a particular ook you would give the number of the floor, the stack, the shelf,
and the particular book on that shelf. We could dimension an array for the library with the
statement:

DIM Library(5,20,10,100)

This means that there are 100,000 book locations. To identify a particalar book yon would
specify its subscripts. For instance, Library(2,12,3,35) would identify the 35th book on the
3rd shelf of the 12th stack on the 2nd floor.

Problems with Implicit Dimensioning

In any context, an array must have a dimensioned size. It may be explicitly dimensioned
through COM, IKTEGER, REAL, or ALLOCATE. It can also be implicitly dimensioned through a
subscripted reference to it in a program statement other than a MAT or a REDIM statement.
MAT and REDIM statements cannot be used to implicitly dimension an array.

Finding Out the Dimensions of an Array

There are a number of statements that aliow you to determine the size of an array. To find
out how many dimensions are in an array, use the RANK function. For example, this program

10 OPTION BASE 0O
20 DIM F{(1,4,-1:2)
30 PRINT RANK (F)
40 END

would print 3,

The SIZE function returns the size (number of elements) of a particular dimension. For
instance,

SIZE (F,2)
wotld return 5, the number of elements in F's second dimension.

To find out what the lower bound of a dimension is, use the BASE function. Referring again to
array F,

BASE (F,i)

would return a 0, while,

BASE {F,3)
would return a -1, indicating this dimension has not been defined as part of F.

By using the SIZE and BASE functions together, you can determine the upper bounds of any
dimension {e.g., SIZE+BASE~-1=Upper Bound).

4-4 Numeric Arrays

These functions are powerful tools for writing programs that perform functions on an array
regardless of the array’s size or shape.

Using Individual Array Elements

This section deals with assigning and extracting individual elements from arrays.

Assigning an Individual Array Element

Initially, every element in an array equals zero. There are a number of different ways to
change these values. The most obvious is to assign a particular value to each element. This is
done by specifying the element’s subscripts.

A(3,4)=13 the element in row 3, column 4, has the value 13

Extracting Single Values From Arrays

As with entering values into arrays, there are a number of ways to extract values as well. To
extract the value of a particular element, simply specily the element’s subscripts.

X=4(3,4,2)

BASIC automatically converts variable types. For example, if you assign an element from a
REAL array to an INTEGER variable, the system will round the REAL to an integer.

Filling Arrays

This section discusses three methods for filling an entire array:
u Assigning every element the same value

m Using READ to fill an entire array

» Copying arrays inte other arrays

Assigning Every Element in an Array the Same Value

For some applications, you may want to initialize every element in an array to some particular
value. You can do this by assigning a value to the array name. However, you must precede
the assignment with the MAT keyword.

MAT 4= (10}

Note that the numeric expression on the right-hand side of the assignment must be enclosed in
parentheses and that this expression may be INTEGER or REAL.

Numeric Arrays 4-5

Using the READ Statement to Fill an Entire Array

You can assign values to an array using READ and DATA. DATA allows you to create a stream of
data items, and READ enables vou to enter the data stream into an array.

110 DIM 4(3,3)

120 DATA -4,36,2.3,5,89,17,-6,-12,42

130 READ A(%)

140 PRINT USIKG "3(3DD.DDB,3DD.DD,3DD.BD,/)";A ()
150 EHD

The asterisk in line 140 is used to designate the entire array rather than a single element.
Note also that the right-most subscript varies fastest. In this cage, it means that the system
fills an entire row before going to the next one. The READ/DATA statements are discussed
further in the chapter “Data Storage and Retrieval”,

Executing the previous program produces the following results:

-4.00 36.06C 2.30
5.00 83.00 17.00
=6.00 -12.00 42.00

Copying Entire Arrays into Other Arrays

Another way to fill an array is to copy all elements from one array into another {copying
1Y]

sub-sets of arrays is discussed in the subsequent section of “Numeric Arrays” called “Copying
Subarrays”). Suppose, for example, that vou have the two arrays 4 and B shown below.

0 0 0 305
A=10 0 0|B=|8 2
0 0 0 1 7

Note that & is a 3x3 array which is filled entirely with (’s, while B is a 3% 2 array filled with
non-zero values. To copy B to 4, we would execute:

MAT A= B

Again, you must precede the assignment with MAT. The system will automatically redimension
the “resuit array” (the one on the left-hand side of the assignment) so that it is the same size
as the “operand array” (the one on the right side of the equation.} There are two restrictions
on redimensioning an array.

m The two arrays must have the same rank (e.g., the same number of dimensions.)

m The dimensioned size of the result array must be at least as large as the curzent size of the
opetand array.

If BASIC cannot redimension the result array to the proper size, it returns an error.

Automatic redimensioning of an array will not affect the lower bounds, only the upper
bounds. So the BASE values of each dimension of the result array will remain the same. Also
keep in mind that the size restriction applies to the dimensioned size of the result array
and the current size of the operand array. Suppose we dimension arrays A, B and C to the
following sizes:

10 OPTIOE BASE 1

20 DIM 4(3,3),B(2,2),0(2,4)

4-6 Numeric Arrays

We can execute,

HMAT A= B
since A is dimensioned to 9 elements and B is only 4 elements. The copy automatically
redimensions A to a 2x2 array. Nevertheless, we can stil! execute:

MAT A= C

This works because the nine elements originally reserved for A remain available until the
‘program is scratched, A now becomes a 2x4 maltrix, After MAT A= C, we could not execute:

HAT B= A
ot

KAT B= €

since in each of these cases, we are irying to copy a larger array into a smaler one. But we
could execute
MAT C= &

after the original MAT 4= B assignment, since C’s dimensioned size (8) is larger than A’s current
size {4).

Printing Arrays

Printing an Entire Array

Certain operations (e.g., PRINT, OUTPUT, ENTER and READ) allow you to access all elements of
an array merely by using an asterisk in place of the subscript list. The statement,
PRINT A(*);

would display every element of A on the current PRINTER IS device. The elements are
displayed in order, with the rightmost subscripts varying fastest. The semi-colon at the end
of the statement is equivalent fo pulting a semi-colon between each element. When they are
displayed, therefore, they will be separated by a space. (The default is to place elements in
successive columns.)

Examples of Formatting Arrays for Display

‘T'his section provides two subprograms which have both been given the name Printmat.
The first subprogram is used to display a two-dimensional INTEGER array and the second
subprogram is used to display a three-dimensional INTEGER array.

To display a two dimensional array, you can use the following subprogram:

Numetic Arrays 4-7

240
250
26¢
276
280
280
300
31¢
320

Agsuming that you intended to display a 3x5 array, your results should Iook similar to this:

11
21
3i
41
51

If you were to expand the above subprogram to print three-dimensional INTEGER arrays,
your subprogram would be similar to the following:

250
260
270
230
290
300
310
320
330
340
350
360
370
330

If you had a three dimensional array with the following dimensions:

SUB Printmat (INTEGER Array{+))
DPTION BASE |
FOR Row=BASE{(Array,l) TO SIZE(Array,1)+BASE(Array,1)-1
FOR Column=BASE{Array,2) TD SIZE(Array,2)+BASE(Array,2)-1
PRINT USING "DDDD,XX,#";Array(Row,Column)
NEXT Column

PRINT

BEXT Row

SUBE

12
22
32
42
52

SUB Printmat (INTEGER Array(#))

HD

i3
23
33
43
53

14
24
34
44
54

15
25
35
45
55

OPTION BASE 1

FOR Zplane=BASE(frray,3) TO SIZE(Array,3)+BASE(Array,3)-~1
PRIET TAB(6),"Plane ";Zplane

PRIET

NEXT Zplane

FOR Yplane=BASE(Array,2) TD SIZE(Array,2)+BASE(Array,2}-1
FOR Xplane=BARSE({Array,1) TD SIZE(Array,1)+BASE(Array,1)~1
PRINT USING "DDDD,XX,#";Array{Zplane,Yplane,Xplane)

KEXT Xplane
PRINT
NEXT Yplane
PRINT

SUBERD

BIM Arrayl(3,3,3)

filled with all 3’s, the results from executing the above subprogram would be as follows:

[£%]

4-8 Numeric Arrays

Piane 1

w

G

Passing Entire Arrays

The asterisk is also used to pass an array as a parameter to a function or subprogram. For
instance, to pass an array & to the Printmat subprogram listed earlier, we would write:

Printmat (A(*))

Copying Subarrays
An eartlier section discussed copying the contents of an entire array info another entire array.

MAT Arrays5b= Array33

Fach element of Array33 is copied into the corresponding element of Array55 which is
redimensioned i necessary.

Now suppose you would like to copy a portion of one array and place it in a special location
within another array. This process is called copying subarrays.

Array4x4 Array3x4

12 13 14
21 =878 T 24
~5 | 34
3 44

.
.
A3 R
[£8]
18]
2]
|
en
18]

Copying a Subarray into Another Subarray

Topics discussed in this section are:

m Subarray specifier

Copying a subarray into an array

Copying an array into a subarray

Copying a subarray into a subarray

Copyving a portion of an array into itself
» Rules for copying subarrays

Dimensions for the arrays covered in the above topics will assume an option base of 1 (OPTION
BASE 1) unless stated differently.

Subarray Specifier

A subarray is a subset of an array (an array within an array). A subarray is indicated after
the array name as follows:

Array_name (suborray_specifier)

String_array$ (subarray_specifier)

The above subarray could take on many “sizes” and “shapes” depending on what you used as
dimensions for the array and the values used in the subarray_specifier. Note that “size” refers

Numeric Arrays 4-9

to the number of elements in the subarray and “shape” refers to the number of dimensions
and elements in each dimension, respectively [e.g. both of these subscript specifiers have
the same shape: (~2:1,-1:10) and (1:4,9:20)]. Before looking at ways you can express a
subarray, let’s learn a few terms related to the subarray specifier.

subscript range

is used to specifv a set of elements starting with a beginning
element position and ending with a final element position. For
example, 5:8 represents a range of four elements starting with
element 5 and ending at element 8.

subscript expression is an expression which reduces the RANK of the subarray. For

default range

example if you wanted to select a one-element subarray from a
two-dimensional array which is located in the 2nd row and 3rd
column, you would use the following subarray specifier: (2,3:3}.
The subscript expression in this subarray specifier is 2 which
restricts the subarray to row 2 of the array.

is denoted by an asterisk (i.e. (1,%)) and represents all of the
elements in a dimension from the dimension’s lower bound to
its upper bound. For example, suppose you wanted to copy the
entire first column of a two dimensional array, you would use
the following subarray specifier: (x,1), where * represents all
the rows in the array and 1 represents only the first columan.

Some examples of subarray specifiers are as follows:

(1’*)

(1:2)

(*,-1:2)

{3,1:2)

(1,%,%

(1,1:2,%

(1923*)

(1:2,3:4)

a subseript expression and a default range which designate the first row of a
two-dimensional array.

a given subscript range which represents the first two elements of a
one-dimensional array.

a default range and subscript range which represents all of the elements in
the first four columns of a two-dimensional array (base of 2nd dimension
assumed to be -1).

a subscript expression and subseript range which represent the first two
elements in the third row of a two-dimensional array.

a subscript expression and two default ranges which represent a plane
consisting of all the rows and columns of the first plane in the first-dimension.

a subscript expression, subscript range and default range which represent the
first two rows in the first plane of the first-dimension.

two subscript expressions and a default range which represent the entire
second row in the first plane of the first-dimension.

two subscript ranges which represent elements located in the third and fourth
columns of the first and second rows of a two-dimensional array.

For more information on string arrays, see the “String Manipulation” chapter found in this

manual.

4-10 Numeric Arrays

Copying an Array into a Subarray

In order to copy a source array into a subarray of a destination array, the destination array’s
subarray must have the same size and shape as the source array.

A destination and source array are dimensioned as follows:

100 0PTION BASE 1
110 DI¥ Des_array(-3:1,5),Sor_array(2,3)

Suppose these arrays contain the following INTEGER values:

Des_array Sor_array
11z 13 14 5
21 2 3 24 25
21 22 23 24 2 e
Z z T e~
31 32 33 34 23 9 29 53
41 42 43 44 45
5T 52 B3 A4 55

you would copy the source array Sor_array into a subarray of the destination array
Des_array by using program line 190 given helow:

190 MAT Des_array{~1:0,2:4)= Sor_array

Des_.array would kave the following values in it as the result of executing the above
statement:

Des._array
1112 13 14 15
21 22 23 24 25
3t [12 35
41 {21 22 23| 45

51 52 53 54 55

Copying a Subarray into an Array

A subarray can be copied into an array as long as the array can be re-dimensioned to be the
size and shape of the subarray specifier.

A destination and source array are dimensioned as follows:

106 OPTIDN BASE §
110 DIM Des_azray(8),Sor_array(-5:4)

Suppose both of these one-dimensional arrays contain the following values:

Des_array Sor.array
(- 14 8 4 98 43 90 -3)(-11j-4 1 2 3 4 78 {100 8 18)

Numeric Arrays 4-11

you would copy a subarray of the source array (Sor_array) into a destination array
(Des_array) by using program line 190 given below:

190 MAT Des_array= Sor array(-4:1)

Des_array will be re-dimensioned to have six elements with the following values in it as a
result of executing the above statement.

Des_array
(—+ + 2 3 4 7))

Copying a Subarray into Another Subarray

Subarray specifiers must have the same size and shape when you are copying one subarray
into another.

A destination and source array are dimensioned as follows:

100 OPTION BASE 1

110 DIM Des_array{3,2,2),Sor_array(2,3,2)
120

130

Suppose these three-dimensional arrays contain the following values:

Des_array =T
2i2ft3a)3
INER IR B

Sor_array |21

//
- o

oy o
N E

LH'J 117 231/25?)“

& o P
/j/f”j/; -
1311132

in order to properly copy a source subarray (Sor_array{(*,2,%)} into a destination subarray
using asterisks to represent the ranges of dimensions, you would use line 190 given below:

190 MAT Des_array(3,#%,%)= Sor_array(*,2,%)

A three dimensional array with the following values in it would be the result of executing the
above statement.

4-12 Numeric Arrays

Des_array
pre
o

e
e

B
[B W)

Copying a Portion of an Array into Itself

If you are going to copy a subarray of an array into another portion of the same array, the
two subarray locations should not overlap {e.g., MAT Array(2:4,1:3)= Array(1:3,2:4) is
an improper assignment). No error message will result from this misuse, but the resuit is
undefined.

A destination and source array are dimensioned as follows:

100 OPTION BASE 1
110 DIM Array(4,4)

Suppose this two dimensional array contaias the following values:

Array

o1z 13 14
21 22 {23 24
31 32 33 34
41 42 43 44

to copy a slice of this array into another portion of the same array, you would use program
line 190 given below:

190 MAT Array(3:4,1:2)= Array(1:2,3:4)

Array will have the following values in it as a result of executing the above statement.

11 12 13 14
21 22 23 24
13 14 33 34

23 24 43 44

Note that you cannot copy a subarray into the array it is part of with an implied
re-dimensioring of the array. A statement of the form:

MAT Array= Array{subarray_specifier)

will always generate a run-time error,

Numeric Arrays 4-13

Rules for Copying Subarrays

This section should help limit the number of syntax and runtime errors you could make when
copying subarrays. A previous section titled “Subarray Specifier” provided you with examples
of the correct way of writing subarray specifiers for copying subarrays. In this section, you will
be given rules to things you should not do when copying subarrays. The rules are as follows:

m Subarray specifiers must not contain all subscript expressions (i.e. (1,2,3) is not allowed, it
will produce a syntax error). This rule applies to all subscript specifiers.

m Subarray specifiers must not contain all asterisks (*) or default ranges (i.e. (*,%,%) is not
allowed, it will produce a syntax error). This rule applies to all subscript specifiers.

m [f two subarrays are given in a MAT statement, there must be the same number of ranges in
each subarray specifier. For example:

HMAT Des_arrayi(1:10,2:3)= Sor_array(5:14,%,3)

is the correct way of copying a subarray into another subarray provided the defauit range
given in the source array {(Sor_array} has only two elements in it. Note that the source
array is a three-dimensional array. However, it still meets the criteria of having the same
number of ranges as the destination array because two of its entries are ranges and one is an
eXpression.

w If two subarrays are given in a MAT statement, the subscript ranges in the source array
must be the same shape as the subscript ranges in the destination array. For example, the
following example is legal:

MAT Des_array(1:5,0:1)= Sor_array(3,1:5,6:7)
however, the following example is not legal:
MAT Des_array(0:1,1:5)= Sor_ array(1:5,0:1)

because both of its subarray specifiers do not have the same shape (i.e. the rows and
columns in the destination array do not match the rows and columns in the source array).

Redimensioning Arrays

In our discussion of copying arrays we saw that the system automatically redimensions an
array if necessary. BASIC also allows you to explicitly redimension an array with the REDIM
statement. As with automatic redimensioning, the following two rules apply to all REDIM
statements:

w A REDIMed array must maintain the same number of dimensions.

m You cannot REDIM an array so that it contains more elements than it was originally
dimensioned to hold.

Suppose & is the 3x3 array shown below.

123
A=14 5 6
T8 9

To redimension it to a 2x4 array, vou would execute:

REDI¥ A(2,4)

4-14' Numeric Arrays

The new array now looks like the figure below:
12 3 4
A= (3 6 7 8)
Note that it retains the values of the elements, though not necessarily in the same locations.

For instance, 4{2,1) in the original array was 4, whereas in the redimensioned array it equals
5. For example, if we REDIMed A again, this time to a 2x2 array, we would get:

REDIM A(0:1,0:1)

1 2
1= (5 1)
We could then initialize all elements to 0:
MAT A= (0)
0 0
(0

It is also important te realize that elements that are out of range in the REDIMed array still
retain their values. The fifth through ninth elements in 4 still equal b through 9 even though
they are now inaccessible. If we REDIM A back to a 3% 3 array, these values will reappear, For
example:

REDIM A(3,3)

results in:
0 0 0
A=10 5 6
7 8B 9

One of the major strengths of the REDIN statement is that it allows vou to use variables for
the subscript ranges: this is not allowed when vou originally dimension an array. In effect,
this enables you to dynamically dimension arrays. This should not be confused with the
ALLOCATE statement which allows you to dynamically reserve memory for arrays. In the
example below, for instance, we enter the dimensions from the keyboard.

10 OPTION BASE 1

20 INTEGER A(100,100) .

30 INPUT "Enter lower and upper bounds of dimensions',
Lowl ,Upl,Low2, Up2

40 IF (Upi-Lowi+1)*(Up2-Low2+1)>10000 TEEE Too_big

50 REDIM A(Lowi:Upi,Low2:Up2)

Line 40 tests to see whether the new dimensions are too big. If so, program control is passed
to a line labelled “Too_big”. If line 40 were not present, the REDIM statement would return an
error if the dimensions were too large.

Numeric Arrays 4-15

9

String Manipulation

It is often desirable to store non-numerical information in the computer. A word, a name or a
message can be stored in the computer as a string. Any sequence of characters may be used in
a string. Quotation marks delimit the beginning and ending of the string. The following are
valid string assignments:

LET A$="COMPUTER"

Fail$="The test has failed,"

File_name$="INVENTORY"
Test$=Fail$[56,8]

The left-hand side of the assignment {the variable name) is equated to the right-hand side of
the assignment (the literal). String variable names are identical to naumeric variable names
with the exception of a dollar sign ($) appended to the end of the name.

The length of a string is the number of characters in the string. In the previous example, the
length of AS is 8 since there are eight characters in the literal “COMPUTER”. A string with
length 0 (i.e., that contains no characters) is known as a null string.

HP Instrument BASIC aliows the dimensioned length of a string to range from 1 to 32 767

characters. The current length (number of characters in the string) ranges from zero to the
dimensioned length.

The default dimensioned length of a string is 18 characters. The DIM and COM statements
define string lengths up to the maximum length of 32 767 characters. An error results
whenever a string variable is assigned more characters than its dimensioned length.

A string may contain any character. The only special case is when a quotation mark needs to
be in a string. Two quotes, in succession, will embed a guote within a string.

10 Quote$="The time is ""HOW ", "
20 PRINT Quote$
30 END

produces

The time iz "NOW".

String Maniputation 5-1

String Storage

Strings with a length that exceed the default length of 18 characters must have space reserved
before assignment. The following statements may be used:

DIM Long$[400] Reserve space for a 400 character string.
COM Line$isc] Reserve an 80 character common variable.
ALLOCATE Search$[Lengthl Dynamic length allocation.

The DIM statement reserves storage for strings.
DIM Part_number$[10] ,Description$[64],Cost$[5]

The COM statement defines common variables that can be used by subprograms.
COM Name$ [40] ,Phone$ [14]

Strings that have been dimensioned but not assigned return the null string.

String Arrays
Large amounts of tex{ are easily handled in arrays. For example,
DIM File$(1:1000) [8C]

reserves storage for 1000 lines of 80 characters per line. Do not confuse the brackets, which
define the length of the string, with the parentheses, which define the number of strings in the
array. Fach string in the array can be accessed by an index. For example,

PRINT File$(27)

prints the 27th element in the array. Since each character in a string uses one byte of memory
and each string in the array requires as many bytes as the length of the string, string arrays
can quickly use a lot of memory.

A program saved on a disc as an ASCII type file can be entered into a string array,
manipulated, and written back out to disc.

5-2 String Maniputation

Evaluating Expressions Containing Strings
This section covers the following topics:

w Evaluation Hierarchy

m String Concatenation

m Relational Operations

Evaluation Hierarchy

Evaluation of string expressions is simpler than evaluation of numerical expressions. The
three allowed operations are extracting a substring, concatenation, and parenthesization. The
evaluation hierarchy is presented in the following table.

Order Operation

High Parentheses

...... — Substrings and Functions

Low Concatenation

String Concatenation

Two separate strings are joined together by using the concatenation operator “&”. The
following program combines two strings into one:

10 One$="WRIST"

20 Two$="WATCH"

30 Concat$=0neSkTwod

40 PRINT One$,Two$,Concat$
50 END

prints
WRIST WATCH WRISTWATCH

The concatenation operation, in line 30, appends the second string to the end of the first
string. The result is assigned to a third string. An error results if the concatenation operation
produces a string that is longer than the dimensioned length of the string being assigned.

Relational Operations

Most of the relational operators used for numeric expression evaluation can also be used for
the evaluation of strings.

The following examples show some of the possible tests:

"ABC" = “ABCH True
"ABC! = " ABCY Fualse
"ABC" < "AhC" True
ngtt > False
a2 ooren False
"long" <= "“longer" True
"HE-SAVE" >= "RESAVE" False

String Maniputation 5-3

Any of these relational operators may be used: <, >, <=, >=, =, <>.

Testing beging with the first character in the string and proceeds, character by character, until
the relationship has been determined.

The outcome of a relational test iz based on the characters in the strings not on the length of
the strings. For example,

"BRONTOSAURUS" < "CAT"

is a true relationship since the letter “C” is higher in ASCII value than the letter “B”.

Substrings

You can append a subscript to a string variable name to define a substring. A substring may
comprise all or just part of the original string. Brackets enclose the subscript which can be a
constant, variable, or numeric expression. For example,

String$ [4]

specifies a substring starting with the fourth character of the original string. The subscript
must be in the range 1 to the current length of the string plus 1. Note that the brackets
now indicate the substring’s starting position instead of the total length of the string as
when reserving storage for a string. Subscripted strings may appear on either side of the
assignment.

Single-Subscript Substrings

When a substring is gpecified with only one numerical expression, enclosed withk brackets, the
expression is evaleated and rounded to an integer indicating the position of the first character
of the substring within the string.

The following examples use the variable A$, which has been assigned the literal
“DICTIONARY™:

Statement Ountput
PRINT A% DICTICNARY
PRINT a${0] (error)
PRINT A${1] DICTIOKARY
PRINT 4%[5] IOHARY
PRINT A$[10] Y

PRINT A$[11] (null string)
PRINT A$[12] (error)

When you use a single subscript it specifies the starting character position, within the string,
of the substring. An error results when the subscript evaluates to zero or greater than the
current length of the string plas 1. A subscript that evaluates to 1 plus the length of the
string returns the null string (""} but does not produce an error.

5-4 String Manipulation

Double-Subscript Substrings

A substring may have two subscripts, within brackets, to specify a range of characters. When

a comma is used to separate the items within brackets, the first subscript marks the beginning
position of the substring, while the second subscript is the ending position of the substring. |

The form is: A${Start,End]. For example, if A$ = “JABBERWOCKY"”, then

A$T4,6] specifies the substring BER

When a semicolon is used in place of a comma, the first subscript again marks the beginning
position of the substring, while the second subscript is now the length of the substring. The
form is: A${Start;Length].

A$14;6] specifies the substring BERWOC
In the following examples, the variable B$ has been assigned the literal

“ENLIGHTENMENT”:

Statement Output

PRINT B$ ENLIGHTENMENT
PRINT B$[1,13] |EWLIGHTENMERT
PRINT B$[1;13] |ENLIGHTENMENT
PRIKT B$i1,9] ENLIGHTEHN
PRIET B$i1;9] ENLIGHTEN
PRINT B$I3,7] LIGHT

PRIFT B$[3;7] LIGHTEE

PRIKT B$113,13] |¥
PRINT B$[13;1] ¥
PRINT B$[13,26] |(error)
PRINT B$[13;13] |(error)

PRINT B$[14;1] {rull string)

An error results if the second subscript in a comma separated pair is greater than the current
string length plus 1 or if the sum of the subscripts in a semicolon separated pair is greater
than the current string length plus 1.

Specifying the position just past the end of a string returns the null string.

String Manipulation 5-5

Special Considerations

All substring operations allow a subscript to specify the first position past the end of a string.
This aliows sirings to be concatenated without the concatenation operator. For example,
10 h$="CORCAT"

20 AS{7]="ENATIOE"
30 PRINT A8

40 EKXD
' produces
CONCATENATION

‘The substring assignment is only valid if the substring already has characters up to the .
specified position. Access bevond the first position past the end of a string results in the error

ERROR 18 String ovil. or substring err

It’s good practice to dimension all strings including those shorter than the default length of
eighteen characters.

String-Related Functions

Several intrinsic functions are available in HP Instrument BASIC for the manipulation of
strings. These functions include conversions between string and numeric values.

Current String Length

The “length” of a string is the number of characters in the string. The LEN function returns
an integer with a value equal to the string length. The range is from 0 {null string) through
32 767. For example,

PRINT LEN("HELP ME")
prints

7

Substring Position

The “position” of a substring within a string is determined by the POS function. The
function returns the value of the starting position of the substring or zero if the entire
gubstring was not found. For example,

PRINT POS("DISAPPEARANCE","APPEAR")
prints

4

Note that POS returns the first occurrence of a substring within a string. By adding a
subscript and indexing through the string, the POS function can be used to find all occurrences
of & subsiring.

5-6 String Manipulation

String-to-Numeric Conversion

The VAL function converts a string expression into a numeric value. The number will be
converted to and from scientific notation when necessary. For example,

PRINT VAL("123.4E3")
prints
123400

The string must evaluate to a valid number or error 32 wili result.

ERROR 32 String is not a valid mmmber

The NUM function converts a single character into its equivalent numeric value. The number
returned is in the range: 0 to 255. For example,

PRINT NUM("A")
prints 65

Numeric-to-String Conversion

The VAL$ function converts the value of a numeric expression into a character string. The
string contains the same characters (digits) that appear when the numeric variable is printed.
For example,

PRINT 1000000,VAL$(1000000)
prints
1. 846 1.E+8

The CHRS function converts a number into an ASCII character. The number can be of type
INTEGER or REAL since the value is rounded, and a modulo 255 is performed. For example,

PRINT CHR$(S7);CHR$(98) ;CHR$(99)
prints

abc

String Functions

This section covers string functions, which perform the following tasks:
m reversing the characters in a string

@ repeating a string a given number of times

m trimming the leading and trailing blanks in a string

m converting string characters to the desired case

String Manipulation 5.7

String Reverse

The REVS function returns a string created hy reversing the sequence of characters in the
given string. For example,

PRINT REV$ ("Snack cans")
prints |

snac kcand

String Repeat

The RPTS function returns a string created by repeating the specified string, a given number
of times. For example,

PRINT RPT§("* *",10)
prints

% ok gk bk SOk ok bk OR ok Rk k

Trimming a String

The TRIMS function returns a string with all leading and trailing blanks (ASCII spaces)
removed. For example,

PRINT "#";TRIM(" 1.23)"
prints

*1,23%

Case Conversion

The case conversion functions, UPCS§ and LWCS, return strings with all characters converted
to the proper case. UPCS converts all lowercase characters to their corresponding uppercase
characters and LWCS converts any uppercase characters to their corresponding lowercase
characters.

10 DIK Word$[160}

20 INPUT "Enter a few characters™,Word$
30 PRINT

40 PRINT "You typed: ";Word$

) PRINT "Uppercase: ';UPCS(Hord$)

60 PRINT '"Lowercase: ";LWCE(Word$)

70 END

5-8 String Manipulation

Number-Base Conversion

Utility functions are available to simplify the calculations between different number bases.
The two functions IVAL and DVAL convert a binary, octal, decimal, or hexadecimal string
value into a decimal number. The IVALS and DVALS functiens convert a decimal number
into a binary, octal, decimal, or hexadecimal string value. The IVAL and IVALS$ fanctions
are restricted to the range of INTEGER variables (-32 768 through 32 767). The DVAL
and DVALS$ functions allow “double length” integers and thus allow larger numbers to be
converted (-2 147 483 648 through 2 147 483 647).

Fach function has two parameters: the number or string to be converted and the radix.
The radix is limited to the values 2, 8, 10 and 16, and represents the numeric base of the
CONVersion.

YFor example,

PRINT DVAL("FF5900",16)
PRINT IVAL("4A", 167
PRINT DVAL$(100,8)
PRINT IVAL$(-1,16)

prints

1.6734464E+7
176
004006000144
FFFF

String Manipulation 5-9

Subprograms and
User-Defined Functions

One of the most powerful constructs available in any language is the subprogram. A
subprogram can do everything a main program can do except that it must be invoked or
“called” before it is executed, whereas a main program is executed by an operator. This
chapter describes the benefits of using subprograms and shows many of the details of using
them.

A user-defined function is simply a special form of subprogram.

Benefits of Subprograms

A subprogram has its own “context” or state that is distirct from a main program and all
other subprograms. This means that every subprogram has its own set of variables, its own
softkey definitions, its own DATA blocks, and its own line labels. There are several benefits to
be realized by faking advantage of subprograms:

» The subprogram allows the programmer to take advantage of the top-down design method
of programming.

= The program is much easier to read using the subprogram calls.

= By using subprograms and tesling each one independently of the others, it is easier to locate
and fix preblems.

m You may want to perform the same task from several different areas of your program.

m Libraries of commonly used snbprograms can be constructed for widespread use.

A Closer Look at Subprograms

This section shows a few of the details of using subprograms.

Calling and Executing a Subprogram

A SUB subprogram is invoked explicitly using the CALL statement. A nuance of SUB
subprograms is that the CALL keyword is optional when invoking a SUB subprogram.

The omission of the CALL keyword when invoking a SUB subprogram is left solely to the
discretion of the programmer; some will find it more aesthetic to omit CALL, others will
prefer its inclusion. There are, however, two instances that require the use of CALL when
invoking a subprogram.

Subprograms and 6-1
User-Defined Functions

CALL is required
1. if the subprogram is called after the THEN keyword in an IF statement
2. in an ON.event..CALL statement

Differences Between Subprograms and Subroutines
A subroutine and a subprogram are very different in HP Instrument BASIC.

m The GOSUB statement transfers program execu$ion to a subroutine. A subroutine is a
segment of program lines within the current context. No parameters need to be passed, since
it has access fo all variables in the context {(which is also the context in which the “calling”
segment exists).

m The CALL statement transfers program execution to & subprogram, which is in a separate
contert. Subprograms can have pass parameters, and they can have their own set of local
variables that are separate from all variables in all other contexts.

Subprogram Location

A subprogram is located after the body of the main program, following the main program’s
END statement. {The END statement must be the last statement in the main program
except for comments.) Subprograms may not be nested within other subprograms, but are
physically delimited from each other with their heading statements (SUB or DEI) and ending
statements (SUBEND or FNEND}.

Subprogram and User-Defined Function Names

A subprogram has a name that may be up to 15 characters long, just as with line labels and
variable names. Here are some legal subprogram names:

Initialize

Read_dwvm

Sort_2_d_array

Plot_data

Becanse up to 15 characters are allowed for naming subprograims, it is easy and convenient
to name subprograms in such a way as to reflect the purpose for which the subprogram was
written.

Difference Between a User-Defined Function and a Subprogram

A SUB subprogram (as opposed to a function subprogram) is invoked explicitly using the
CALL statement. A function subprogram is called implicitly by using the function name in an
expression. It can be used in a nuineric or string expression the same way a constant would be
used, or it can be invoked from the keyboard. A function’s purpose is to return a single value
(either a REAL number or a string).

There are several functions that are built into the HP Instrument BASIC language that can
be used to return values, such as SIN, SQR, EXP, etc.

Y=8 1N (X}+Phase

Root1=(-B+SQR (B#B-4%4%C) } /(2%A}

User defined functions can extend HP Instrument BASIC if you need a feature that is not
provided.

6-2 Subprograms and
User-Defined Functions

¥=FiTactorial (N}
Angle=FEAtn2(Y,XD

Here is a general guideline for taking a set of data and analyzing it to generate a single value,

then implementing the subprogram as a function. On the other hand, if you actually want to

change the data itself, generate more than one value as a result of the subprogram, or perform
any I/0 activity, it is better to use a SUB subprogram.

REAL Precision Functions and String Functions

A function is allowed to return either & REAL or a string value. Let’s examine one that
returns a string. There are two primary differences: the first is that a § must be added to

the name of a function that is to retern a string. This is used both in the definition of the
fenction (the DEF statement) and when the function is invoked. The second difference is that
the RETURN statement in the function returns a string instead of a number.

260 PRINT FNAscii_to_hex$(A$)
1660 DEF FHiscii_to hex$(A$)
1660 1t Each ASCII byte consists of two hex
1570 1 digite; pretty formatting dictates that
1580 1 a space be inserted between every pair
1680 ! of hex digits. Thus, the output string
1800 i will be three times as long as the input
i610 string.
1620
1630 ! upper four bits lower four bits
1640 | UUUU LLLL UOU¢ LLLL
1650 1 shift 4 bits 0000 1111 mask (15)
1660 1 0000 YUUY 6000 LLLL fimal
1670 1
1680 INTEGER I,Length,Hexupper,Hexiower
1690 Length=LEN(A$)
1695 Length=3*Length
1700 DIM Temp$[Lengthl
1710 FOR I=1 TO Length
1720 Hexupper=SHIFT (NUM(A$[I]),4)
1730 Hexlower=BINAHD (NUM(AS$ET], 153
1740 Temp$ [32I~2; 11 =FNHex$ (Hexupper)
1750 Terp$[3%I~1; 11=FNHex$ (Hexlower)
1760 Temp$[3#I;11=" »
1770 NEXT I
1780 RETURN Temp$
1790 FNEED
1800 DEF FNHex$(INTEGER X
1810 ! Assume (<=X<=15)
1820 ! Returnm ASCIT representation of the
1830 ¢ hex digit represented by the four
1840 t+ Dbits of X.
1850 ! If X is between { and 9, return
1860 ¢ fe VAL B
1870 t If ¥ > @, return “A™..."F"
(Continued)

Subprograms and 6-3
User-Defined Functions

1880 IF X<=9 THEYW

1830 RETURE CHR$(48+X} ! ASCIIT 48 through 57
1900 ! represent "@'" - "g"
1910 ELSE

1920 RETURN CHR${(55+X) ! ASCII 65 through 70
1930 ! represent "A'" - "F"
1940 ERD IF

195¢ FREND

Lines 200, 1740, and 1750 show examples of how to call a string function, Lines 1550 and 1800
show where the two string function subprograms begin. Notice that the program could be
optimized slightly by deleting lines 1720 and 1730 and meodifying lines 1740 and 1750:

1740 Temp$ [3+1-2;1]=FNHex$ (SHIFT (UM {A$1TT) ,4))
1750 Temp$ [3+I-1;1]=FNHex$ (BINAND{NUM(A$[T], 15))

Thus, it is perfectly legal to use expressions in the pass parameter list of a subprogram.

Program/Subprogram Communication

As mentioned earlier, there are two ways for a subprogram to communicate with the main
program or with other subprograms:

® By passing parameters

» By sharing blocks of common (COM) variables.

Parameter Lists
There are fwo places where parameter lists oceur:
a The pass parameter hist is in the CALL statement or FN call:
30 CALL Build_array(Humbers{*},20) ! Subprogram call.
54 PRINT FHSum_array(Kumbers(%),20) | User—defined function call.

It is known as the pass parameter list because it specifies what information is to be passed
to the subprogram.

m The formal parameter list is in the SUB or DEF FN statement that begins the
subprogram’s definition:

70 SUB Build_array(X{+},N) ! Subprogram "Build array".
410 DEF FliSum array(i{*) ,N) ! User-defined function "Sum_array”.
This is known as the formal parameter list because it specifies the form of the information
that can be passed to the subprogram.
Formal Parameter Lists

The formal parameter list is part of the subprogram’s definition, just like the subprogram’s
name. The formal parameter list defines

m the number of values that may be passed to a subprogram

6-4 Subprograms and
User-Defined Functions

m the types of those values {string, INTEGER, or REAL, and whether they are simple or
array variables; or I/O path names)

w the variable names the subprogram will use to refer to those values. (This allows the name
in the subprogram to be different from the name used in the calling context.)

The subprogram has the power to demand that the calling context match the types declared
in the formal parameter ligt—otherwise, an error results.

Pass Parameter Lists

The calling context provides a pass parameter Hst that corresponds with the formal parameter
list provided by the subprogram. The pass parameter list provides

m the actuel velues for those inputs required by the subprogram.

w storage for any values to be returned by the subprogram (pasé by reference parameters
ounly).

It is perfectly legal for both the formal and pass parameter lists to be null {non-existent).

Passing By Value vs. Passing By Reference
There are two ways for the calling context to pass values to a subprogram:
m pass by value-—the calling context supplies a value and nothing more.

m pass by reference—the calling context actually gives the subprogram access to the calling
context’s value area (which is essentially access to the calling context’s variable).

The distinction between these two methods is that a subprogram cannot alter the value of
data in the calling context if the data is passed by value, while the subprogram can alter the
value of data in the calling context if the data is passed by reference.

The subprogram has no control over whether its parameters are passed by value or passed by
reference. That is determined by the calling context’s pass parameter list. For instance, in the
example below, the array Numbers(*) is passed by reference, while the quantity 20 is passed
by value.

3¢ CALL Build_array(Jumbers(*},20) ! Subprogram call.
The general rules for passing parameters are as follows:

m In order for a parameter to be passed by reference, the pass parameter list (in the calling
context) must use a variable for that parameter.

m In order for a parameter to be passed by value, the pass parameter list must use an
expression for that parameter,

Note that enclosing a variabie in parentheses is sufficient to create an expression and that
literais are expressions. Using pass by value, it is possible to pass an INTEGER. expression
to a REAL formal parameter (the INTEGER is converted to its REAL representation)
without causing a type mismatch error. Likewise, it is possible to pass a REAL expression
to an INTEGER formal parameter (the value of the expression is rounded to the nearest
INTEGER) without causing a type mismatch error {an integer overflow error is generated if
the expression is out of range for an INTEGER).

Subprograms and 6.5
User-Defined Functions

Example Pass and Corresponding Formal Parameter Lists

Here is a sample formal parameter list showing which types each parameter demands:

SUB Read_dvm(@Dvm,A(*) ,INTEGER Lower,Upper,Status$,Errflag)

@Dvm

A(x)

Lower, Upper

Status$

Frrflag

This is an I/O path name that may refer to either an 1/0 device or a mass
storage file. Its name here implies that it is a voltmeter, but it is perfectly
legal to redirect 1/0 to a file just by using a different ASSIGN with @Dvm.

This is a REAL array. Its size is declared by the calling context. The
parameters Lower and Upper contain its limits.

These are declared here to be INTEGERs. Thus, when the calling program
invokes this subprogram, it must supply either INTEGER variables or
INTEGER expressions, or an error will occur.

This is a simple string that presumably could be used to return the status of
the voltmeter to the main program. The length of the string is defined by the
calling context.

This is & REAL number. The declaration of the string Statua$ has limited
the scope of the INTEGER keyword which caused Lower and Upper to require
INTEGER pass parameters.

Let’s look at our previous example from the calling side (which shows the pass parameter list):

CALL Read_dvm(@Voltmeter,Readings{(*),1,400,Status$,Exrrflag)

@Voltmeter

Readings (*)

i, 400

Status$

Errflag

This is the pass parameter that matches the formal parameter €Dvm in the
subprogram. I/0O path names are always passed by reference, which means
the subprogram can close the 1/0 path or assign it to a different file or
device,

This matches the array A(*) in the subprogram’s formal parameter list.
Arrays, too, are always passed by reference.

These are the values passed to the formal parameters Lower and Upper. Since
constants are classified as expressions rather fhan variables, these parameters
have been passed by value. Thus, if the subprogram used either Lower or
Upper on the left-hand side of an assignment operator, no change wouid take
place in the calling context’s value area.

‘T'his is passed by reference here. If it was enclosed in parentheses, it would
be passed by value. Notice that if it was passed by value, it would be totally

useless as a method for returning the status of the voltmeter to the calling
context,

This is passed by reference.

6-6 Subprograms and
User-Defined Functions

COM Blocks

Since we've discussed parameter lists in detail, let’s turn now to the other method a
subprogram has of communicating with the main program or with other subprograms, the
COM block.

There are two types of COM (or common) blocks: blank and labeled. Blank COM is simply
a special case of labeled COM (it is the COM name that is nothing) with the exception that
~blank COM must be declared in the main program, while labeled COM blocks don’t have to
be declared in the main program. Both types of COM blocks simply declare blocks of data

that are accessible to any context with matching COM declarations.

A blank COM block might look like this:

20 COM Conditions{15),INTEGER,Cmin,Cmax,@uclear_pile,Pile_status$i20], Tolerance
A labeled COM might look like this:
30 COM /Valve/ Main(10) ,Subvalves{10,18),8Valve_ctrl

A COM block’s name, if it has one, will immediately follow the COM keyword, and will be set
off with slashes, as shown above, The same rules used for naming variables and subprograms
are used for naming COM blocks.

Any context need only deelare those COM blocks that it needs to have access to. If there are
150 variables declared in 10 COM blocks, it isn’t necessary for every context to declare the
entire set—only those blocks that are necessary to each context need to be declared. COM
blocks with matching names must have matching definitions, As in parameter lists, matching
COM blocks is done by position and type, not by name.

COM vs. Pass Parameters

There are several characteristics of COM blocks that distinguish them from parameter lists as
a means of communications between contexts:

m COM survives pre-run. In general, any numeric variable is set to 0, strings are set to the
null string, and 1/0O path names are set to undefined after instructing the program to run,
or upon entering a subprogram. This is true of COM the first time the program runs, but
after COM block variables are defined, they retain their values until one of the following
takes place:

o SCRATCH A or SCRATCH C is executed
o a statement declaring 2 COM block is modified by the user

0 a new program is brought into memory using the GET command that doesn’t match the
declaration of & given COM block, or that doesn’t declare a given COM block at all

m COM blocks can be arbitrarily large. One limitation on parameter lists (both pass and
formal parameter lists) is that they must fit into a single program line along with the line’s
number, possibly a label, the invocation or subprogram header, and possibly (in the case of
a function) a string or numeric expression. Depending upon the situation, this can impose a
restriction on the size of your parameter Lsts.

m COM blocks can take as many statements as necessary. COM statements can be interwoven
with other statements (though this is considered a poor practice). All COM statements
within a context that has the same name will be part of the definition of that COM block,

Subprograms and 6-7
User-Defined Functions

a COM blocks can be used for communicating between contexts that do not invoke each
other.

» COM blocks can be used to communicate hetween subprograms that are not in memory
simultaneously.

s COM blocks can be used to retain the value of *local” variables between sehprogram calls.

x COM blocks allow subprograms to share data without the intervention of the main program.

Hints for Using COM Blocks

Any COM blocks needed by your program must be resident in memaory at prerun time,
executing a RUN command, executing GET from the program, or executing a GET from the
keyboard and specifying a run line. Thus, if you want to create libraries of subprograms that
share their own labeled COM blocks, it is wise to collect all the COM declarations together in
one subprogram. This makes it easy to append them to the rest of the program for inclusion
at prerun time. {The subprogram need not contain anything but the COM declarations.}

COM can be used to communicate between programs that overlay each other using GET
statements, if you remember a few rules:

1. COM blocks that match each other exactly between the two programs will be preserved
intact. “Matching” requires that the COM blocks are named identically (except blank
COM), and that corresponding blocks have exactly the same number of variables declared,
and that the types and sizes of these variables match.

2. Any COM blocks existing ir the old program that are not declared in the new program
(the one being brought in with the GET') are destroyed.

3. Any COM blocks that are named identically, but that do not match variables and tvpes
identically, are defined to match the definition of the new program. All values stored in
that COM block under the old program are destroyed.

4. Any new COM blocks declared by the new program (including those mentioned above in
#3) are initialized implicitly. Numeric variables and arrays are set to zero, strings are set
to the nulf string, and 1/O path names are set to undefined.

The first occurrence in memory of a COM block is used to define or set up the block.
Subsequent occurrences of the COM block must match the defining Mock, both in the number
of items and the types of the items. In the case of strings and arrays, the actual sizes need

be specified only in the defining COM blocks. Subsequent occurrences of the COM blocks
may either explicitly match the size specifications by re-declaring the same size, or they may
implicitly match the size specifications. In the case of strings, this is done by not declaring
any size, but by declaring the string name. In the case of arrays, this is done by using the (*)
specifier for the dimensions of the array instead of explicitly re-declaring the dimensions.

Consider the following COM block definition:

10 COM /Dvm. state/ INTEGER Range,Format,N,REAL
Delay,Lastdata{1:40),Status${20]

‘The following occurrence of the same COM block within a subprogram mastches the COM
block explicitly and is legal:

2000 COM /Dvm_state/ INTEGER Range,Format,N,REAL
Delay,Lastdata(1:40) ,Status$[20]

6-8 Subprograms and
User-Defined Functions

The following block within a different subprogram wuses implicit matching and is also legal:

4010 COM /Dvm,state/ INETEGER Range,Format,N,REAL Delay,lLastdata(+),Status$

In general, the implicit size matching on arrays and strings is preferable to the explicit
matching because it makes programs easier to modify. If it becomes necessary to change the
size of an array or string in a COM block, it only needs to be changed in one statement,

the one that defines the COM block. If all other occurrences of the COM block use the (%)
specifier for arrays and omit the length field in strings, none of those statements will have to
be changed as a result of changing an array or string size.

Context Switching

A subprogram has its own context or state that is distinct from a main program and all

other subprograms. In between the time a CALL statement is executed {or an FN name

is used) and the time the first statement in the subprogram is executed, the computer
performs a “prerun” on the subprogram. This “entry” phase is what defines the context of the
sebprogram. The actions performed at subprogram entry are similar, but not identical, to the
actual prerun performed at the beginning of a program. Here is a summary:

w The calling context has a DATA pointer that points to the next iters in the current DATA
block that will be used the next time a READ is executed (assuming of course that &
DATA block even exists in the calling program). This pointer is saved away whenever a
subprogram is called, and then the DATA pointer is reset to the first DATA statement in
the new subprogram context.

s The RETURN stack for any GOSUBs in the current context is saved and set to the empty
stack in the new context.

w The system priority of the current context is saved, and the called subprogram inherits this
value. Any change to the system priority that takes place within the subprogram (or any of
the subprograms that it calls in turn) is purely local, since the system priority is restored to
its original value upon subprogram exit.

= Any event-initiated GOTO/GOSUB statements are disabled for the duration of the
sthprogram. If any of the specified events occur, this will be logged, but no action will
be taken. (The fact that an event did occur will be logged, but only once—multiple
occurrences of the same event will not be serviced.) Upon exiting the subprogram, these
event-initiated conditions will be restored to active status, and if any of these events
occurred while the subprogram was being executed, the proper branches will be taken.

m Any event-initiated CALL/RECOVER statements are saved away upon entering a
subprogram, but the subprogram still inkerits these ON conditions since CALL/RECOVER
are global in scope. However, it is legal for the subprogram to redefine these conditions, in
which case the original definitions are restored upon subprogram exit.

m The current DEG or RAD mode for frigonometric operations and graphics rotations is
stored away. The subprogram will inherit the current DEG or RAD setting, but if it gets
changed within the subprogram, the original setting will be restored when the subprogram
is exited.

Subprograms and 6-9
User-Defined Functions

Variable Initialization

Space for all arrays and variables declared is set aside, whether they are declared explicitly
with DIM, REAL, or INTEGER, or implicitly just by using the variable. The entire value
area ig initialized as part of the subprogram’s prerun. All numeric values are set to zero, all
strings are set to the null string, and all I/O path names are set to undefined.

Subprograms and Softkeys

ON KEYs are a special case of the event-initiated conditions that are part of context
switching. They are special because they are the only event conditions that give visible
evidence of their existence to the user through the softkey labels at the bottom of the CRT.
These key labels are saved away just as the event conditions are, and the labels get restored to
their original state when the subprogram is exited, regardless of any changes the subprogram
made in the softkey definitions. This means the programmer doesn’t have to make any special
allowances for reenabling his keys and their associated labels after calling a subprogram that
changes them-—the language system handles this automatically.

Subprograms and the RECOVER Statement

The event-initiated RECOVER statement allows the programmer to cause the program to
resume execufion at any given place in the context defining the ON ... RECOVER as a result
of a specified event occurring, regardiess of sebprogram nesting.

Thus, if & main program executes the ON part of an ON ... RECOVER statement (for
example a softkey or an external interrupt from the SRQ line on an HP-IB), and then calls a
subprogram, which calls a subprogram, which calls a subprogram, etc., program execution can
be caused to immediately resume within the main program as a resuit of the specified event
happening.

Editing Subprograms

Inserting Subprograms

There are some tules to remember when inserting SUB and DEF FN statement in the middie
of the program. All DEF FN and SUB statements must be appended to the end of the
program. If you want to insert a subprogram in the middle of your program because your
prefer o see it listed in a given order, you must perform the following sequence:

SAVE the program.

[N

Delete all lines above the point where you want to insert your subprogram.
SAVE the remaining segment of the program in a new file.

GET the original program stored in step 1.

Delete all lines delow the point where you want to insert your subprogram.

Type in the new subprogram.

I

Do a GET from the new file created in step 3.

6-10 Subprograms and
User-Defined Functions

Loading Subprograms

If you already have subprograms stored in PROG file(s), there are several options to choose
from in loading them into memory:

» If you want to load a specific subprogram from a PROG file, you would use something like
this:

LOADSUB Sub_name FROM “File"

w If you want to load all the subprograms from a specific PROG file, you would use the
LOADSUB ALL FROM statement.

LOADSUE ALL FROM "File"

® And, if you wanted to see which subprograms are still missing or load all those still needed,
you would use something like this:

LOADSUB FROM "File™
(Note that this statement is not programmable; that is, it cannot appear in a program line.)

You can also use INMEM to defermine if a subprogram is already loaded. For example:

IF EOT INMEM ('‘Mysub')
THEM LOADSUB ALL FROM “MYSUBS™

Loading Subprograms One at a Time

Suppose your program has several options to select from, and each one needs many
subprograms and much data. All the options, however, are mutually exclusive; that is,
whichever option you choose, it does not need anything that the other options use. This
means that you can clean up everything you've used when you are finished with that option.

If all of your subprograms can be put into one file, you can selectively retrieve them as needed
with this sort of statement:

LDADSUB Subprog,.1 FROM “SUBFILE™

LDADSUB Subprog._2 FROM "SUBFILE"

LOADSUB FHNumeric fn FROM "“SUBFILE"
LOADSUB FHString function$ FROM "SUBFILE"

Note that only one subprogram per line can be loaded with this form of LOADSUB. I, for
any program option, you need so many subprograms that this method would be cumbersome,
you could use the following form of the command.

t.oading Several Subprograms at Once

For this method, you store all the subprograms needed for each option in its own file. Then,
when the program’s user selects Program Option 1, you could have this line of code execute:

LOADSUS ALL FROM "OPT1SUBFL®

and if the user selects Qption 2,

LOADSYB ALI. FRGM "OP2SUBFL"
and so forth.

‘There is one other form of LOADSUB, but it canrot be used programmatically. This is
covered next.

Subprograms and 6-11
User-Defined Functions

Loading Subprograms Prior to Execution

In the LOADSUB FROM form, neither ALL nor a subprogram name is specified in the
command. This is used prior to program execution. It looks through the program in memory,
notes which subprograms are needed (referenced) but not loaded, goes to the specified file
and attempts to load all such subprograms. If the subprograms are found in the file, they

are loaded into memory; if they are not, an error message is displayed and a list of the
gubprograms still needed but not found in the file is printed.

This can be handy in two ways. The first and obvious way is that subprograms can he loaded
guickly. The other way is this: Type a LOADSURB FROM command where the file name

is a file in which you know there are none of the subprograms you need {perhaps a null
PROG file). Of course, no subprograms will be loaded, but @ fist of those yet undefined will be
printed.

Any COM blocks declared in subprograms brought into memory with a LOADSUB by a
running program must already have been declared. LOADSUB does not aliow new COM
blocks to be added to the ones already in memory. Furthermore, any COM blocks in the
subprograms brought in must match & COM block in memory in both the number and type of
the variables. Otherwise, an error occurs.

Note If a main program is in a file referenced by a LOADSUB, it will not de loaded;
only subprograms can be loaded with LOADSUB. Main programs are loaded
with the LOAD command.

With all this talk of loading subprograms from files, one question arises: How do you get the
subprograms in the file? Easily: tvpe in the subprograms you want to be in one file, and then
STORE them with the desired file name. You must use STORE and not SAVE, because the
LOADSUB locks for a PROG-type file. If you can’t type in your subprograms error-free the
first time (and who can?), you can type in your program with all the subprograms it needs
and debug them. Ajfter storing everything in a file for safekeeping, delete what you do not
want in the file, and STORL everything else in the subprogram file from which you will later
do a LOADSUB. In this way, you know the subprograms will work when you load them.

Deléting Subprograms

It is not possible to delete either DEF FN or S5UB statements unless vou first delete all the
other lines in the subprogram. This includes any comments after the SUBEND or FNEND.
Another way to delete DEF FN and SUB statements is to delete the entire subprogram, up to,
but not including, the next SUB or DEF FN line (if any).

Merging Subprograms

If you want to merge two subprograms together, first examine the two subprograms carefully
to insure that you don’t introduce conflicts with variable usage and logic flow. If you've
convinced yourself that merging the two subprograms is really necessary, here’s how you go
about it:

1. SAVE everything in your program after the SUB or DEF FN statement you want to delete.
2. Delete everything in your program from the unwanted SUB statement to the end.

3. GET the program segment you saved in step 1 back into memory, taking care to number
the segment in such a way as not to overlay the part of the program already in memory.

6-12 Subprograms and
User-Defined Functions

SUBEND and FNEND

The SUBEND and FNEND statements must be the last statements in 2 SUB or function
subprogram, respectively. These statements don’t ever have to be executed; SUBEXIT and
RETURN are sufficient for exiting the subprogram. (If SUBEND is executed, it will behave
like a SUBEXIT. I FNEND is executed, it will cause an error.) Rather, SUBEND and
FNEND are delimiter statements that indicate to the language system the boundaries between
subprograms. T'he only exceptions to this rule are the comment statements “REM” and “!”.
They are allowed after SUBEND and FNEND.

Recursion

Both function subprograms and SUB subprograms are allowed to call themselves, This is
known as recursion. Recursion is a useful technigue in several applications.

The simplest example of recursion is the computation of the factorial function. The factorial
of a number N iz denoted by N! and is defined to be N x (N—1)! where 0!=1 by definition.
Thus, N!is simply the product of all the whole numbers from 1 through N inclusive. A
recursive function that computes N factorial is

100 DEF FNFactorial (INTEGER N)

110 IF N=0 THEN RETURN 1

120 RETURN N+FNFactorial(l-1)
130 FNEND

Subprograms and 6-13
User-Defined Functions

Data Storage and Retrieval

This chapter describes some useful techniques for storing and retrieving data.

m Pirst we describe how to store and retrieve data that is part of the HP Instrument BASIC
program. With this method, DATA statements specify data to be stored in the memory
area used by HP Instrument BASIC programs; thus, the data is always kept with the
program, even when the program is stored in a mass storage file. The data items can be
retrieved by using READ statements to assign the values to variables. This is a particularly
effective technique for small amounts of data that you want to maintain in a program file,

w For larger amounts of data and for data that will be generated or modified by a program,
mass storage files are more appropriate. Files provide means of storing data on mass storage
devices. The two types of data files available with HP Instrument BASIC are described in
this chapter.

o1 ASCII—used for general text and numeric data storage. (These are the interchange
method with many other HP systems.)

2 BDAT—provide the most compact and flexible data storage mechanism.

More details about these files, including how to choose a file type and how to access each, are
described in this chapter.

Storing Data in Programs

This section describes a number of ways to store values in memory. In general, these
techniques involve using program variables to store data. The data are kept with the program
when if is stored on a mass storage device (with SAVE). These techniques allow extremely
fast access of the data. They provide good use of the computer’s memory for storing relatively
small amounts of data.

Storing Data in Variables

Probably the simplest method of storing data is to use a simple assignment, such as the
following LET statements:

106 LET Cm_per.inch=2.54
110 Inch_per_cm=1/Cm_per_inch

‘The data stored in each variable can then be retrieved simply by specifying the variable’s
name. This technique works well when there are relatively few items to be stored or when
several data values are to be computed from the value of a few items. The program will
execute faster when variables are used than when expressions containing constants are used;
for instance, using the variable Inch_per_cm in the preceding example would be faster than

Data Storage and Retrieval 7-1

using the consiant expression 1/2.54. In addition, it is easier to modify the value of an item
when it appears in only one place (1.e., in the LET statement).

Data Input by the User

You also can assign values to variableg at run-time with the INPUT statement as shown in the
following examples.
160 INPUT "Type in the value of X, please.",ld

260 DISP "Enter the wvalue of X, ¥, aund Z.%;
210 INPUT "",X,Y,2

Note that with this type of storage, the values assigned to the corresponding variables are noi
kept with the program when it is stored; they must be entered each time the program is run.
This type of data storage can be used when the data are to be checked or modified by the user
each time the program is run. As with the preceding example, the data siored in each variable
can then be retrieved simply by specifying the variable’s name.

Using DATA and READ Statements

The DATA and READ statements provide another technigue for storing and retrieving data
from the computer’s read/write (R/W) memory. The DATA statement allows you to store a
gtream of data items in memory, and the READ statement allows you retrieve data items from
the stream.

You can have any number of READ and DATA statements in a program in any order you
want. When you RUN a program, the system concatenates all DATA statements in the same
context into a single “data stream.” Each subprogram has its own data stream. The following
DATA statements distributed in a program would produce the following data stream.

160 DATA 1,4,50
200 DATA "BB",20,45

300 DATA X,Y,77

DaTa STREaM: | 1| A [sofes|zofas| x| v |77]

As you can see from the example above, a data stream can contain both numeric and string
data items; however, each item is stored as if it were a string.

Each data item must be separated by a comma and can be enclosed in optional quotes.
Strings that contain a comma, exclamation mark, or quote mark must be enclosed in quotes.
In addition, you must enter two quote marks for every one you want in the string. For
example, to enter the string QUOTE“QUO”TE into a data stream, you would write

10C DATA "“QUOTE""QUO""TEY

7-2 Data Storage and Retrieval

To retrieve a data item, assign it to a variable with the REATD statement. Syntactically,
READ is analogous to DATA; but instead of a data list, you use a variable list. For instance,
the statement

100 READ X,V ,Z$

would read three data items from the data stream into the three variables. Note that the first
iwo items are numeric and the third is a string variable.

Numeric data items can be READ into either numeric or string variables. If the numeric data
item is of a different type than the numeric variable, the item is converted (i.e., REALs are
converted to INTEGERs, and INTEGERs to REALs). If the conversion cannot be made, an
error is returned. Strings that contain non-numeric characters must be READ info string
variabies. If the string variable has not been dimensioned to a size large enough to hold the
entire data item, the data item is truncated.

‘The system keeps track of which data item to READ next by using a “data pointer.” Every
data stream has its own data pointer that points to the next data item to be assigned to the
next variable in a READ statement. When you run a program segment, the data pointer is
placed initially at the first item of the data stream. Fvery time vou READ an item from the
stream, the pointer is moved to the next data item. If a subprogram is called by a context,
the position of the data pointer is recorded and then restored when you return to the calling
context.

Starting from the position of the data pointer, data items are assigned to variables one by one
until all variables in a READ statement have been given values. If there are more variables
than dafa items, the system returns an error, and the data pointer is moved back to the
position it occupied before the READ statement was executed.

Examples

The following example shows how data is stored in a data stream and then retrieved. Note

that DATA statements can come after READ statements even though they contain the data
being READ. This is because DATA statements are linked during program prerun, whereas
READ statements aren’t executed until the program actually runs.

16 DATA HNovember,26

20 READ Month$,Day,Year$

3¢ DATA 1981,"The date is"

40 READ Str$

53¢ Print Str$;Month$,Day,Years$
60 END

prints

The date is Hovember 26 1981

Storage and Retrieval of Arrays

In addition to using READ fo assign values to string and numeric variables, you can also
READ data into arrays. The system will match data items with variables one at a time
tntil it has filled a row. The next data item then becomes the first element in the next row.
You must have enough data items to fill the array or you will get an error. In the following
example, we show how DATA values can be assigned to elements of a 3-by-3 numeric array.

Data Storage and Retrieval 7-3

10
20
30
40
50

prints

i
4
7

The data pointer is left at item 10; thus, items 10 and 11 are saved for the next READ

QU N
w o, W

DIM Examplel{2,2)

DATA 1,2,3,4.5,6,7,8,9,10,11

READ Examplel(s)

statement.

Moving the Data Pointer

In some programs, vou will want to assign the same data items to different variables. To do
this, you have to move the data pointer so that it is pointing at the desired data item. You
can accomplish this with the RESTORE statement. If you don’t specify a line number or
label, RESTORE returns the data pointer to the first data item in the data stream. If you do
include a line identifier in the RESTORE statement, the data pointer is moved to the first
data item in the first DATA statement at or after the identified line. The example below

PRINT USING "3(K,%),/":Examplel(®)
END

llustrates kow to use the RESTORE statement.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
246
250
260

Arrayl contains:
ArrayZ2 contains:
4.B,C,D equal: 1

DIM Arrayl{i:3) t
BIM Array2{0:4)
DATA 1,2,3,4
DATA §,6,7
READ A4,B,C
READ Array2(*)
DATA 8,9

RESTGRE

READ Arrayl(s)
RESTGRE 140
READ D

Dimensions a 3-element array.
Dimensions a b-element array.
Places 4 items in stream.
Places 3 items in siream.
Reads first 3 items in stream.
Reads next b items in stream.
Places 2 items in stream.

Re-positions pointer to 1ist item.
Reads first 3 items in stream.
Moves data pointer to item "8".
Reads "8".

PRINT "Arrayl contains:";Arrayl(s);" "
PRINT "Array2 contains:";hrray2(*);" "
PRINT "4,B,C,D equal:";A;B;C;D

END

123
45678
238

7-4 Data Storage and Refrieval

File input and Output (I/0)

The rest of this chapier describes the second general class of data storage and refrieval-—that
of using mass storage files. It presents P Instrument BASIC programming technigues used
for accessing files.

m The first section gives a brief introduction to the general steps you might take to
1 choose a file type
o store data in any file

m Subsequent sections describe details of these steps with ASCII, BDAT, and HP-UX or DOS
files.

Brief Comparison of Available File Types

With HP Instrument BASIC, there are three different types of files in which you can store and
retrieve data, ASCII, BDAT, and HPUX or DOS. Understanding the characteristics of each
file type will help you choose the one hest suited for your specific application.

Note Note that not every system will implement all of these file types.

m ASCIT—used for general text and numeric data storage.
Here are the advantages of this type of file:

o There is less chance of reading the contents into the wrong data type (which is possible
with BDAT and HP-UX files}. Thus, it is the easiest file to read when you don’t know
how it was written.

ri The file format provides fairly compact storage for string data.

o ASCII files are compatible with other HP computers that support this file type. (The
full name of ASCII files is “LIF ASCIL” LIF stands for Logical Interchange Format, a
directory and data storage format that is used by many HP computers.)

oy ASCII files containing HP Instrument BASIC program lines can be read with GET and
written with SAVE.

The main disadvantages of ASCII files are that:
o They can be accessed serially but not randomly.

o They can be written in only default ASCII format (no formatting is possible, and the
data cannot be stored in internal representation). It is possible, however, to format data
by first sending it to a string variable (with OUTPUT ... USING), and then OUTPUT
this string’s contents to the file. (See the subsequent section called “Formatted QUTPUT
with ASCII Files” for examples.)

m BDAT—provide the most compact and flexible data storage mechanism.
These files have several advantages:
o They can be randomly or serially accessed.

o More flexibility in data formats and access methods,

Data Storage and Retrieval 7-5

o Foster transfer rates,

o Generally more space-efficient than ASCII files (except for string data items).

o They allow data to be stored in ASCII format, internal format, or in a “custom” format
{which you can define with IMAGE specifiers).

The disadvantages are that:

= You must know how the data items were written {as INTEGERs, REALs, strings, etc.) in
order to correctly read the data back.

0 These data files cannot be inferchanged with as many other systems as can ASCII files.

m [[P-UX—similar to BDAT files in structure, but also have some of the advantages of ASCII
files:
o Like BDAT files, they can also be accessed randomly or serially, and they can use ASCII,
internal, or custom data representations.

o Like ASCII files, they are useful for data-file interchange; however, the set of computers
with which they can be interchanged is slightly different than LIF ASCII files, HP-UX
files can be interchanged with any other system that uses the Hierarchical File System
{HFS) format for mass storage volumes (such as HP-UX systems, and HP Series 200/300
Pascal systems beginning with version 3.2).

o HP-UX files containing HP Instrument BASIC program lines can be read with GET and
written with RE-SAVE.

s DOS—identical to HP-UX files, they provide file compatibility with MS-DOS.

If in doubt about the type of file to use, choose a BDAT file because of its speed and compact
data storage.

Creating Data Files

You can use three BASIC statements to create data files. Use CREATE ASCII to creale an
ASCII file, CREATE BDAT to create a BDAT file, or simply CREATE to create an HP-UX or DOS
file. Note that the CREATE statement creates a DOS file on 2 DOS file system. Otherwise, it
creates an HP-UX file.

For example, the statements

CREATE ASCIT "Text", 100
CREATE BDAT "Text",100
CREATE "Data_file",100

all create a data file with a length of 100 records in the current mass storage volume and
directory. The file iype is ASCII for the first statement, BDAT for the second, and HP-UX or
DOS for the third.

Note that you can use CREATE, CREATE ASCII, and CREATE BDAT to create files
within LIF volumes, HFS volumes and DOS volumes. Each of these statements contains a
file specifier that can include a volume and directory specification. If no volume or directory

is specified, it creates the file in the current volume and directory as determined by the last
MASS STORAGE IS statement,

7-6 Data Storage and Retrieval

Overview of File I/O

Storing data in files requires a few simple steps. The following program segment shows a
simple example of placing several items in a data file.
100 REAL Real arrayl{1:50,1:25),Real_array2(1:50,1:25)

116 INTEGER Integer_var
126 PI¥ String$[100]

390 ! Specify default mass storage.
400 MASS STORAGE IS ":,700,1"

416 ¢

420 ' Create BDAT data file with ten {256-byte)} records
430 ! on the specified mass storage device (:,700,1).
440 CREATE BDAT "File_1%,10

450 ¢

460 ¢ Assign {open) an I/0 path name to the file,
476 ABSIGH dQPath,1 TO "File_i"

480 ¢

490G ! Write various data items into the file.

506 QUTPUT @Path_1;"Literal" b String literal.
510 O0UTPUT @Path_1;Real arrayi(#) ! REAL array.

520 0UTPUT @Path_1;255 ! Single INTEGER.
53¢ ¢

54¢ ! (lose the I/0 path.
56O ASSIGH @Path_1 TO =*

790 ! Open another I/0 path to the file (assume same default drive).
800C ASSIGN @F_f TO "File_i"

g1¢ !

820 ! Read data into another array (same size and type).

830 ENTER QF_1;String_var$! Must be same data types

840 ENTER QF_1;Real_array2(x) ! used to write the file,

860 ENTER @F_i;Integer var ! "Read it like you wrote it."
860 !

870 ' Close I/0 path.
880 ASSIGN @F_: TO =*

Line 400 specifies the default mass storage device, that is to be used whenever a mass storage
device is not explicitly specified during subsequent mass storage operations. The term mass
storage volume specifier (msvs) describes the string expression used to uniquely identify which
device is to be the mass storage. In this case, *:,700,1” is the msvs,

To store data in mass storage, a data file must be created (or already exist) on the mass
storage media. In this case, line 440 creates a BDAT file; the file created contains 10 defined
records of 256 bytes each. (Defined records and record size are discussed later in this chapter.)

The term file specifier describes the string expression used to uniquely identify the file. In
this example, the file specifier is simply File_1, which is the file’s name. If the file is to be
created (or already exists) on a mass storage device other than the default mass storage, the
appropridte mass storage unit specifier (imsus) must be appended to the file name. If that
device has a hierarchical directory format (such as HFS or MS-DOS discs), then you may
also have to specify a directory path (such as /USERS/MARK/PROJECT _1 for LIF or
\USERS\MARK\PROJECT 1 for MS-DOS).

Data Storage and Retrieval 7-7

Then, in order to store data in (or retrieve data from) the file, you must assign an I/O path
name to the file. Line 470 shows an example of assigning an I/0 path name to the file {(also
called opening an /O path to the file). Lines 500 through 520 show data items of various
types being written into the file through the 1/0 path name.

The 1/0 path name is closed after all data have been sent to the file. In this instance, closing

the I/0 path may have been optional, because a different 1/0O path name is assigned to the

file later in the program. (All I/O path names are automatically closed by the system at the
-end of the program.) Closing an [/O path to a file updates the file pointers.

Since these data items are to be retrieved from the file, another ASSIGN statement is
executed to open the file (line 800). Notice that a different I/O path name was arbitrarily
chosen. Opening this I/0 path name to the file sets the file pointer to the beginning of the
file. (Re-opening the 1/0 path name @File_1 would have also reset the file pointer.)

Notice also that the msvs is not included with the file name. This shows that the current
default mass storage device, here “.,700,17, is assumed when a mass storage device is not
specified.

The subsequent ENTER statements read the data items into variables; with BDAT and
HP-UX files, the data type of each variable must match the data type type of each data item.
With ASCII files, for instance, you can read INTEGER items into REAL variables and not
kave problems.

This is a fairly simple example, however, it shows the general steps youn must take to access
files.

A Closer Look at General File Access

Before you can access a data file, you must assign an 1/O path name to the file. Assigning

an I/0 path name to the file sets up a table in computer memory that contains various
information describing the file, such as its type, which mass storage device it is stored on, and
its location on the media. The I/0 path name is then used in I/O statements (OUTPUT, and
ENTER) that move the data to and from the file.

Opening an O Path

I/0 path names are similar to other variable names, except that I/O path names are preceded
by the “@” character. When an I/O path name is used in a statement, the system looks up
the contents of the I/O path rame and uses them as required by the situation.

To open an I/O path to a file (to set the validity flag to Open), assign the I/O path name to a
file specifier by using an ASSIGN statement. For example, the statement

ASSIGHN @Pathl TO "Example"

assigns an 1/0 path name called “@Pathl” to the file “Example”. The file that you

open must already exist and must be a data file. If the file does not satisfy one of these
requirements, the system will return an error. If you do not use an msus in the file specifier,
the system will look for the file on the current MASS STORAGE IS device. If you want to
access a different device, use the msus syntax deseribed earlier. For instance, the statement

ASSIGN @Path2 TO "Example:HP2122,700"

opens an I/0 path to the file “Example” on thke specified mass storage device. You must
include the protect code or password, if the LIF file has one.

7-8 Data Storage and Retrieval

Once an I/O path has been opened to a file, vou always use the path name to access the file.
An I/0 path name is only valid in the context in which it is opened, unless you pass it as a
pararmeter or put it in the COM area. To place a path name in the COM area, simply specify
the path name in a COM statement before you ASSIGN it. For instance, the following two
statements would declare an I/0Q path name in an unnamed COM area and then open it:

106 COM €Path3
116 ASSIGN @Path3 TO "Filel"

Asgsigning Atiributes

When you open an 1/0 path, certain attributes are assigned to it that define the way data is
to be read and written. There are two attributes that control how data items are represented:
FORMAT ON and FORMAT OFF,

s With FORMAT ON, ASCII data representations are used.
a With FORMAT OF¥F, HP Instrument BASIC’s internal data representations are used.

Additional attributes are available that provide control of such functions as changing
end-of-line (EGL) sequences. (See “ASSIGN” in HP Instrument BASIC Language Reference
for further details.)

As mentioned in the tutorial section, BDAT files can use either data representation; however,
ASCII files permit only ASCIT-data format. Therefore, if you specify FORMAT OFF for an
1/0 path to an ASCII file, the system ignores it. The following ASSIGN statement specifies a
FORMAT attribute:

ASSIGN @Pathi TO "Filel" ;FORMAT OFF

I Filel is a BDAT or HP-UX file, the FORMAT OFF attribute specifies that the internal
data formats are to be used when sending and receiving data through the 1/O path. If the
file is of type ASCII, the attribute will be ignored. Note that FORMAT QFF is the defauli
FORMAT attribute for BDAT and HP-UX files.

Executing the following statement directs the system to use the ASCII data representation
when sending and receiving data through the 1/0 path:

ASSIGN €Path2 T0 "File2" ;FORMAT O

If File2 is a BDAT or HP-UX file, data will be written using ASCIT format, and data read
from it will be interpreted as being in ASCII format. For an ASCII file, this attribute is
redundant since ASCll-data format is the only data representation allowed anyway.

If you want to change the attribute of an I/O path, you can do so by specifying the I/0 path
name and attribute in an ASSIGN statement while excluding the file specifier. For instance, if
you wanted to change the attribute of @Path2 to FORMAT OFF, you could execute

ASSIGN @Path2;FORMAT OFF
Alternatively, you could reenter the entire statement
ASSIGN @Path2 TO "File2";FURMAT GFF

‘These two statements, however, are not identical. The first one only changes the FORMAT
attribute. The second statement resets the entire I/O path table (e.g., resets the file pointer
to the beginning of the file).

Data Storage and Retrieval 7-9

Closing 1/O Paths

[/0 path names not in the COM area are closed whenever the system moves into a stopped
state (e.g., STOP, END, SCRATCH, EDIT, etfc.). I/O path names local to a context are
closed when control is returned to the calling context. Re-ASSIGNing an I/0 path name will
also cancel its previous association.

You can also explicitly cancel an 1/0 path by ASSIGNing the path name to an * {asterisk).
For instance, the statement

ASSIGN @Path2 TO *

closes @Path2. @Path2 cannot be used again until it is reassigned. You can reassign a path
name to the same file or to a different file.

7-10 Data Storage and Retrieval

A Closer Look at Using ASCII Files

You have already been introduced fo general file I/O techniques in the example of writing and
reading a BDAT file in the preceding section. This section gives you a closer look at ASCII
file I/O techniques.

Example of ASCII File [/O

Storing data in ASCIE files requires a few simple steps. The following program segment shows
a simplistic example of placing several items in an ASCII data file. Note that it is nearly
tdentical to the first example in the preceding “Overview of File 1/O” section, except for
changes to the CREATE statement (line 440) and file name.

100
110
120

3%0
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550

790
300
8190
820
830
840
859
860

87¢
880

REAL Real_array1{1:50,1:25),Real_array2{i:50,1:25)
INTEGER Integer _var
DIM String$[100]

! Specify "default” mass storage device.
MASS STGRAGE IS ":,700,1"

!

! Create ASCIT data file with 10 sectors

! on the "default"” mass storage device.
CREATE ASCII "File 2",10

i

! Assign (open) an I/0 path name to the file.
ASSIGN €Path_1 TO "File_ 2"

1

! Write various data items into the file.

OUTPUT @Path_1;"Literal™ ! Stripg literal.
OUTPUT @Path_1i;Real_arrayl(*) ! REAL array.
JUTPUT @Path_1;255 ! 8ingle INTEGER.

! Close the L/0 path.
ASSIGN €Path .1 TO =*

! Open another I/6 path to the file (assume same default drive).
ASSIGHE €F_1 TD "File_2"

t

! Read data into another array {same size and type).

ENTER @F_1;3tring_var ! Must be same data types.

ENTER @F_1;Real_array2(x)

ENTER €F_1;Integer var
]

t Close 1I/0 path.
ASSIGE QF_ 1 TO *

Data Storage and Retrieval 7-11

Data Representations in ASCII Files

In an ASCII file, every data item, whether string or numeric, is represented by ASCII
characters; one byte represents one ASCII character. Fach data item is preceded by a
two-byte length header that indicates how many ASCIH characters are in the item. However,
there is no “type” field for each item; data items contain no indication (in the file) as to
whether the item was stored as string or numeric data. For instance, the number 456 would
be stored as follows in an ASCII file:

Lofaf Tefsfel | oo
LENGTH ASCH

HEADER = ropes

HiNARY 4

Note that there is a space at the beginning of the data item. This space signifies that the
number is positive. If a number is negative, a minus sign precedes the number. For instance,
the number 456, would be stored as follows:

Lolef-fafsle] [y
LENGTH ,ery

HEADER = oope

BINARY 4

If the length of the data item is an odd number, the system “pads” the item with a space to
make it come out even. The string “ABC”, for example, would be stored as follows:

IO{:")!A]B!C(QM) cco%
“W

LENGTH ASCH

HEADER = £ODES

BiNARY 3

There is often a relatively large amount of overhead for anmeric data items. For instance, to
store the integer 12 in an ASCII file requires the following six bytes:

10 :’)1 1| 2 [pa) see %
LENGTH ASCN

HEADER = copeEs

BIMNARY 3

Simitarly, reading numeric data from an ASCII file can be a complex and relatively slow
operation. The numeric characters in an item must be entered and evaluated individually by
the system’s “number builder” routine, which derives the number’s internal representation.

7-12 Data Storage and Retrieval

(Keep in mind that this routine is called automatically when data are entered into a numeric
variable.) For example, suppose that the following item is stored in an ASCII file:

I T T LT =]
e et v ’
LENGTH ASCH
HEADER = CoODES
BINARY 10

Although it may seem obvious that this is not a numeric data item, the system has no way
of krowing this since there is no type-field stored with the item. Therefore, if you attempt to
enter this item into a numeric variable, the system uses the number-builder routine to strip
away all nen-numeric characters and spaces and assign the value 123 to the numeric variable.
When you add to this the intricacies of real numbers and exponential notation, the situation
hecomes more complex. For more information about how the number builder works, see the
chapter called “Entering Data” in AP Instrument BASIC Interfacing Techniques.

Because ASCII files require so much overhead (for storage of “small” items), and because
retrieving numeric data from ASCII files is sometimes a complex process, they are not the
preferred file type for numeric data when compactness is important. However, ASCII files are
interchangeable with many other HP products.

In this chapter, we refer to the data representation described above as ASCII-data format.

As mentioned earlier, you can also store data in BDAT files in ASCII format (by ssing the
FORMAT ON attribute). Be careful not to confuse the ASCII-file type with the ASCII-data
format. The ASCII format used in BDAT files when FORMAT ON is specified differs from
the format used in ASCII files in several respects. Fach item output fo an ASCII file has its
own length header; there are no length headers in a FORMAT ON BDAT file. At the end of
each OUTPUT statement an end-of-line sequence is written to a FORMAT ON BDAT file
unless suppressed by an IMAGE or EOL OFF. No end-of-line sequence is written to an ASCII
file at the end of an OUTPUT statement.

In general, you should only use ASCII files when you want to transport data between HP
Instrument BASIC and other machines. There may be other instances where you will want to
use ASCII files, but you should be aware that they cause a noticeable transfer rate degradation
compared to BDAT and HP-UX files (especially for numeric data items).

Formatted OUTPUT with ASCII Files

As mentioned in the “Brief Comparison of File Types,” you cannot format items sent to
ASCII files; that is, you cannot use the following statement with an ASCII file:

QUTPUT @Ascii_file USING "#,DD.D,4X,5A" ;l\hzmber,S'cring$

You can, however, direct the ountput to a string variable first, and then QUTPUT this
formatted string to an ASCII file:

OSTPUT String_var$ USING "#,DD.D,4X%,54" ;NBumber,String$
UUTPUT @Ascii_ file;String.var$

When a string variable is specified as the destination of data in an QUTPUT statement,
source items are evaluated individually and placed into the variable according to the free-field
rules or the specified image, depending on which type of OUTPUT statement is used. Thus,

Data Storage and Refrieval 7-13

item terminators may or may not be placed into the variable. The ASCII data representation
is always used during outputs to siring variables; in fact, date output to string variables is
exactly like that sent to devices through 1/0 paths with the FORMAT ON aitribute.

When using OUTPUT to a string, characters are always placed into the variable beginning
at the first position; no other position can be specified as the beginning position at which
data will be placed. Thus, random access of the information in string variables is nol ellowed
from OUTPUT and ENTER statements; all data must be accessed serially. For instance,

if the characters “1234” are output to a string variable by one OQUTPUT statement, and

a subsequent OUTPUT statement outputs the characters “5678” to the same variable,

the second output does not begin where the first one left off (i.e., at string position five}.
The second OUTPUT statement begins placing characters in position one, just as the first
OUTPUT statement did, overwriting the data initially output to the variable by the first
OUTPUT statement.

The string variable’s length header (2 bytes) is updated and compared to the dimensioned
length of the string as characters are output to the variable. If the string is filled before
all items have been output, an error is reported; however, the string contains the first n
characters output {where n is the dimensioned length of the string).

The following example program shows how outputs to string variables can be used to reduce
the overhead required in ASCII data files. To do this, the program compares two possible
methods for storing data in an ASCII data file. The first method stores 64 two-byte items

in a file one at a time. Each two-byte item is preceded by a two-byte length header. The
second method stores 64 two-byte items in a siring array that is output to a string variable.
The string variable is then output to an ASCII data file with only one two-byte length header
being used. Since the second method used only one two-byte length header to store 64
two-byte items, it can easily be seen that the second method required less overhead. Note that
the second method is also the only way to format data sent to ASCII data files.

100 PRINTER IS CRT

110 ¢

120t Create a file 1 record long (=256 bytes).
130 ON ERROR GOTO File exists

140 CREATE ASCII "TABLE",1

150 File_exists: OFF ERROR

160 !

170 !

180 ! First method outputs 64 items individually..
190 ASSIGN @hscii TO "TABLE"

200 FOR Item=: TO 64 ! Btore 64 2Z-byte items,.

210 QUTPUT @Ascii;CHR${Iten+31)&CHRS(64+RiD=*32)
220 STATUS Qiscii,b;Rec,Byte
230 DISP USING Image_l;Item,Rec,Byte

240 HEXT Item

250 Image_1i: IMAGE "Item ",DD," Record ",D," Byte ",3D
260 DISP

270 Bytes_used=2564(Rec~1}+Byte~1

280 PRINT Bytes_used;" bytes used with 1st method.”

280 PRINT

300 PRIY

310 H

320 i

330 { Second method consolidates items.

340 DIH Array$(1:64)[27,String$[128]
350 ASSIGN @Ascii TO "TABLE"
360 !

7-14 Data Storage and Retrieval

370 FOR Item=1 TO 64

380 hrray$(Ttem)=CHR$ {Tten+31) XCER$ (64+RND*32)

390 HERT Item

400 !

410 OUTPUT String$;Array$(s); ! Consclidate in string variable.
420 CUTPUT &hscii;String$ ¢ OUTPUT to file as 1 item,

430 !

440 STATUS @hscii,b;Rec,Byte

450 Bytes_used=256%(Rec-1)+Byte-1

460 PRIET Bytes_used;" bytes used with 2nd method."
476 ¢

48¢ END

The program shows many of the features of using ASCII files and string variables. The first
method of cutputting the data items shows how the file pointer varies as data are sent to the
file. Note that the file pointer points to the next file position at which a subsequent byte will
be placed. In this case, it is incremented by four by every OUTPUT statement (since each
item is a two-byte quantity preceded by a two-byte length header).

The program could have used a BDAT file, that would have resulted in using slightly less
disc-media space; however, using BDAT files usually saves much more disc space than would
be saved in this example. The program does not show that ASCII files cannot be accessed
randomly; this is one of the major differences between using ASCII and BDAT (and HP-UX)
files.

Using VAL$

The VALS function (or a user-defined function subprogram) and outputs made to string
variables can be used to generate the string representation of a number. The advantage of
the latter method is you can explicitly specify the number’s image. The following program
compares a string generated by the VALS function to that generated by outputting a number
to a string variable:

100 ¥=12345678

110 H

120 PRINT VAL$(X)

130 1

140 OUTPUT Yal$ USING "#,3D.E";X

150 PRIKT Val$

160 !
170 ~ EHD

priats

1.2346678E+7
123 . E+0b

Formatted ENTER with ASCII Fiies
Data is entered from string variables in much the same manner as output to the variable. For
example,

ENTER @File;String$
ENTER String$;Vari, Var2$

All ENTER statements that use string variables as the data source interpret the data
according to the FORMAT ON attribute. Data is read from the variable beginning at the
first string position; if a subsequent ENTER. statement reads characters from the variable,

Data Storage and Retrieval 7.15

the read also begins at the first position. If more data is to be entered from the string than
is contained in the string, an error is reported; however, all data entered into the destination
variable{s) before the end of the string was encountered remain in the variable(s) after the
eITOr 0CCuzs.

When entering data from a string variable, the computer keeps track of the number

of characters taken from the variable and compares it to the string length., Thus,
statement-termination conditions are not required; the ENTER statement automatically
terminates when the last character is read from the variable. However, item terminafors are
still required #f the items are to be separated and the lengths of the items are not known. If
the length of each item is known, an image can be used to separate the items.

A Closer Look at BDAT and HP-UX or DOS Files

As mentioned earlier, BDAT and HP-UX files are designed for flexibility (random and serial
access, choice of data representations), storage-space efficiency, and speed. This chapter
provides several examples of using these types of files.

Data Representations Available
The data representations available are

w HP Instrument BASIC internal formats (allow the fastest data rates and are generally the
most space-efficient)

m ASCII format (the most interchangeable}
» custom formats (design your own data representations using IMAGE specifiers)

The remainder of this section gives more details for each type of data representation.

Random vs. Serial Access

Random access means that you can directly read from and write to any record within the file,
while serial access only permits you to access the file in order, from the beginning. That is,
you must read records 1, 2, ... , n—1 before you can read record n. Serial access can waste a
lot of time if you're trying to access data at the end of a file. On the other hand, if you want
to access the entire file sequentiaily, vou are better off using serial access than random access,
hecause it generally requires less programming effort and often uses less file space. BDAT and
HP-UX files can be accessed both randomly and serially, while ASCII files can be accessed
only serially.

Data Representations Used in BDAT Files

BDAT files allow you to store and retrieve data using internal format, ASCII format, or
user-defined formats.

® With internal format (FORMAT OFY'), items are represented with the same format the

system uses to store data in internal computer memory. (This is the defanit FORMAT for
BDAT and BP-UX files.)

w With ASCIH format (FORMAT ON}, items are represented by ASCII characters.

7-16 Data Storage and Retrieval

m User-defined formats are implemented with programs that employ QUTPUT and ENTER
statements that reference IMAGE specifiers (items are represented by ASCII characters).

Complete descriptions of ASCII and user-defined formats are given in HP Instrurent
BASIC Interfacing Techniques. This section shows the details of internal (FORMAT OFF)
representations of numeric and string data.

BDAT Internal Representations (FORMAT OFF}

~In most applications, you will use internal format for BDAT files. Unless we specify otherwise,
vou can assume that when we talk about retrieving and storing data in BDAT files, we are
also talking about internal format. This format is synonymous with the FORMAT OI'F
attribute described fater in this chapter.

Because FORMAT OFF assigned to BDAT files uses almost the same format as internal
memory, very little interpretation is needed to transfer data between the compuier and a
FORMAT OFF file. FORMAT OFF files, therefore, not only save space but also save time.

Data stored in internal format in BDAT files require the following number of bytes per item:

Data Type Internal
Representation

INTEGER 2 bytes

REAL 8 bytes

String d-hyte length header; 1 byte
per character (plus I pad
byte if atring length 1 an odd
number)

INTEGER values are represented in BDAT files that have the FORMAT OFF attribute by
using a 16-bit, two's-complement notation that provides a range —32 768 through 32 767. If
bit 15 (the MSB) is 0, the number is positive. If bit 15 equals 1, the number is negative; the
value of the negative number is obtained by changing all ones to zeros, and all zeros to ones,
and then adding one to the resulting value.

Binary Decimal
Representation Equivalent
(6000090 00010111 23
11111111 11101600 24
16000009 06600000 —32768
GE111111 13311111 32767
FITI111T 1RELL10T]
00000000 00000001 1
0100011 01000111 9031
11011100 16311001 ~3031

Data Storage and Retrieval

7-17

REAL values are stored in BDAT files by using their internal format {when FORMAT OFF
is in effect): the IEEE-standard, 64-bit, floating-point notation. Each REAL number is
comprised of two parts: an exposent (11 bits), and a mantissa (53 bits). The mantissa uses
a sign-and-magnitude notation. The sign bit for the mantissa is not contiguous with the rest
of the mantissa bits; it is the most significant bit (MSB) of the entire eight bytes. The 11-bit
exponent is offset by 1 023 and occupies the 2nd through the 12th MSB’s. Fvery REAL
number is internally represented by the following equation. (Note that the mantissa is in
binary notation):

~qmantissa sign . oexponent — 1023 . . Lo a5o00

String data are stored in FORMAT OFF BDAT files in their internal format.

Every character in a string is represented by one byte that contains the character’s ASCII
code. A 4-bvie length header containg a value that specifies the length of the string. If the
length of the string is odd, a pad character is appended to the string to get an even number of
characters; however, the length header does not include this pad character.

The string “A™ would be stored:

QGOG00Q0 00000000 00000000 00000001 010006001 00100600
Length = 0001 (binary) ASCIT 65 ASCII 32

In this case, the space character (ASCII code 32) is used as the pad character; however, not
all operations use the space as the pad character.

ASCIl and Custom Data Representations

When using the ASCII data format for BDAT files, all data items are represented with ASCII
characters. With user-defined formats, the image specifiers referenced by the QOUTPUT or
ENTER statement are used to determine the data representation (which is ASCII characters).

QUTPUT €File USING "SDD.DD,XX,B,#";Number,Binary_value
ENTER &File USIKG "B,B,404,%";Bin_vall,Bin_val2,String$

Using both of these formats with BDAT files produce results identical to using them
with devices, The entire subject is described fully in HP Instrument BASIC Interfacing
Technigues.

Data Representations with HP-UX and DOS Files
HP-UX and DOS files are very similar to BDAT files. The only differences between them are:
m The internal representation (FORMAT OFF) of strings is slightly different:

o HP-UX and DOS FORMAT OFF strings have no length header; instead, they are
terminated by a null character, CHRS$(0).

0 BDAT FORMAT OFF strings have a 4-byte length header;

w HP-UX and DOS files have a fized record length of 1. (BDAT files allow user-defirable
record lengths.)

u IP-UX and DOS files have no system sector like BDAT files do (see the next section for
details).

7-18 Data Storage and Retrieval

The FORMAT ON representations for HP-UX files are the same as for devices, The entire
subject is described fully in HF Instrument BASIC Interfacing Technigues,

Note Throughout this section on Files, you should be able to assume that, unless
otherwise stated, the technigues shown will apply to HP-UX and DOS as well
as BDAT files.

BDAT File System Sector

On the disc, every BDAT file is preceded by a system sector that contains an end-of-file
(EOT) pointer and the number of defined records in the file. All data is placed in suceeeding
sectors. You cannot directly access the system sector. However, as vou shall see later, it is
possible to indirectly change the value of an EOF peinter.

< -
SECTOR: “ ; 5 3
| NUMBER
EOF | OF Y
POINTER | peFiNgD oo
! RECORDS
Yy AN
hd hd
SYSTEM SECTOR DATA

EOF Pointer: e number of seciors from beginning of file
{32—bit binary number}

e number of byies from beginning of sector
(32—hit binary number)

Number of defined records: See description below
{(32—bit binary number)

Defined Records

To access a BDAT file randomly, you gpecify a particalar deflined record. Records are the
smallest units in a file directly addressable by a random OUTPUT or ENTER.

m With BDAT files, defined records can be anywhere from 1 through 65 534 bytes long.
m With HP-UX and DOS files, defined records are always 1 byte long.

Specifying Record Size (BDAT Files Only)

Both the length of the file and the length of the defined records in it are specified when you
create a BDAT file. This section shows how to specify the record length of a BDAT file. (The
next section talks about how to choose the record length.)

For example, the following statement would create a file called Example with 7 defined
records, each record being 128 bytes long:

CREATE BDAT "Example",7,128

If you don’t specify a record length in the CREATE BDAT statement, the system will set
each record to the default length of 256 bytes.

Data Storage and Retrieval 7-18

Both the record length and the number of records are rounded to the nearest integer.
For example, the statement
CREATE BDAT "0dd",3.5,28.7
would create a file with 4 records, each 30 bytes long. On the other hand, the statermnent
CREATE "Odder",3.49,28.3
- would create a file with 3 records, each 28 bytes long.
Once a file is created, you cannoi change its length, or the length of its records. You must
therefore calculate the record size and file size required before you create a file.
Choosing a Record Length (BDAT Files Only)

Record length is important only for random OUTPUTs and ENTERs. It is not important for
serial access. The most important consideration in selecting of a proper record length is the
type of data being stored and the way you want to retrieve it. Suppose, for instance, that you
want t0 store 100 real numbers in a file, and be able 1o access each number individually. Since
each REAL number uses 8 bytes, the data itself will iake up 800 bytes of storage.

SYSTEM SECTOR 5@ @

y#

800 BYTES OF DATA

The question is how to divide this data into records. If you define the record length to be
8 bytes, then each RFEAL number will fill a4 record. To access the 15th number, you would
specify the 15th record. If the data is organized so that you are always accessing two data
items at a time, you would want to set the record length to 16 bytes.

The worst thing you can do with data of this type is to define a record length that is not
evenly divisible by eight. If, for example, you set the record length to four, you would only be
able to randomly access half of each real number at a time, In fact, the system will return an
Fud-Of-Record condition if you try to randomly read data into REAL variables from records
that are less than 8 bytes long.

So far, we have been talking about a file that contains only REAL numbers. For files that
contain only INTEGERs, vou would want to define the record length to be a multiple of two.
To access each INTEGER individually, vou would use a record lengih of two; to access two

INTEGERS at a time, you would use a record length of four, and so on.

Files that contain string data present a slightly more difficult situation since strings can
be of variable length. If you have three strings in a row that are 5, 12, ard 18 bytes long,
respectively, there is no record length less than 22 that will permit you te randomly access
each string. If you select a record length of 10, for instance, you will be able fo randomly
access the first string but not the second and third.

If you want to access strings randomly, therefore, you should make your records long encugh
to hold the largest string. Once you've done this, there are two ways to write string data to a

7-20 Data Storage and Retrieval

BDAT file. The first, and easiest, is to output each string in random mode. In other words,
select a record length that will hold the longest string, then write each string into its own
‘record. Suppose, for example, that you wanted to OUTPUT the following 5 names into a
BDAT file and be able to access each one individually by specifving a record number.

John Smith
8teve Anderson
Mary Martin
Bob Jones
Beth Robinson

The longest name, “Steve Anderson”, is 14 characters. To store it in a BDAT file would
require 18 bytes (four bytes for the length header). So you could create a file with record
length of 18 and then OUTPUT each item into a different record:

100 CREATE BDAT "Kames'",5,18 ! Create a file.

110 ASSIGH QFile TO "Kames" ! Open the file (FURMAT OFF).
120 0UTPUT 9File,l;"John Smith" ! Write names to

130 OUTPUT QFile,2;"Steve Anderson' ! successive records

140 QUTPUT @File,3;"Mary Martin" ' din file.

180 0UTPUT 4QFile,4;"Bob Jones"

160 OUTPUT @File,5;"Beth Robinsom”

On the disc, the file Names would look like the figure below. The four-byte length headers
show the decimal value of the bytes in the header. The data are shown in ASCII characters.

Lolojofddfelnin] Tslml (Tt IhT dx el CloToTd s Tt Te[v el Talnlale]

tr [sleln[clalohdmlalr- Tv] Imfalr [t Tilnlelc ol oToleleto o] [0Ta]

nlelslalx]x]<Jojciolrsiefeftin] |Rlofaf Jnfsfelnl@lxlxhulxlxx]x]

1 length header
x = whatever data previously resided in that space
@ = pad character

The unused portions of each record contain whatever data previously occupied that physical
gpace on the disc,

Writing Data to BDAT, HP-UX and DOS Files

Data is always written to a file with an OUTPUT statement via an I/O path. You can
OUTPUT numeric and string variables, numeric and string expressions, and numeric and
string arrays. When you OUTPUT data with the FORMAT OFF, data items are written to
the file in internal format {described earlier).

There is no limit to the number of data items you can write in a single OUTPUT statement,
except that program statements are limited to two CRT lines. Also, if you try to QUTPUT
more data than the file can hold, or the record can hold (if you are using random access), the
system will return an EOT or EOR condition. If an EOF or EOR condition occurs, the file
retains any data output before the end coadition occurred.

There is also no restriction on mixing different types of data in a single QOUTPUT statement.
The system decides which data type each item is before it writes the item to the disc. Any
item enclosed in quotes is a string. Numeric variables and expressions are OUTPUT according

Data Storage and Retrieval 7-21

to their type (8 bytes for REAL values, and 2 bytes for INTEGER values). Arrays are written
to the file in row-major order (right-most subscript varies quickest).

Fach data item in an OUTPUT statement should be separated by either a comma or
semi-colon (there is no operational difference between the two separators with FORMAT
OFF). Punctuation at the end of an OUTPUT statement is ignored with FORMAT OFF.

Sequential (Serial) OUTPUT

Data is written serially to BDAT and HP-UX files whenever you do not specify a record
number in an OUTPUT statement. When writing data serially, each data item is stored
immediately after the previous item {with FORMAT OFF in effect, there are no separators
between items). Sector and record boundaries are ignored. Data items are written to the file
one by one, starting at the current position of the file pointer. As each item is written, the file
pointer is moved to the byte following the last byte of the preceding item. After all of the
data items have been OUTPUT, the file pointer points to the byte following the last byte inst
written.

There are a number of circumstances where it is faster and easier to use serial access

instead of random access. The most obvious case is when you want to access the entire file
sequentially. If, for example, you have a list of data items thai you want to store in a file and
you know that you will never want to read any of the items individually, you should write
the data serially. The fastest way to write data serially is to place the data in an array, then
OUTPUT the entire array at once.

Another situation where you might want to use serial access is if the file is so small that it can
fit entirely into internal memory at once. In this case, even if you want to change individual
items, it might be easier to treat the entire file as one or more arrays, manipulate as desired,
then write the entire array(s) back to the file.

Random OUTPUT

Random OUTPUT allows you to write to one record at a time. As with serial OUTPUT,
there are EQF and file pointers that are updated after every QUTPUT. The EOF pointers
follow the same rules as in serial access. The file pointer positioning is also the same, except
that it is moved to the beginning of the specified record before the data is OUTPUT. if you
wish to write randomly to a newly created file, start at the beginning of the file and write
some “dummy” data into every record.

If you attempt to write more data to a record than the record will hold, the system will report
an End-Of-Record (EOR) condition. An EOF condition will result if you try to write data
more than one record past the EOF position. EOR conditions are treated by the system just
like EOY conditions, except that they return Error 60 instead of 59. Data already written to
the file before an EOR condition arises will remain intact.

7-22 Data Storage and Refrieval

Reading Data from BDAT, HP-UX and DOS Files

Data is read from files with the ENTER statement. As with OUTPUT, data is passed along
an 1/0 path. You can use the same I/0 path you used to QUTPUT the data or you can use a
different 1/0O path. '

You ean have several variables in a single ENTER statement. Each variable must be
separated from the other variables by either a comma or semi-colon. It is extremely important
to make sure that your variable types agree with the data types in the file. If you wrote a
REAL number to a file, you should ENTER it into a REAL variable; INTEGERSs should be
entered into INTEGER. variables; and strings into string variables. The rule to remember is

Read it the way you wrote it.
That is the only technique that is always guaranteed to work.

In addition to making sure that data types agree, make sure that access modes agree. If you
wrote data serially, you should read it serially; if you wrote it randomly, you should read it
randomly. There are a few exceptions to this rule that we discuss later. However, you should
be aware that mixing access modes can lead to erroneous results unless you are aware of the
precise mechanics of the file system.

Reading String Drata from a File

When reading string data from a file, you must enter it into a string variable. How the system
does this depends on file type and FORMAT attribute assigned to the file:

m With FORMAT OFF assigned to a BDAT file, the system reads and interprets the first
four bytes after the file pointer as a length header. It will then try to ENTER as many
characters as the length header indicates. If the string has been padded by the system to
make its length even, the pad character is not read into the variable.

s With FORMAT OT'F assigned to an HP-UX file, strings have no length header. Instead,
they are assumed to be null-terminated; that is, entry into the string terminates when a null
character, CHR$(0), is encountered.

m With FORMAT ON assigned to either type of file, the systern reads and interprets the bytes
as ASCII characiers. The rules for item and ENTER-statement termination match those for
devices. {See “Entering Data” in HP Instrument BASIC Interfacing Technigques for details.)

After an ENTER statement has been executed, the file pointer is positioned to the next
unread byte. If the last data item was a padded siring (written to a BDAT file when using
FORMAT OFF), the file pointer is positioned after the pad. If vou use the same 1/O path
name to read and write data to a file, the file pointer will be npdated after every ENTER and
QUTPUT statement. If you use different I/0 path names, each will have its own file pointer
which is independent of the other. However, be aware that each also has its own EOT pointer
and that these pointers may not match, which can cause problems.

Entering data does not affect the EOF pointers. If you attempt to read past an EOF pointer,
the system will report an FEOF condition.
Serial ENTER

When you read data serially, the system enters data into variables starting af the current
position of the file pointer and proceeds, byte by byte, until all of the variables in the ENTER
statement have been filled. If there is not enough data in the file to fill all of the variables,

Data Storage and Retrieval 7-23

the system returns an EOQT condition. All variables that have already taken values before the
condition occurs retain their values.

The following program creates a BDAT file, assigns an I/0 path name to the file (with default
FORMAT OFF attribute), writes five data items serially, and then retrieves the data items.

10 CREATE BDAT "STORAGE",1 ' Could also be an HP-UX file.

20 ASSIGN @Path T4 "STORAGE™

30 INTEGER ¥um,First,Fourth

40 lam=5

60 OUTPUT @Path;Num,"squared",'" equals",Hum*Num,"."

70 ASSTGHN @Path TD "STORAGE"

80 ENTER @Path;First,Second$,Third$,Fourth,Fifih3

90 PRINT First;Second$;Third$,Fourth,Fifth$

160 EHD

prints
b squared equals 25.

Note that we re-ASSIGNed the 1/0 path in line 70. This was done to reposition the file
pointer to the beginning of the file. 1If we had omitted this statement, the ENTER would have
produced an FOF condition.

Random ENTER

When you ENTER data in random mode, the system starts reading data at the beginning
of the specified record and continues reading until either all of the variables are filled or the
system reaches the FOR or EOF. If the system comes to the end of the record before it has
filled all of the variables, an BOR condition is returned.

In the following example, we randomly OUTPUT data to 5 successive records, and then
ENTER the data into an array in reverse order.

10 CREATE BDAT "S{Q_ROOTS",5,2%8
20 ASSTGE @Path TO "SQ_ROGTS" ' Defauli is FORMAT OFF.
36 FCGR Inc=1 to b
40 OUTPUT @Path,Inc;Inc,SOR(Inc) ! Outputs twe &~byte REALs each time.
50 KEXT Inc
60 FGR Inc=5 TO 1 STEP -1
70 EWTER @Path,Inc;Fum{Inc},Sgroot(Inc)
80 NEXT Inc
a0 PRINT "Humber","Sguare Root"
100 FOR Tnc=1 TO &
110 PRIET Hum{Inc),Sqreot{Inc}
120 KEXT Inc
130 ESD
prints
Humber Square Root
i 1
2 1.41421356237
3 1.73205080757
4 2
5 2.2360679775

In this example, there was no need to re-ASSIGN the 1/0 path because the random ENTER
antomatically repositions the file pointer.

7-24 Data Storage and Retrieval

Line 40 of the above program outputs two 8-byte REALs to the BDAT file called SQ_RDDTS.
Note that this line would have fo be changed for outputs made to HP-UX files because
HP-UX files always have a record length of one. For example, the OUTPUT statement would
ook like this:

QUTPUT @Path, ((Inc~1)*2%8)+1;Inc,SQR{Inc)
And the ENTER statement would look like this:
ENTER @Path, ((Inc~1)%2%8)+1;Num(Inc),Sqroot(Inc)

Executing a random ENTER without a variable list has the effect of moving the file pointer to
the beginning of the specified record. This is useful if vou want to serially access some data in
the middle of a file. Suppose, for instance, that you kave a BDAT file containing 100 8-byte
records, and each record has a REAL number in it. If you want to read the last 50 data items
you can position the file pointer to the 51st record and then serially read the remainder of the
file into an array.

T

100 REAL Array(50)
110 ENTER @Realpath,bl; 1 51%8 is HP-UX record number.
120 ENTER @Realpath;Array(*)

Accessing Files with Single-Byte Records

With BDAT files, you can define records to be just one byte long (defined records in HP-UX
files are always 1 byte long). In this case, it doesn’t make sense to read or write one record at
a time since even the shortest data type requires two bytes to store a number.

Random access to one-byte records, therefore, has its own set of rules. When you access a
one-byte record, the file pointer is positioned to the specified byte. From there, the access
proceeds in serial mode., Random OUTPUTs write as many bytes as the data item requires,
and random ENTERs read enough bytes to fill the variable.

The example below illustrates how you can read and write randomiy to one-byte records.

10 IKTEGER Int

20 CREATE BDAT "BYTE",106,1

30 ASSIGH ©@Bytepath TO "BYTE!
40 GQUTPUT @Bytepath,1;3.87

50 OGTPOT @Bytepath,9;3

60 OUTPUT @Bytepath,il;'string”
70 ENTER @Bytepath,9;Int

80 ERTER @Bytepath,l;Real

90 ENTER @Bytepath,11;5tr$

100 PRINT Real
110 FRINT Int
120 PRINT Str§
130 END

prints

3.67
3
string

Note that we had fo declare the variable Int as an INTEGER. If we hadn’t, the system would
have given it the default type of REAL and would therefore have required 8 bytes.

Data Storage and Retrieval 7-25

Accessing Directories

A directory is merely an index to the files on a mass storage media. The HP Instrument
BASIC language has several features that allow you to obtain information from the directories
of mass storage media. This section presents several technigues that will help you access this
information.

To get a catalog listing of a directory, you will use the CAT statement. Executing CAT with
no media specifier directs the system to get a catalog of the current system mass storage
directory.

CAT

Including a media specifier directs the system to get a catalog of the specified mass storage.
Here are some examples:

CAT ":HP9122,700"

CAT ":,700,0"
CAT "\BLP\PRDJECTS" DOS Volumes Only
CAT */WORK/PROJECTSH HFS Volumes Only

Both of the preceding statements sent the catalog listing to the current system printer {either
specified by the last PRINTER IS statement, or defaulting to CRT).

Sending Catalogs to External Printers

The CAT statement normally directs its output to the current PRINTER IS device, The CAT
statement can also direct the catalog to a specified device, ag shown in the following examples:

CAT TO #726
CAT TO #External prir
CAT TO #Device_selector

The paramenter following the # is known as a device selector.

7-26 Data Storage and Retrieval

Using a Printer

Sooner or later a program needs to print something. A wide range of printers are
supported by HP Instrument BASIC. This chapter covers the statements commonly used to
comminicate with external printers.

Selecting the System Printer

The PRINT statement normally directs text to the screen of the CRT where one is present
on the instrument. Text may be redirected to an external printer by using the PRINTER, IS
statement.

After the printer is switched on and the computer and printer have been connected via an
interface cable, there is only one plece of information needed before printing can begin. The
computer needs to know the correct device selector for the printer. This is analogous to
knowing the correct telephone number before making a call.

Device Selectors

A device selector is a number that uniquely identifies a particular device connected to the
compiuter. When only one device is allowed on a given interface, it is uniquely identified by
the interface select code. In this case, the device selector is the same as the interface select
code.

For example, the internal CRT is the only device at the interface whose select code is 1. To
direct the output of PRIN'T statements to the CRT, use one of the following statements:

PRINTER IS 1
PRINTER IS CRT

These statements define the screen of the CRT to be the system printer. Until changed,

the output of PRINT statements will appear on the screen of the CRT. (See your
instrument-specific HP Instrument BASIC manual for information regarding the CRT display
usage.)

Note To view data on the CRT of some host instruments running HP Instrument
BASIC, you may need to allocate a display partition. Refer to your
instrument-specific HP Instrument BASIC manual for information on display
partitions.

When more than one device can be connected to an interface, such as the internal HP-1B
interface (interface select code 7), the interface select code no longer uniquely identifies the
printer. Ixira information is required. This extra information is the primary address.

Using a Printer 8-1

Using Device Selectors to Select Printers

A device selector is used by several different statements. In each of the following, the numeric
expressions are device selectors.

PRINTER IS 70% Specifieg a printer with interface select code 7 and primary address

PRINTER IS PRT 01 (PRT is a numeric function whose value is always 701).

PRINTER IS 1407 Specifies a printer with interface select code 14 and primary
address 07.

CAT TO #701 Prints a disc catalog on the printer at device selector 701.

LIST #701 Lists the program in memory to a printer at 701.

Most statements allow a device selector to be assigned to a variable. Either INTEGER or
REAL variables may be used.

PRINTER IS Hal
CAT TO #Dog

The following three-letter mnemonic functions have been assigned useful values.

Mnemonic Value
PRT 701
KBD 2
CRT 1

The mnremonic may be used anywhere the numeric device selector can be used.

Another method may be used to identify the printer within a program. An 1/O path name
may be assigned to the printer; the printer is subsequently referenced by the 1/0 path name.

Using Control Characters and Escape Sequences

Most ASCIH characters are printed or an external printer just as they appear on the screen of
the CRT. For some printers, there may be exceptions. Several printers will also support an
alternate character set: either a foreign character set, a graphics character set, or an enhanced
character set. If your printer supports an alternate character set, it usually is accessed by
sending a special command to the printer.

Control Characters

In addition to a “printable” character set, printers usually respond to control characters.
These non-printing characters produce & response from the printer. The following table shows
some of the control characters and their effect.

8-2 Using a Printer

Typicat Printer Control Characters

Printer’s Response Control Character ASCII Value
Ring printer’s bell T
Backspace one character 8
Horizontal tab (CTRLYD) 9
Line-feed 10
Form-feed (CTRLHE) 12
Carriage-return 13

One way to send control characters to the printer is the CHRS lunction. Execute the
following:

PRINT CHR$(12>

Refer to the appropriate printer manual for a complete listing of control characters and their
effect on your printer,

Escape-Code Sequences

Similar in use to control characters, escape-code sequences allow additional control over most
printers, These sequences consist of the escape character, CHR$(27), followed by one or more
characters.

Since each printer may respond differently to control characters and escape code sequences,
check the manual that came with your printer.

Formatted Printing

For many applications the PRINT statement provides adequate formatting. The simplest
method of print formatting is by specifying a comma or semicolon between printed items.

Wkhen the comma is used to separate items, the printer will print the items on field
boundaries. Fields start in column one and occur every ten columns (columns 1, 11, 21,
31, ... }. Using the following values in a PRINT statement: A=1.1, B=-22.2, C=3E+5,
D=5.1E+8&.

10 PRINT RPT$("1234567890",4)
20 PRINT 4,B,C,D

prints

1234567890123456789012345678901234567890
1.1 -22.2 300000 5.1E+8

Note the form of numbers in a normal PRINT statement. A positive number has a leading
and a trailing space printed with the number. A negative number uses the leading space
position for the “—7 sign. This is why the positive numbers in the previous example appear fo
print one column to the right of the field boundaries. The next example shows how this form
prevents numeric values from running together.

Using a Printer 8-3

10 PRINT RPT3$('12345678390",4)
20 PRINT A;B;C;D

prints

1234567890123456789012345675801234567690
1.4 -22,2 300000 5.:iE+8

Using the semicolon as the separator caused the numbers to be printed as closely together as
the “compact” form allows. The compact form always uses one leading space {except when
the number is negative) and one trailing space.

The comma and semicolon are often all that is needed to print a simple table. By using
the ability of the PRINT statement to print the entire contents of of a array, the comma or
semicolon can be used to format the output.

If eack array element contained the value of its subscript, the statement

PRINT Array(x);

prints

0123456789 10 11 12 13 14...

Another method of aligning items is to use the tabbing ability of the PRIN'T statement.
PRINT TAB(25);-1.414

prints

123456789012345678901234567890123
~1.414

While PRINT TAB works with an external printer, PRINT TABXY may not. PRINT
TABXY may be used to specify both the horizontal and vertical position when printing to an
internal CRT.

A more powerful formatting technique employs the ability of the PRINT statement to allow
an image to specify the formaf.

Using Images

Just as a mold is used for a casting, an image can be used to format printing. An image
specifies how the printed item should appear. The computer then attempts to print to item
according to the image.

One way to specify an image is to include it in the PRINT gtatement. The image specifier is
enclosed within quotes and consists of one or more field specifiers. A gemicolon then separates
the image from the items to be printed.

PRINT USING "D.DDD";PI

This statement prints the value of pi (3.141592659 ...) rounded to three digits to the right of
the decimal point.

3.142

B-4 Using a Printer

For each character “D” within the image, one digit is to be printed. Whenever the number
contains more non-zero digits to the right of the decimal than provided by the field specifier,
the last digit is rounded. If more precision is desired, more characters can he used within the
Image.

PRINT USING "D.10D";PI

3.1415926536

Instead of typing ten “D” specifiers, one for each digit, a shorter notation is to specify a
repeat factor before each field specifier character. The image “DDDDDD” is the same as the
im&ge 566})77‘

The image specifier can be included in the PRINT statement or on it’s own line. When the

specifier is on a different line, the PRINT statement accesses the image by either the line
numbet or the Lne tabel.

100 Format: IMAGE 6Z.DD
110 PRINT USING Format;4,B,C
120 PRIRT USING 100;D,E,F

Botk PRINT statements use the image in line 100.

Numeric image Specifiers

Several characters may be used within an image to specify the appearance of the printed
value.

Numeric Image Specifiers

Iage Purpose
Specifier
D Replace this specifier with one digit of the number to be printed. If the digit is a

leading zero, print a space. if the value is negative, the position may be used by the
negative sign.

Z Same as “I}” except that leading zeros are printed.

et

Prints two digits of the exponent after printing the sequence “E~+". This specifier is
equal to “ESZZ”. See the HP Instrument BASIC Language Reference for more details.

K Print the entire number without leading or trailing spaces,
S Print the sign of the number: either a “4+” or 7.
M Print the sign if the number is negative; if positive, print a space.

Print the decimal point.

H Simitar to K, except the number 1s printed using the European number format
(comma radix).

R Print the comma (European radix).

Like Z, except that asterisks are printed instead of leading zeros.

To better understand the operation of the image specifiers examine the following examples
and results.

Using a Printer 8-5

Examples of Numeric image Specifiers

Statemend Output
PRINT USING "K";33.666 33.6686
PRINYT USIEG "DD.DDD";33.666 33.666
PRINT USING "DDD.DD™;33.666 33.67
PRINT USING “ZZ7.DD";33.666 033.867
PRINT USIKG ”ZZZ”;.444‘ 000
PRINT USIRG “ZZZ"; .5bB 001
PRINT USIEG "Sb.3DE";6.023E+23 +6.023E+23
PRINT USIEKG "33D.3DE";6.023E+23 +602.300E+21
PRINT USIEG "35D.3DE";86.023E+23 +60230C.000E+19
PRIKET USING “H";3121.§5 3121,88
PRINT USING “DDRDD";19.895 19,95
PRINT USIWG “x=*%"; BbB k%1

To specify multiple fields within the image, the field specifiers are separated by commas.

Multiple-Field Numeric Image Specifiers

Statement Ouiput
PRINT USING “K,5D,BD";100,200,300 100 200 300
PRINT USING "DD,ZZ,DD";1,2,3 102 3

H the items to be printed can use the same image, the image need be listed only once. The
image will then be reused for the subsequent items.

PRINT USING "5D.DD";3.98,5.95,27.50,139.95

printg

123456782012345678901234567890123
3.98 £.95 27.50 139.95

The image is reused for each value. An error will result if the number cannot be accurately
printed by the field specifier.

String Image Specifiers

Similar to the numeric field image characters, several characters are provided for the
formatting of strings.

B-6 Using a Printer

String iImage Specifiers

Image Puarpose
Specifier
A Print one character of the string. 1f all characters of the string have been printed, print
a trailing blank.
K Print the entire string without leading or trailing blanks.
X Print a space.
“literal” Prini the characters between the quotes.

The following examples show various ways to use string specifiers.

PRINT USING “5X,104,2X,10A";"Tom™, "Smith"

12345678901234567890123456789
Tom Smith

PRINT USIEG "5X,""Jolm"",2X, 104" ;"Smith"

12345678901234567890123466789
John Smith

PRINT USIEG “""PART WUMBER™",2x,10d";90001234

12345678901234567890123456789
PART NUMEER 90001234

Additional Image Specifiers

The following image specifiers serve a special purpose.

Additional Image Specifiers

Iimage Purpose
Specifier

B Print the corresponding ASCII character. This is similar to the CHR$ function.

4 Suppress automadic end-of-line (EQL) sequence.

L. Send the current end-of-line (EQL) sequence; with 10, see the PRINTER IS statement
in the HP Instrument BASIC Language Refercnce for details on redefining the EOL
seguence.

/ Send a carriage return and a line feed.

@ Send a form feed.

+ Send a carriage return as the EOL sequence. {Requires 10)

- Send a line feed as the EOL sequence. (Requires 10}

For example:
PRINT USING "@,#" outputs a form feed.
PRINT USING "D,X,34,""DR NOT"",X,B,X,B,B";2,"BE",5(,66,69

Using a Printer 8.7

Special Considerations

If nothing prints, see if the printer is ON LINE. When the printer if OI'F LINE, the compater
and printer can communicate but no printing will occur.

Sending text to a non-existent printer will cause the computer to wait indefinitely for the
printer to respond. ON TIMEOUT may be used within a program to test for the printer.

Since the printer’s device selector may change, keep track of the locations in the program
where a device selector is used.

If the program must use the PRINTER IS statement frequently, assign the device selector to a
variable; then if the device selector changes, only one program line will need to be changed.

8-8 Using a Printer

9

Handling Errors

Most programs are subject to errors at run time. This chapter describes how HP Instrument
BASIC programs can respond to these errors, and shows how to write programs that attempt
to either correct the problem or direct the program user to take some sort of corrective action,

There are three courses of action that you may choose to take with respect to errors:
1. Trv to prevent the error from happening in the first place.

2. Once an error occurs, try to recover from it and continue execution.

3. Do nothing—Iet the system stop the program when an error happens.

The remainder of this chapter describes how to implement the first two aliernasives.

The last alternative, which may seem frivolous at first glance, is certainly the easiest to
implement, and the nature of HP Instrument BASIC is such that this is often a feasible
choice. Upon encountering a run-time error, the computer will pause program execution and
display a message giving the error number and the line in whick the error happened, and the
programicer can then examine the program in light of this information and fix things up. The
key word here is “programmer.” If the person running the program is also the person who
wrote the program, this approach works fine. If the person running the program did not write
it, or worse yet, does not know how to program, some attempt should be made to prevent
errors from happening in the first place, or to recover from errors and continue running.

Anticipating Operator Errors

When you write a program, you know exactly what the program is expected to do, and what
kinds of inputs make sense for the problem. Sometimes you overlook the possibility that other
people using the program might not understand the boundary conditions. You have no choice
but to assume that every time a user has the opportunity to feed an input to a program, a
mistake can be made and an error can be caused. You should make an effort to make the
program resigtant to errors.

Boundary Conditions

A classic example of anticipating an operator error is the “division by zero” situnation.
An INPUT statement is used to get the value for a variable, and the variable is used as a
divisor later in the program. If the operator should happen to enter a zero, accidentally
or intentionally, the program pauses with an error 31. It is far betfer to plan for such an
occurrence. One such plan is shown in the following example.

Handling Errors $-1

100 INFUT "Miles traveled and total hours",Miles,Hours
110 IF Hours={ THEN

120 BEEP

130 PRINT "Improper value entered for hours.”

140 PRINT "Try again!"

150 GOTO 100

160 END IF

170 Mph=Miles/Hours

Trapping Errors

Despite the programmer’s best efforts at screening the user’s inputs in order to avoid errors,
errors will still happen. It is still possible to recover from run-time errors, provided the
programimer predicts the places where errors are most likely to happen.

ON/OFF ERROR

The ON ERROR statement sets up a branching condition that will be taken any time a
recoverable error is encountered at run time. The branch action taken may be GOSUB,
GOTO, CALL or RECOVER. GOTO and GOSUB are purely local in scope—that is, they are
active only within the context in which the ON ERROR is declared. CALL ard RECOVER
are global in scope—after the ON ERROR is setup, the CALL or RECOVER will be executed
any time an error occurs, regardless of subprogram environment.

Choosing a Branch Type

The type of branch that you choose (GOTO vs. GOSUB, etc.) depends on how you want to
handle the error.

s Using GOSUDB indicates that you want {o return to the statement that caused the error
{RETURN}.

» GOTO, on the other hand, may indicate that you do not want to reattempt the operation
after attempting to correct the source of the error.
ON ERROR Execution at Run-Time

When an ON ERROR statement is executed, HP Instrament BASIC will make sure that the
specified line or subprogram exists in memory before the program will proceed. If GOTO,
GOSUB, or RECOVER is specified, then the line identifier must exist in the current context
{(at pre-run). If CALL is used, then the specified subprogram must currently be in memory (at
run-time). In either case, if the system can’t find the given line, error 49 is reported.

ON ERBROR Priority

ON ERROR. hag a priority of 16, which means that it will elways take priority over any other
ON-event branch, since the highest user-specifiable priority is 15.

9-2 Handling Errors

Disabling Error Trapping {OFF ERROR)

The OFF ERROR statement will cancel the effects of the ON ERROR statement, and no
branching will take place if an error is encountered.

The DISABLE statement has no effect on ON ERROR branching.

ERRN, ERRLN, ERRL, ERRDS, ERRM$

ERRN is a function that returns the error number that caused the branch to be taken. ERRN
is a global function, meaning it can be used from the main program or from any subprogram,
and it will always return the number of the most recent error.

100 IF ERRE=80 THEN ! Media not presenf in drive.

110 PRINT "Please insert the ’Examples’ disc,”
120 PRINT "and press the ’Continue’ key (£2).7
130 PAUSE

140 END IF

ERRLN is a function that returns the line number of the program line where the most recent
error has occurred.

100 IF¥ ERRLN<1280 THEN GOSUB During init
110 IF (ERRLE>=1280 AKD ERRLN<=2440) THEN GOSUE During main
120 IF ERRLN>2440 THEN GOSUB During_lLast

You can use this function, for instance, in determining whaft sort of situation-dependent action
to take. As in the above example, you may want to take a certain action if the error occurred
while “initializing” your program, another if during the “main” segment of your program, and
yet another if during the “last” part of the program.

Note that program statements using ERRLN may not behave correctly following a renumber
operation. To avoid this problem, use the ERRL function whenever possible (see below).

ERRL is another function that is used to find the line in which the error was encountered;
however, the difference between this and the ERRLN function is that ERRL is a Boolean
function. The program gives it a line identifier, and either a 1 or a 0 is returned, depending
upon whether or not the specified identifier indicates the line that caused the error.

160 IF ERRL(1250) OR ERRL(1270) THEN GDSUB Fix_12xx

110 IF ERRL(1470) THEN GOSUB Fix_1470
120 IF ERRL(2450) OR ERRL(2530} THEE GOSUB Fix 24xx

ERRL is a local function, which means it can only be used in the same environment as

the line that caused the error. This implies that ERRL cannot be used in conjunction

with ON ERROR CALL, but it can be used with ON ERROR GOTO and ON ERROR
GOSUB. ERRL can be used with ON ERROR RECOVER only if the error did not occur in a
subprogram that was called by the environment that set up the ON ERROR RECOVER.

Line number parameters to ERRL are renumbered properly by a renumber operation.
The ERRL function will accept either a line number or a line label. For example:
1140 DISP ERRL(710)
910 IF¥ ERRL{Compute) THEN Fix_compute

ERRMS is a string function that returns the text of the error that caused the branch to be
taken.

Handling Errors 9-3

3100 DISP ERRM$! Display default message.

EHROR 31 in 10 Division (or MOD) by zero J

ON ERROR GOSUB

Thke ON ERROR GOSUB statement is used when you want to return to the program line
where the error occurred.

Note that if vou do not correct the problem and subsequently use RETURN, HP Instrument
BASIC will repeatedly reexecute the problem-causing line (which will result in an infinite loop
between the ON ERROR GOSUB branch and the RETURN).

When an error triggers a branch as a result of an ON ERROR GOSUB statement being
active, system priority is set at the highest possible level (16) until the RETURN statement
is executed, af which peint the system priority is restored to the value it was when the error
happened.

100 Hadical=B*B-4#A*C

110 Imaginary=0

120 ON ERROR GOSUB Esr
130 Partial=SQRT(Radical)
146 OFF ERROR

35¢ Esr: IF ERRN=30 THEN

360 Imaginary=i
370 Radical=ARS{Radical}
380 ELSE
390 BEEP
430 DISP "Unexpected Error (;ERRN;'")"
410 PAUSE
420 END IF
430 RETURH
Note You cannot trap errors with ON FRROR while in an ON ERROR GOSUR

service routine.

ON ERROR GOTO

The ON ERROR GOTO statement is often more useful than ON ERROR GOSUB, especially
if you are trying to service more than one error condition. However, ON ERROR GOTO does
not change system priority.

As with ON ERROR GOSUB, one error service routine can be used to service all the error
conditions in a given context. By testing both the ERRN {what went wrong) and the ERRLN
{where it went wrong) functions, you can take proper recovery actions.

One advantage of ON ERROR GOTO is that you can use apother ON ERROR statement
in the service routine {which you cannot use with ON ERROR GOSUB). This technique,
however, requires that you reestablish the original error service routine after correcting any
errors (by reexecuting the original ON ERROR GOTO statement). The disadvantage is that

9-4 Handling Errors

more programming may be necessary in order to resume execution at the appropriate point
after each error service.

ON ERROR CALL

ON ERROR CALL is global, meaning once it is activated, the specified subprogram will be
calied immediately whenever an error is encountered, regardless of the current context. System
priority is set to level 17 inside the subprogram and remains that way until the SUBEXIT is
exectfed, at which time the system priority will be restored to the value it was when the error
happened.

As with ON ERROR GOSUB, you will generally use the ON ERROR CALL statement when
you want to return to the program where the error occurred.

Remember that if you do not correct the problem, the SUBEXIT statement will repeatedly
reexecute the problem-causing line (which will result in an infinite loop between the ON
ERROR CALL branch and the SUBEXIT).

Note You cannot trap errors with ON ERROR while in an ON ERROR CALL
service routine,

Using ERRLN and ERRL in Subprograms

You can use the ERRLN function in any context, and it returns the line number of the most
recent error. However, the ERRL function will not work in a different environment than

the one in which the ON ERROR statement is declared. For instance, the following two
statements will only work in the context in which the specified lines are defined:

100 IF ERRL(40) THEHN GOTO Fix40
100 IF ERRL(Line_label) THEN Fix_line_label

T'he line identifier argument in ERRL will be modified properly when the program is
renumbered {such as explicitly by REN or implicitly by GET); however, that is not true of
expressions used in comparisons with the value returned by the ERRLN function.

So when using an ON ERROR CALL, you should set things up in such a manner that the line
number either doesn’t matter, or can be guaranteed to always be the same one when the error
occurs. This setup can be accomplished by declaring the ON ERROR immediately before the
line in question, and immediately using OFF ERROR after it.

Handling Errors 9-5

501¢
5026
5030

7020
7030
7040
7050
7060
708¢
7090
7100
7120
7136
7144
7160
717¢
718¢
7196
7200
7210
7220

DN ERROR CALL Fix_disc
ASSIGN @Fiie TO "Data_file"
UFF ERROR

SUB Fix_disc

SELECT ERRN
CASE 80
DISP "No disc in drive —- insert disc and continue"
PAUSE
GASE 83
DISP "Write protected -- fix and continue"
PAUSE
CASE 85
DISP "Disc not imdtialized ~- fix and continue"
PAUSE
CASE 56
DISP "Creating Data_file"
CREATE BDAT “Data_file",20
CASE ELSE
DISP "Unexpected error ";ERRE
PAUSE
SUBEND

ON ERROR RECOVER

The ON ERROR RECOVER, statement sets up an immediate branch to the specified line
whenever an error occurs. The line specified must be in the context of the ON ... RECOVER
statement. ON ERROR RECOVER is global in scope—it is active not only in the
environment in which it is defined, but also in any subprograms called by the segment in

which it is defined.

If an error is encountered while an ON ERROR RECOVER statement is active, the system
will restore the context of the program segment that actually set up the branch, including its

system priority, and will resume execution at the given line.

3260
3260
3270
3280

DN ERROR RECOVER Give_up

CALL Model_universe
DISP “Successfully completed”
STOP

3290 Give_up: DISP "Failure ";ERRN

3300

END

9-6 Handling Errors

10

Keyword Guide to Porting

The following sections summarize the HP Instrument BASIC keywords by categories. All
keywords are used by both HP Instrument BASIC and HP Series 200/300 BASIC languages,
although some features of certain keywords are not supported by HP Instrument BASIC.
Where differences exist between HP Instrument BASIC and recent versions of HP Series
200/300 BASIC the most significant discrepancies are listed. This chapter is intended only
as a quick reference to the keywords and their compatibility, For detailed information, refer
to HP Instrument BASIC Keyword Reference and your HP Series 200/300 BASIC Language
Reference Manual.

Keyword Guide to Porting 10-1

Program HP BASIC Function HP Tnstrument BASIC
Entry/Editing
COPYLINES Coples contignous program lines from Full support.
one location to ancther.
DELSUB Deletes one or more subprograms or Full support.
user-defined functions from memory.
INDENT Indents program lines in the edit Full support.
window to reflect the programs
structure and nesting.
LIST Lists program Hnes to system printer. No support for softkey listing.
MOVELINES Moves contiguous program lnes from Full support.
one location to another.
REM and ! Allows comments on program lines. Fall support.
SECURE Protects program lines so they cannot Full support.
be listed.
Debugging

CAUSE ERROR

ERRL

ERREN

ERRMS

ERRN

Simulates the oceurrence of an error of
the gpecified number.

Indicates whether an error occurred
during execution of a specified line.

Returns the program-line number of the

most recent error.
Returns text of the last error message.

Retarn the most receni program
execution error.

Full support.

No support for TRANSFER
or Data Communications

No support for TRANSFER,
Data Communications,
CLEAR ERBROR, or LOAD.
No support for TRANSTFER,
CLEAR ERROR, or LOAD.
Ne support for TRANSFER,
CLEAR ERROR, or softkeys.

Memory Allocation
ALLOCATE

COM

DEALLOCATE

DIM

INTEGER

OPTION BASE

Dynamically allocates memory for
arrays and string variables during
program execution.

Dimensions and reserves memory for
variables in a common area for access
by more than one context,

Deallocates memory space reserved by
the ALLOCATE statement.

Dimensions and reserves memory for
REAL numeric arrays and strings.

Dimensions and reserves memory for
INTEGER variables and arrays.

Specifies defanlt lower bound of arrays.

No support for COMPLEX.

Ne¢ support for BUFFER,
COMPLEX, LOAD, or

subarrays.

No suppert for COMPLEX.

Ne support for BUFFER,
COMPLEX, or subarrays.

No support for BUFFER. or
subarrays.

Full support.

10-2 Keyword Guide to Porting

Program

HP BASIC Function

HP Instrument BASIC

Memory Allocation
{continued)

REAL

REDIM

SCRATCH

Dimensions and reserves memory for
full-precision (REAL) variables and
arTays.

Changes the subscript range of
previously dimensioned arrays.

Erases all or portions of memory.

No support for BUFFER or
subarrays.

No support for BUFFER.

ALL and COM are
supported.

Relational Operators

<>

Equality

Inequality

liess than

Less than or equal to
Greater than

Greater than or equal to

Fuli Support.
Full Support.
Fuli Support.
Fuli Support.
Fuli Support.
Fuli Support.

General Math
+

ABS

DIV

DROUND

EXP

FRACT

INT

LET
LGT

LOG

Addition operator
Subtraction operator
Maultiplication operator
Division operator

Exponentiation operator

Returns an argument’s absolute value.

Divides one argument by another and

returns the integer portion of the
quotient,

Returns the value of an expression,

Full Support.
Fuli Support.
Fuli Support.
Full Support.
Full Support.
No support for COMPLEX.
Full support.

Full support.

rounded to a specified number of digits.

Raises the base e to a specified number No support for COMPLEX.

of digits.
Returns the fractional portion of an

eXpression.

Returns the integer portion of an
eXpressici.

Assigns values to variables:

Returns the logarithm (base 10) of an

argument

Returns the natural logarithm (base e)

of an argument

Full support.
Full support.

Full support.
No support for COMPLEX.

No support for COMPLEX.

Keyword Guide to Porting 10-3

Program

HP BASIC Function

HP Instroment BASIC

General Math {(continued)

MAX

MAXREAL
MIN

MINREAL
MOD
MODULO
Pi
PROUND

RANDOMIZE

RND
SGN
SQRT (or SQR)

Returns the largest value 1n & list of
arguments

Returns the largest number available.

Returns the smallest value in a list of
arguments

Returns the smallest number available.
Returns remainder of integer division.
Returns the module of division.
Returns an approximation of pi.

Refurns the value of an expression,
rounded to the specified power of ten.

Modifies the seed used by the RND
function:

Returns a pseudo-random number.

Returns the sign of an argument.

Retarns the sqnare root of an argument

Full support.

Full support,
Full support.

Full support.
Fuli support.
Full support,
Fuli support.
Full support,

Full support.

Full support.
Full support.

No support for COMPLEX.

Binary Functions
BINAND

BINCMP

BINEOR

BINIOR

BIT

ROTATE

SHIFT

Returns the bit-by-bit logical-and of
two arguiments.

Returns the bit-by-bit complement of
an argument.,

Returns the bit-by-bit exclusive-or of
iwo arguments,

Returns the bit-by-bit inclusive-or of
two arguments.

Heturns the state of a specified bit of
an argument.,

Returns a value obtained by shifting an
argument’s binary representatlon a
rumber of bit positions, with
wrap-around.

Returns a value obtained by shifting an
argument’s binary represenfalion a
number of bit positions, without
wrap-around.

Full support.

Full support.

Full support.

Full support.

Full support.

Full support.

Full support.

10-4 Keyword Guide to Porting

Program HP BASIC Function HP Instrament BASIC

Trigonometrie

ACS Returns the arccosine of an argument. No support for COMPLEX,
ASN Returns the arcsine of an argument. No support for COMPLEX.
ATN Returns the arctangent of an argument. No support for COMPLEX.
COS5 Returns the cosine of ar argument. No support for COMPLEX.
DEG Sets the degrees mode. Full support.

RAD Sets the radians mode. Full support.

SIN Returns the sine of an argument. No support for COMPLEX.
TAN Returns the tangent of an argument. No support for COMPLEX.

Logical Operators

AND Returns 1 or 0 based on the logical Full support.
AND of two arguments.

EXOR Returns 1 or 0 based on the logical Full support.
exclusive-or of two arguments.

NOT Returns 1 or (0 based on the logical Full support.
complement of an argument.

OR Returns 1 or 0 based on the logicai Full support.
inclusive-or of two arguments.

Keyword Guide to Porting 10-5

Program

HP BASIC Function

HP Instrument BASIC

String Operations

&
CHRS

DVAL
DVALS$

IVAL

IVALS
LEN
LWC$

MAT

NUM
POS
REVS
RPTS
TRIMS
U?Cg
VAL

VAL$

Conecatenates two string expressions.

Clonverts a numerle value inte an ASCII
character.

Converts an alternate-base
representation into a numeric value.

Converts a numeric value into
alternate-base representation.

Converts an alternate-base
representation into an INTEGER
number.

Converts an INTEGER 1ntoe
alternate-base representation.

Returns the number of characters in a
string expression.

Returns the lowercase value of a string
expression.

Performs a variety of operations on
matrices and other numeric and string
arays.

Returns the decimal value of the first
character in a string.

Returns the position of a string within
a string expression.

Reverses the order of the characters in
a string expression.

Repeats the characters in a siring
expression a specified number of times.

Removes the leading and trailing blanks
from a siring expression.

Returns the uppercase value of a string
expression.

Converts a string of numerals into a
numeric value.

Returns a string expression representing
a specified mumeric value.

Full support.
Full support.

Tl support.

Full support.

Full support.

Full support.
Full support.
STANDARD lexical order is

ASCIL
No support for COMPLEX

MAT, SEARCH, MAP, or
SORT

Full support.

Full support.

Full support.

Full support.

Fall support.

STANDARD lexical order is
ASCIL

Full support.

Full support.

10-6 Keyword Guide to Porting

Program

HP BASIC Function

HP Instrument BASIC

Mass Storage
ASSIGN

CAT

COPY
CREATE

CREATE ASCII

CREATE BDAT

CREATE DIR

DELSUB

GET

INITIALIZE

LOAD

LOADSUB

MASS STORAGE IS/ MSI
PURGE

RENAME
SAVE/RE-SAVE

Assigns an I/O path name and
attributes to a file.

Lists the contents of the mass storage
media’s directory.

Provides a method of copying mass
storage files and volumes.

Creates an HP-UX or M5-DOS-type file
on the mass storage media.

Creates an ASCII-type file on the mass
storage meda.

Creates an BDAT-type file on the mass
storage media.

Creates an HFS or MS-DOS-type
directory on the mass storage media.

Deletes one or more subprograms or
user-defined functions from memory.

Reads an ASCII file into memory as a
program.

Formats a mass storage media and
places a LIF or DOS directory on the
media.

Loads STOREd programs into memory.

Loads HF instrument BASIC
subprograms from a STOREd program
nto memory.

Specifies the default mass storage
device.

Deletes a file entry from the directory.

Changes a file’s name.

Creates an ASCII file and copies
program lines from memory into the
file.

Ne support for BUFFER,
BYTE, WORD, CONVERT,
RETURN, PARITY, or
DELAY. The device selector
must be a single I/O device
or mass storage file,

No support for NAMES,
EXTEND, PROTECT,
SELECT, SKIP, COUNT,
NO HEADER, or PROG
files.

Full support.
Full support.
Full support.
Full support.
Full support.
Full support.
Full support.
Na support for EPROM.

No support for BIN, or KEY.
Full support.

No support for DCOMM,
BUBBLE, or EPROM.

Full support.
Fuall support.
Fall support.

Keyword Guide to Porting 10-7

Program

HP BASIC Function

HP Instrument BASIC

Mass Storage (continued)

RE-STORE

STORE

Writes the current HP Instrument
BASIC program to the specified file in
a special compace, fast-loading format.
Writes the program currently in
memory to a PROG file in a special
binary form.

No support for KEY.

Full support.

Program Control

CALL

DEF FN/ FNEND
END

FN

FOR ... NEXT
GOSUB

GOTO

iF ... THEN ELSE
LOOP/ EXIT IF/ END
LOOP

ON

PAUSE
REPEAT ... UNTIL

RETURN

SELECT ... CASE

STOP

Transfers program execution to a
specified subprogram and passes
parameters.

Defines the bounds of a user-defined
function subprogram.

Terminates program execution and
marks the end of the main program
segment.

Invokes a user-defined function.

Defines a loop that is repeated a
specified number of times.

Transfers program execution to a
specified subroutine,

Transfers program execution to a
specified line.
Provides a conditional execution of a

program segment,.

Provides looping with conditional exit.

Transfers program control to one of
several destinations.

Suspends program execution.

Allows execution of a program segment
until the specified condition 18 true.

Transfers program execution from a
subroutine to the hine following the
mvoking GOSUB.

Aillows execution of one program
segment of several.

Terminates execufion of the program.

Full support.

No support for COMPLEX,
BUFFER, NPAR, o
OPTIONAL.

Full support.

No support for COMPLEX.
Full support.

Truit support.

Full support.

Full support.

Full support.

Full support.

No support for ON END or
ON KNOB.

Full support.

Full support.

Full support.

Full support.

10-8 Keyword Guide to Porting

Program

HP BASIC Function

HP Instrument BASIC

Program Control {continued)

SUB/ SUBEND
SUBEXIT
WAIT

WHILE

Defines the bounds of a subprogram.

Transfers control from within a
subprogram to the calling context.

Caunses program execution te wait a
specified number of seconds.

Allows execution of a program segment
while the specified condition is true,

No support for COMPLEX,
OPTIONAL or BUFFER.
Full support.

Full support.

Fuall support.

Event-Initiated Branching
ENABLE/ DISABLE
ENABLE INTR/ DISABLE

ON CYCLE/ OFF CYCLE

ON ERROR/ OFF ERROR

ON INTR/ OFF INTR,

ON KEY ... LABEL/ OFF
KEY

ON TIMEOUT/ OFF
TIMEOUT

SYSTEM PRIORITY

Fnables or disables event-initiated
branching {except for ON ERROR, and
ON TIMEOUT).

Enables or disables interrupis defined
by the ON INTR statement.

Enables or disables an event-initiated
branch to be taken each time the
specified number of seconds has elapsed.

Sets up an event-initiated branch when
a trappable program error cceurs,

Sets up an event-initiated branch when
a specified interface card generates an
interrupt.

Sets up an event-initiated branch when
a specified softkey is pressed.

Sets up an event-initiated branch when
an I/O timeout occurs on a specified
interface.

Sets a minimum level of system priority
for event-initiated branches.

Full support.

Bit mask value is ignored.

Full support.

No support for CSUB.

No support for CSUB.

No support for CSUB,
LINPUT, or ENTER KBD.
Key selector range is (-9,
No support for CSUR,
PRINTALL 1S, PLOTTER
IS, READIO, or WRITEIOQ.

Full support.

Graphics Control
ALPHA ON/OTF

AREA

CLIP

GCLEAR

ON shows the alpha window; OFF
clears the alpha window

Sets the color used to shade graphical
regions subsequently created by various
graphics plotting commands.

Defines, enables, or disables the soft-clip
limits for subsequent graphics output.

Clears the graphics area.

Full support.

Full support.

Full support.

No support for external
plotter or Multi-Plane
displays.

Keyword Guide to Porting

10-9

Program

HP BASIC Funciion

HP Instrument BASIC

Graphics Control (contimzed)

GESCAPE

GINIT

GLOAD

GRAPHICS
GSTORE

MERGE ALPHA

PLOTTER IS

RATIO

SEPARATE ALPHA

SET PEN

SHOW

VIEWFPORT

WHERE

WINDOW

Used for communicating

device-dependent graphics information.

Type, size, and shape of the arrays

must be appropriate for the requested

operation.

Establishes a set of default values for
system variables affecting graphics
operation,

Loads the contents of an INTEGER
array into the graphics window.
Shows or hides the graphics window.
Stores the current contents of the
graphics window in an integer array.
Performs a no-op which makes it
compatible with HP-UX RMB.

Determines whether graphics colors
operate in the color-mapped or
non-color-mapped mode.

Returns the ratio of the width (in

pixels) to the height (in pixels} of the

graph window,
Compatible with HP-UX RMB.
Assigns a color to graphics pen{s}.

Defines an isotropic currens

unit-of-measure for graphics operations.

Defines an area (in GDUs) onto which
WINDOW and SHOW staternents are

mapped.

Returns the current logical position of

the graphics pen.

Define an anisotropic current

unit-of-measure for graphics operations.

Full support.

Full support.

Full support.

Full support.

No support for source
devices.

Dedicated tc RMB-UX.

No hard-copy device, clip
Hmits, or file support.

Full support.

Dedicated to RMB-UX.

Full support.
Full support.

Full support.

Full support.

Full support,

Graphics Plotting
AREA

DRAW
GLOAD

GSTORE

Sets the color used to shade graphical
regions subsequently created by various

graphics plotting commands.
Draws a line to a specified point.

Loads the contents of an INTEGER
array into the graphies window.

Stores the current contents of the
graphics window in an integer array.

Full support.

No support for PIVOT.

Full support.

No support for source
devices.

10-10 Keyword Guide to Porting

Program

HP BASIC Faunction

HP Instrument BASIC

Graphics Plotting
{continued)

IDRAW

IMOVE

IPLOT

LINE TYPE

MOVE
PDIR

PEN

PENUP

PIVOT

PLOT

POLYGON
POLYLINE
RECTANGLE
RPLOT
RPEN

WHERE

Draws a line from the current position
to a position calculated by adding the
X and Y displacements to the current
pen position,

Moves the graphics pen an incremental
distance from the current position
without drawing a hine.

Moves the graphics pen an incremental
distance from the current position.
Plotting action is determined by the
current line type and the optional pen
control parameter.

Selects the line type (solid or dashed)
for all subsequent lines

Updates the legical pen position.

Specifies the rotation angle at which
the output from IPLOT, RPLOT,
PGLYGON, POLYLINE, and
RECTANGLE is drawn.

Selects the pen number on plotting
device,

Lifts the pen on the corrent plotting
device,

Specifies a rotation of coordinates
which 1s applied to all drawn lines, but
not to labels or axes.

Moves the graphics pen from the
enrrent position to the specified X and
Y coordinates.

Draws all or part of a closed, regular
polygon.

Draws all or part of an open, regular
polygon.

Diraws a rectangle.

Moves the pen from the current pen

position to the specified relative X and
Y position.

Asgsigns a color to one or more graphics
pens.

Returns the current logical position of
the graphics pen,

Full support.

Full support.

Full support.

Puil support.

No support for PIVOT.

Full support,

Full support.

Full support.

Full support.

Full suppert.

Full suppost.

Full support.

Full support.

TFull support.

Full support.

Fuli support.

Keyword Guide to Porting 10-11

Program HP BASIC Function BP Instrument BASIC

Graphics Axes and Labeling

AXES Draws a pair of axes with optional, Full support.
squally spaced tick marks.

CSIZE Sets the height and aspect ratio Fult support.
{width:height} of the character cell used
by LABEL.

FRAME Draws a frame around the current Full support.

graphics chipping area using the current
pen number and line type.

GRID Draws a full grid pattern. Full support.

LORG Specifies the relative origin of labels FFull support.
with respect to the current pen
position.

LABEL Draws text labels with the graphics pen Full support.
at the pen’s current position.

LDIR Defines the angles at which labels are Full support.
drawmn.

HTP-IB Control

ABORT Terminates bus activity and asserts Full supponrt.
IFC.

CLEAR. Places specified devices in a No support for Data
device-dependent state, Communications Interface.

LOCAL Returns specified devices to their local Full support.
state.

LOCAL LOCKOUT Sends the LLO message, disabling all Full support.
device’s front-panel controls.

PASS CONTROL Passes Active Controller capability to Full support,
another device.

REMOTE Sets specified devices to their remote 'ull support.
state.

SPOLL Returns a serial poll byte from a Full support.
gpecified device,

TRIGGER Sends the trigger message to specified Full support.
devieces,

10-12 Keyword Guide to Porting

Program HP BASIC Function HP Instrument BASIC

Clock and Calendar

DATE Converts a formatted date string into a Full support.
numeric value in seconds.

DATES Formats a number of seconds into a Fult support.
string representing the formatied date
(DD MMM YYYY).

TIME Converts a formatted time-of-day siring Full support.
inte number of seconds past midnight.

TIMES$ Converts the number of seconds past Full support.
midnight into a string representing the
formatted time of day (HH:MM:SS).

SET TIME Resets the time-of-day given by the Fuil support,
real-time clock.
SET TIMEDATE Resets the absolute seconds {time and Full support.
day) given by the real-time clock.
TIMEDATE Returns the value of the real-time clock. Full support.
General Device
Input /Output
ASSIGN Associates an 1/0 path name and No support for BUFFER,
attributes with a mass storage file, BYTE, WORD, CONVERT,
device or group of devices. PARITY, TRANSFER,
LOAD, or RETURN. [/O
path name is hmited to a
singte device or mass storage
file.
BEEP Produces an audible tone of a defined No support for HIL.
frequency and duration.
CRT Returns the device selector of the CRT. Fall suppors.
DATA Specifies data accessible via READ Full support.
statements.
DISP Outputs items to the CRT display line. No support for COMPLEX.
DUMP DUMP ALPHA copies the contents of No support for source or
the alphanumeric digplay to the defanlt destination devices.
printer specified in the Windows
Controt Panel.
DUMP GRAPHICS copies the contents
of the graphics display to the default
printer specified in the Windows
Control Panel,
ENTER Inputs data from a device, file or string No suppert for COMPLEX,

to a list of variables. BUFFER, TRANSFER, or
CRT as source,

Keyword Guide to Porting 10-13

Program

HP BASIC Funciion

HP Instroment BASIC

General Device

Input/Qutput {continued)

IMAGE

INPUT

KBD

OUTPUT

PRINT

PRINTER IS

PRT

READ

RESTORE

TAB

TABXY

Provides formats for use with ENTER,
CUTPUT, DISP, and PRINT
cperations.

Inputs data from the front-panel
{keyhoard) to a list of variables.

Returns the device selector of the
keyboard.

Outputs items 1o a specified device, file,

string, or buffer.

Outputs items to the current
PRINTER IS device.

Specifies a device for PRINT, CAT, and

LIST statements.

Returns 701, usually the device selector
of external printer.

Inputs data from DATA lists to
variables.

Caunses a READ statement to access the

specified DATA statement.

Moves the print position ahead to a

specified point; used within PRINT and

DISP statements.

Specifies the print position on the
mternal CRT; used with PRINT

statements.

Fuli support.

No suppert for COMPLEX
ar specific keys.

Full support.

No support for COMPLEX,
BUFFER, or TRANSFER .
No support for COMPLEX.
No support for DELAY.
Full support.

No support for COMPLEX.

Full support.

Full support.

Full support.

Display and Keyboard
Control
ALPHA ON/OFF

CLEAR SCREEN/ CLS
CRT

KBD

SET ALPHA MASK

ON shows the alpha window; OFF
clears the alpha window

Clears the alpha display screen.

Heturns 1, which is the select code of
the CRT display.

Returns 2, which is the select code of
the keyboard.

Specifies which plane{s) can be
modified by alpha display operations.

Full support.

Full support.
Full support,

Fuli support.

Full support

10-14 Keyword Guide to Porting

Program

HP BASIC Function

HP Instrument BASIC

Array Operations

BASE
DET
- bOT

MAT

MAT REORDER
RANK

REDIM

SIZE

SUM

Returns the lower bound of a dimension
of an array.

Returns the lower bound of a dimension
of an array.

Returns the lower bound of a dimension
of an array.

Performs a variety of operations on
matrices and other numeric and string
arrays.

Reorders elements in an array according
to the subscript list in a vector.

Returns the number of dimensions in an
array.

Changes the subseript range of
previously dimensicned arrays.

Returns the number of elements in a
dimension of an array.

Returns the sum of all the elements In a
pumeric array.

Full support.

Fall support, except
COMPLEX.

Full support, except
COMPLEX.

Full support, except
COMPLEX, MAT SORT,
and MAT SEARCH.

Full support.
Fall support.
No sapport for BUFFER

Fall support.

Full support, except
COMPLEX.

Keyword Guide to Porting 10-15

Index

A

ABS function, 3-7

ACS function, 3-8

Actual values, 6-5

ALLCCATE statement, 4-1, 4-4, 4-15

Anticipating Operator Errors, 9-1

Arbitrary Exit Points, 2-8

Arithmetic Functions, 3-7

Arithmetic Operators, 3-3

Array, Copying a Subarray into an, 4-11

Array, Dynamically Allocated, 4-3

Array Element, Assigning an Individual, 4-5

Array, four-dimensional, 4-4

Array into a Subarray, Copying an, 4-11

Array into Iiself, Copying a Portion of an, 4-13

Array, Planes of a Three-Dimensional REAL,
4-2

Array, Printing an Entire, 4-7

Arrays, Copying Entire Arrays into Other, 4-6

Arrays, Extracting Single Values From, 4-5

Arrays, Filling, 4-5

Arrays for Display, Examples of Formatting,
4.7

Arrays, Passing Entire, 4.9

Arrays, Printing, 4-7

Arrays, Redimensioning, 4-14

Arrays, Sorne Exarmples of, 4-2

Arrays, Storage and Retrieval of, 7-3

Arrays, String, 5-2

Array the Same Value, Assigning Every Element
in an, 4-b

Array, Two-Dimensional REAL Arvay, 4-3

Array, Using the READ Statement to Fill an
Entire, 4-6

ASCIH and Custom Data Representations, 7-18

ASCH file, 7-9, 7-12, 7-13, 7-15

ASCT File 1/0, Example of, 7-11

ASCII file I/O techniques, 7-11

ASCI files, 7-6

ASCII Files, A Closer Look at Using, 7-11

ASCII Files, Data Hepresentations in, 7-12

ASCII Yiles, Formatted ENTER with, 7-18

ASCII Files, Formatted OUTPUT with, 7-13

ASCII file type, 7-13

ASCII format, 7-16

ASN function, 3-8

Assigning an Individual Array Element, 4-5

Assigning Every Element in an Array the Same
Value, 4-5

Assigning Variables, 3-2

ASSIGN statement, 7-8, 7-9

ATN function, 3-8

Attributes, Assigning, 7-9

Automatic redimensioning, 4-6

B

Base Conversion Functions, 3-10

BASE function, 4-4

BASIC Programs, Trapping Errors with, 9-2

BDAT and HP-UX Files, A Closer Look at,
7-16

BDAT and HP-UX Files, Reading Data from,
7-23

BDAT file, 7-7, T-8, 7-11, 7-15, 7-16, 7-17, 7-18,
7-21

BDAT files, 7-6, 7-9, 7-13

BDAT File System Sector, 7-18

BDAT Internal Representations (FORMAT
OFF), 7-17

BINAND function, 3-8

Birary Functions, 3-8

BINCMP function, 3-8

BINEGR. function, 3-8

BINIOR function, 3-8

BIT function, 3-8

Boundaries, keywords that define, 2-4

Boundary Cenditions, 9-1

Branch Type, Choosing a, 9-2

c

CALL statement, 6-1, 6-2, 6-9
Case conversion, 5-8

CASE ELSE statement, 2-4, 2.6
CASE statement, 2-4, 2-7
Chaining Programs, 2-11

Chapter Previews, 1-1
Characters, Control, 8-2

CHRS string function, 5T

COM blocks, 6-7, 6-8, 6-12

COM Blocks, Hints for Using, 6-8
Communication, Program/Subprogram, 6-4

Index-1

COM statemnent, 2-4, 2-12, 4-1, 4-4, 5-2, 7-9
COM vs. Pass Parameters, 6-7
Concatenation, String, 5-3
Conditional Branching, 2-4
Conditional execution, 2-3
Ceonditional segment, 2-3
Conditional Segments, Multiple-Line, 2-4
Context Switching, 6-9

_Control Characters, 8-2
CONT statement, 2-2
Conversion, Case, 5-8
Conversion, Number-Basge, 5-9
Conversions, lmplicit Type, 3-2
Copying an Array into a Subarray, 411
Copying a Portion of an Array into Itself, 4-13
Copying a Subarray into an Array, 4-11
Copying a Subarray into another Subarray, 4-12
Copying Entire Arrays into Other Arrays, 4-6
Copying Subarrays, 4-9
Copying Subarrays, Rules for, 4-14
COS function, 3-8
CREATE BDAT statement, 7-19
CREATE statement, 7-11
CRT function, 3-10

D

DATA and READ Statements, Using, 7-2

Data from a File, Reading String, 7-23

Data from BDAT and HP-UX Files, Reading,
7-23

Data in Programs, Storing, 7-1

Data Input by the User, 7-2

Data in Variables, Storing, 7-1

Data Pointer, Moving the, 7-4

Data Representations, ASCII and Custom, 7-18

Data Representations Available, 7-16

Data Representations in ASCII Files, 7-12

Data Representations with DOS Files, 7-18

Data Representations with HP-UX Files, 7-18

DATA statement, 2-4, 4-8, 6-9, 7-1, 7-2, 7-3

Data Storage and Retrieval, 7-1

Data Type, INTEGER, 3-1

Data Type, REAL, 3-1

Data, Writing, 7-21

Date Functions, Time and, 3-9

Deactivating events, 2-10

Declaration of variables, keywords used in the,
2-4

Declaring Variables, 3-1

Defauli dimensioned leagth of a string, 5-1

Default mass storage device, 7-7

Default range, 4-10

DEF FN statement, 2-4, 6-4, 6-10, 6-12

Defined Records, 7-19

Degradation, rate, 7-13

Index-2

Degrees, 3-8

DEG statement, 3-8, -9

Deleting Subprograms, 6-12

DEL LN statement, 6-12

Determining Error Number and Location, 9-3

Device selector, 8-1

Device selectors, using, 8-2

Dimensioning, Problems with Implicit, 4-4

DIM statemens, 2-4, 3-1, 4-1, 5-2

DISABLE statement, 2-19, 2-11, 8-3

Disabling Frror Trapping {OFF ERROR), 8-3

Disabling Events, 2-1G

DOS files, 7-6

DOS Files, Data Representations with, 7-18

Double-Subscript Substrings, 5-5

DROUND function, 3-9

DVAL function, 3-10, 5-9

DVALS string function, 5-9

Dyadic operator, 3-5

Dynamically Allocated, Two-Dimensional
INTEGER Array, 4-3

E

Editing Sebprograms, 6-10

ENABLE statement, 2-11

END IF statement, 2-4

END LOOP statement, 2-4

End-of-line (EOQL) sequences, 7-9
End-Of-Record, 7-20

End-Of-Record (EQR), 7-22

END SELECT statement, 2-4, 2-6

END statement, 2-1, 2-4, 6-2

END WHILE statement, 2-4

ENTER, Random, 7-24

ENTER, Serial, 7-24

ENTER statement, 7-8, 7-14, 7-16, 7-23
ERRL function, 9-3

ERRL in Saubprograms, Using ERRLN and, 9-5
ERRLN and ERRL in Subprograms, Using, 9-5
ERRLN function, 9-3

ERBMS string function, 9-3

ERRN function, 9-3

Error Number and Location, Determining, 9-3
Error Responses, Overview of, 9-1

Errors, Anticipating Operator, 9-1

Errors, Handling, 9-1

Errors, Trapping, 9-2

Error Trapping and Recovery, Scope of, 9-2
Frror Trapping (OFF ERROR), Disabling, 9-3
Escape-Code Sequences, 8-3

Evaluating Expressions Containing Strings, 5-3
Evaluating Scalar Expressions, 3-3

Evaluation Hierarchy, 5-3

Event-checking, 2-9

Event-initiated branching, 2-1, 2-10

Event-initiated RECOVER statement, 6-10 Function, MAX, 3-9

Events, Disabling, 2-10 Function, MAXREAL, 3-7
Events, Types of, 2-9 Function, MIN, 3-9
EXIT IF statement, 2-4, 2-8 Function, MINREAL, 3-7
EXP function, 3-7 Function, NUM, 5.7
Exponential Functions, 3-7 Function, PI, 3-8
Expressions as Pass Parameters, 3-5 Function, PROUND, 3-9
Expressions, hierarchy for, 3-3 Funection, PRT, 3-10
External Printer, Using the, 82 Function, RND, 3-9

Function, ROTATE, 3-8
F Functions and String Functions, REAL Precision,
File Access, A Closer Lock at General, 7-8 6-3
File Input and Qutput, 7-5 Fanetions, Arithmetic, 3-7
File pointer, 7-15 Functions, Base Conversion, 3-10
File specifters, 7-7 Functions, Binary, 3-8
File ‘T'ypes, Briel Comparison of Available, 7-5 Functions, Exponential, 3-7
FNEND statement, 2-4, 6-12, 6-13 Fanctions, General, 3-10
FOR. ... NEXT structurs, 2-7 Function, SGN, 3-7
Forrnal parameter lists, 6-4, 6-6 Function, SHIFT, 3-8
FORMAT attribute, 7-9 Funetion, SIN, 3-8
FORMAT attributes, 7-9 Functions, Limit, 3-9
FORMAT OFT statement, V-9, 7-17 Functions, Numerical, 3-7
FORMAT ON attribute, 7-14 Funetion, SQR, 3-7
FORMAT ON statement, 7-9, 7-16, 7-17 Function, SQRT, 3-7
Formatted ENTER with ASCII Files, 7-16 Functions, String, 57
Formatted QOUTPUT with ASCII Files, 7-13 Functions, String-Related, 5-6
Formatted Printing, 8-3 Functions, Subprograms and User-Defined, 6-1
Formatting Arrays for Display, 4-7 Fanctions, Time and Date, 3-9
FOR. statement, 2-4 Functions, Trigonometric, 3-8
Four-dimensional array, 4-4 Function, TAN, 3-8
FRACT function, 3-7 Function, TIMEDATE, 3-8
Function, ABS, 3-7 Function, VAL, 5-7
Function, ACS, 3-8 Function, VALS, 7-15
Function and a Subpregram, Difference, 6-2
Function, ASN, 3-8 G
Function, ATN, 3-8 General File Access, A Closer Look at, 7-8
Function, BINAND, 3-8 General Functions, 3-10
Function, BINCMP, 3-8 GET statement, 2-11, 2-12, 6-8
Function, BINEOR, 3-8 GET, Using, 2-11
Function, BINIOR, 3-8 GOSUB statement, 2-2, 6-8
Function, BIT, 3-8 GOTO statement, 2-2, 2-4, 6-9
Function, COS, 3-8
Function, CRT, 3-10 H
Function, DROUND, 3-8 Halting Program Execution, 2-1
Function, DVAL, 3-10, 5-9 Ha,ﬂdhng Errors, 9-1
Function, ERRL, §-3 Hierarchy, Evaluation, 5-3
Function, ERRLN, 6-3 Hierarchy for expressions, 3-3
Function, ERRN, 0-3 Hierarchy, Math, 3-4
Function, EXP, 3-7 HP-UX file, 7-9, 7-19
Function, FRACT, 3-7 HP-UX fles, 7-6
Panction, INT, 3-7 HP-UX Files, Data Representations with, 7-18

Function, IVAL, 3-10, 5-9
Function, KBD, 3-190
Fanction, LGT, 3-7
Fanction, LOG, 3-7

Index-3

H

I¥ ... THEN ... ELSE statement, 2-5
IF ... THEN statement, 2-4

IF ... THEN structure, 2-9

IF statement, 2-4

Image Specitiers, Additional, 8-7
Image Specifiers, Numeric, 8-5

Image Specifiers, String, 5-6

Images, Using, 84

Implicit Dimensioning, Problems with, 4-4
Implicit Type Conversions, 32
Individual Array Elements, Using, 4-5
Infinite loop, 2-10

Initialization, Variable, 6-10

INPUT statement, 7-2

inserting Subprograms, 6-10
INTEGER data type, 3-1, 4-1
INTEGER statement, 2-4, 4-1, 4-4
Interface select code, 8-1

INT function, 3-7

1/0 path names, 7-8, 7-§

1/0 Path, Opening an, 7-8

1/0 Paths, Closing, 7-10

1/0 technigues, ASCII file, 7-11

IVAL function, 3-10, 5-9

IVALS string function, 5-9

K

KBD function, 3-10

Keywords that define boundaries, 2-4

Keywords that define program structures, 2-4

Keywords used in the declaration of variables,
2-4

Keywords used to identify lines that are literals,

2-4

L

Length header, string variable’s, 7-14

LET statement, 3-2, 7-1, 7-2

LGT function, 3-7

LIF file, 7-8

Limit Functions, 3-9

Linear flow, 2-1

Literals, keywords used to identify lines that
are, 2-4

Loading Several Subprograms at Once, 6-11

Loading Subprograms, 6-11

Loading Subprograms One at a Time, 6-11

Loading Subprograms Prior to Execution, 6-12

LOAD statement, 6-8, 6-12

LOADSUB ... FROM statement, 6-11, 6-12

LOADSUB staternent, ¢-11

LOG function, 3-7

Loop counter, 2.7

index-4

L.OOP ... END LOOP structure, 2-8
Loop iterations, conditional, 2-8
Loop iterations, fixed, 2-8

Loop iterations formula, 2-7

LOOP statement, 2-4, 2.9

LWCE string function, 5-8

M

Manual Organization, I-1

Mass storage files, 7-1

MASS STORAGE IS statement, 7-8
MAT binary, 4-1

Math Hierarchy, 3-4

MAT statement, 4-4, 4-6

MAX function, 3-9

MAXREAL function, 3-7

Merging Subprograms, 6-12

MIN function, 3-9

MINREAL function, 3-7

Monadic operator, 3-5

MOVELINES statemnent, 6-12

Moving the Data Pointer, 7-4
Multiple-Field Numeric Image Specifiers, 8-6
Multiple-Line Conditional Segments, 2-4

N

Nested construets, 2-5

NEXT statement, 2-4

Null string, 5-1

Number-Base Conversion, 5-9

Number builder routine, 7-13

Numerical Functions, 3-7

Numeric Arrays, 4-1

Numerie Computation, 3-1

Numeric data items, 7-12

Numeric data types, 3-1

Numeric Expressions, Strings in, 3-6
Numeric Image Specifiers, 8-5

Numeric Image Specifiers, Examples of, 8-5
Numeric Image Specifiers, Multiple-Field, 8-6
Numerie-to-String Conversion, 5-7

NUM function, 5-7

0

OFF-event, 2-10

OFF KEY statement, 2-10
One-dimensional array, 4-1

ON ... event statement, 2-9

ON ERROR branching, 9-3

ON ERROR CALL, A Closer Look At, 9-5
ON ERROR Execution at Run-Time, 9-2
ON ERROR GOSUR, 0-4

ON ERROR GOTO, A Closer Look At, 94
ON ERROR. Priority, 9-2

ON ERROR RECOVER, A Closer Look At,
9-6

ON ERROR statement, 2-9

ON-event, 2-10

ON-evens statement, 2-9

ON INTR statement, 2-9

ON KEY statement, 2-9, 2-10, 6-10

ON TIMEOUT statement, 2.9, 8-8

Operand array, 4-6

Operator, dyvadic, 3-5

Operator Errors, Anticipating, 9-1

Operator, monadic, 3-5

Operator, relaticnal, 3-5

Operators, 3-5

OPTION BASE statement, 4-2

OUTPUT, Random, 7-22

OUTPUT, Serial, 7-22

OUTPUT statement, 2-3, 7-14, 7-15, 7-21, 7-22

Overhead m ASCII data files, reducing the, 7-14

p

Parameter Lists, Formal, 6-4

Parameters, Expressions as Pass, 3-5

Parameters Lists, 6-4

Parameters passed by reference, 3-2

Parameters passed by value, 3-2

Passing by Value vs. Passing By Reference, 6-5

Passing Entire Arrays, 4-4

Pass parameter lists, §-5, 6-6

Pags Parameters, COM vs., 6-7

Pags Parameters, Expressions as, 3-5

PAUSE statement, 2-2

Pi function, 3-8

Planes of a Three-Dimensional REAL Array,
4-2

Pointer, Moving the Data, 7-4

Precision Funetions and String Funetions, REAL,
6-3

Printer Control Characters, 8-2

PRINTER IS device, 4-7

PRINTER, IS statement, 81

Printer, system, 8-1

Printer, Using a, 8-1

Printer, Using the External, 8-2

Printing Arrays, 4-7

PRINT TAB statement, 8-4

PRINT TABXY statement, 84

Pricrity, ON ERROR, 9-2

Program counter, 2-2

Program flow, 2-1

Programs, chaining, 2-11

Program structures, keywords that define, 2-4

Program/Subprogram Communication, §-4

Program-fo-Program Communication, 2-12

Prohibited Staternents, 2-4

PROUND function, 3-8
PRT function, 3-19

R

Radians, 3-8

RAD statement, 3-8, -9

Random access, 7-14, 7-16

Random ENTER, 7-24

RANDOMIZE statement, 3-9

Random Number Function, 53-0

Random OUTPUT, 7-22

Random vs. Serial Access, T-16

RANK function, 4-4

Rate degradation, 7-13

Reading Data from BDAT and HP-UX Files,
7-23

Reading String Data from a File, 7-23

READ statement, 4-6, 7-1, 7-2, 7-3, 7-4

READ Statement to Fill an Entire Array, Using
the, 4-6

REAL data type, 3-1, 4-1

REAL Data Type, 3-1

REAL Precision Functlons and String Functions,
6-3

REAL statement, 2-4, 4-1, 4-4

Record Length (BDAT Files Only), Choosing
A, 720

Records, Defined, 7-19

Record Size (BDAT Files Only), Specifying,
7-19

RECOVER statement, 6-0

RECOVER Statement, Subprograms and the,
6-10

Recovery, Scope of Error Trapping and, 9-2

Recursion, 6-13

Redimensioning Arrays, 4-14

Redimensioning, Automatic, 4-6

REDIM statement, 4-4, 4-14, 4-15

Reducing the overhead in ASCII data files, 7-14

Reference, Pasgs by, 6-5

Relational Operations, 5-3

Relational operator, 3-5

REM statement, 2-4

REPEAT ... UNTIL structure, 2-7, 2-8

REPEAT statement, 2-4

Repeat, String, 5-8

RESTORE statement, 7-4

RETURN stack, 6-9

RETURN statement, 2-2

Reverse, String, 5-8

REV$ string funcéicn, 5-8

ROTATE function, 3-8

Rounding problem, 3-2

RPT$ siring function, 5-8

Rules for Copying Subarrays, 4-14

Index-5

RUN command, 6-1
Run-Time, ON ERROR Execution ai, 9-2

S

SAVE statement, 6-12, 7-1

Scalar Fxpressions, Evaluating, 3-3

Scope of BError Trapping and Recovery, 9-2

SELECT constracis, 2-6

Selection, 2-3

SELECT statement, 2-4, 2-5, 2-6, 2-7

Serial access, 7-16

Serial ENTER, 7-24

Serial QOUTPUT, 7-22

Service Routines, Setting Up Error, 9-2

Setting Up Error Service Routines, 9-2

SGN function, 3-7

SHIFT function, 3-8

Simple Branching, 2-2

SIN fanction, 3-8

Single-Byte Access, 7-25

Single-Subseript Substrings, 5-4

SIZE function, 4-4

Softkeys, Subprograms and, 6-10

Specifiers, Additional Image, 8-7

Specifiers, Numeric Image, 8-5

Specifier, Subarray, 4-6

Specifying Record Size (BDAT Files Only), 7-19

SQRT function, 3-7

STOP statement, 2-1

Storage and Retrieval of Arrays, 7-3

Storage-space efficiency, 7-16

STORE staterment, 6-12

Storing Data in Programs, 7-1

Storing Data in Variables, 7-1

String, 5-1

String Arrays, 5-2

String Concatenation, 5-3

String Data from a File, Reading, 7-23

String, default dimensioned length of a, 5-1

String Function, CHRE, 5-7

String Function, DVALS, 5-9

String Function, ERRMS, 9-3

String Function, IVALS$, 5-9

String Function, LWC$, 5-8

String Fanction, REVE, 5.8

String Function, RPTS, 5-8

String Fanctions, 5-7

String Fanctions, REAL Precision Functions
and, 6-3

String Function, TRIMS, 5-8

String Function, UPCS, 5-8

String Function, VALS$, 5-7

String Image Specifiers, 8-6

String Length, Current, 5-6

String Manipulation, 5-1

Index-6

String-Related Functions, 5-6

String Repeat, 5-8

String Reverse, b-8

Strings, Evaluating Expressions Containing, 5-3

Strings in Numeric Expressions, 3-6

String Storage, 5-2

String-to-Numerie Conversion, 5-7

String, Trimming a, 5-8

String variable, 5-1

String variable’s length header, 7-14

Subarray, Copying a Sebarray into another,
4-12

Subarrays, Copying, 4-9

Subarray Specifier, 4-8

Subarray specifier examples, 4-10

Subarrays, Rules for Copying, 4-14

SUBEND statement, 2-4, 6-12, 6-13

SUBEXIT statement, 6-13

Subprogram and User-Defined Function Names,
-2

Subprogram, Difference Between a User-Defined
Function and a, 6-2

Subprogram Location, 6-2

Subprograms, A Closer Look at, 6-1

Subprograms and Softkeys, 6-10

Subprograms and Subroutines, Differences
Between, 6-2

Subprograms and the RECOVER Statement,
6-10

Subprograms and User-Defined Functions, 6-1

Subprograms at Once, Loading Several, 6-11

Subprograms, Benefits of, 6-1

Subprograms, Deleting, 6-12

Subprograms, Inserting, 6-10

Subprograms, Loading, 6-11

Subprograms, Merging, 6-12

Subprograms One at a Time, Loading, 6-11

Subprograms Prior to Execution, Loading, 6-12

Subroutine, 2-2

Subscript expression, 4-10

Subscript range, 4-190

SUB statement, 2-4, 6-1, 6-4, 6-10, 6-12, 6-13

Substring Position, 5-6

Substrings, 5-4

Substrings, Double-Subseript, 5-5

Substrings, Single-Subseript, 5-4

Systemn printer, 8-1

System Sector, BDAT File, 7-19

T
TAN function, 3-8

Time and Date Functions, 3-9

TIMEDATE function, 3-9

Trapping and Recovery, Scope of Error, 9-2
Trapping Errors, 9-2

Trapping (OFF ERROR), Disabling Error, 9-3 v

Trigonometric Functions, 3-8 VALS function, 7-15
Trimming a String, 5-8 VAL function, 5-7
TRIMS string function, 5-8 VALS string function, 5-7
Two-dimensional, 4-1 Value, Pass‘by, 6-5

Two-Dimensional REAL Array, 4-3

1 _ - Vartable Initialization, 6-10
Type Conversions, Implicit, 3-2

Variables, Assigning, 3-2
Variables, Declaring, 3-1

u Variables, keywords used in the declaration of,
UNTIL statement, 2-4 2.4

UPCS string function, 5-8

User-defined formats, 7-16 w

WHILE ... END structure, 2-7

WHILE ... END WHILE structure, 2-8
WHILE statement, 2-4

WHILE structure, 2-8

Writing Data, 7-21

Index-7

HP Instrument BASIC
Interfacing Techniques

A ciciaro

Printed in USA August 1992

© Copyright 1992 Hewlett-Packard Company. All rights reserved.

Contents

1. Manual Overview

Introduction oL e e e 1-1
Meanual Qrganization L. L. e e 1-1
Chapter Previews e e 1-2
Chapter 2: Interfacing Concepts e e 1-2
Chapter 3: Directing Data Flow C e e e 1-2
Chapter 4: Outputting Data C e e e e e e 1-2
Chapter 5: Entering Data C e e e e e e 1-2
Chapter 6: 1/0 Path Attributes C e e e e e 1-2
Specific Interfaces L. e e e e e 1-2

2. Interfacing Concepts

Terminologyo L. C e e e e 2-1
Why Do You Need an Eﬂferface? s e e e e e 2-2
Flectrical and Mechanical Compatibility e e e e 2-2
Data Compatibility C e e e 2-2
Timing Compatibility e e e e, 2-3
Additional Interfaee Funetions C e e e e Coe 2-3
Interface Overview e e Ce 2-4
The HP-IB Interface, e e P 2-4
The RS-232C Serial Interface C e e Do 2-5
Data Representations e e e Co e 2-6
Bits and Bytes C e e e e e e e Coe 2-6
Representing Numbers C e e e e e e Co 2-7
Representing Characters e e e e e e oo 2-7
The [/O Process e e e e e 2-8
1/O Statements and Parameters L. 2-8
Specifying a Resource e e e e e e e e e e 2-8
Data Handshake e e e e e e e e e e 2-8
3. Directing Data Flow

Specifving a Resource L .0 . L 0o 000000 3-1
String-Variable Names Ce e e e e e 3-1
Formatted String [/Oo o000 31
Device Selectors L L oo o o e 3-2
Select Codes of Built-In Interfaces - 3-2
HP-1B Device Selectors - 3-2
I/OPaths oo L0 Coe e e 3-3

I/O Path Names Ce e 3-3
ReAssigning I/O Path Names e e e 3-3
Closing I/O Path Names C e e e 3-4

1/O Path Names in Subprograms C e e e e 3-4

Contents-1

Asgigning 1/O Path Names Locally Within Subprograms 3-4
Passing I/O Names as Parameters 3-&
Declaring /0 Path Names in Common 3-6
Benefits of Using I/O Path Names 3-6
Execution Speed 0 L L 0L L L L0 3-6
Redirecting Data . . . e e e e e 3-7
Access to Mass Storage Fﬂca C e e e e e 3-7
Attribute Control 0 L0000 Lo 3-7

4. Outpuiting Data
Introduction L o L Lo e e e e e e e e 4-1
Free-Field Outputs e e e e 4-1
Examples e e e e e e e e e e e e e e 4-1

The Free-Field Ccnventxcm T 4-1
Standard Numeric Format 4-1
Standard String Format L ..o 4-2

Ttem Separators and Terminators 4-2

Changing the EOL Sequence 4-4
Using END in Freefield OUTPUT 4-5
Additional Definition oL 00000000 oL L. 4-5
END with HP-IB Interfa,ces e e e e e e e e 4-5
Examples . . . e e s e 4-5
Outputs that Use Images e e e e e e e e e e 4-6

The QUTPUT USING gtdtcment e, 4.6

Images e e e e e s 4-7
Exaznple of Using an Image e e e e e e e e 4-7
Image Definitions During Outputs 4-8
Numeric Images L ... Lo L e . .. 4-9
Numeric Examples 4-10
String Images o ..o oL L 4-12
String Examples 000000 oo .. 4-12
Birary Images L0 o Lo 4-13
Binary Examples oL Lo Lo 4-13

Special-Character Images e e e e e e 4-14
Special-Character Examples L. 4-14
Termination Imageso 00 4-15
Termination Exampleso L. 4-15
Additioral Image Features L. 4-16
Repeat Factors oL oL oo 4-16
Examples oo Lo e 4-16
Image Re-Use L. oo 4-17
Nested Images . . . e e e e e e e e e 4-18
EXND with OUTPUTs th&t Use {mages e e e e e e e e 4-18
Examples . . . e e e e e e e e e e C . 4-18
Additioral END Deﬁmflon e e e e e e e e e e e e e e 4-19
END with HP-IB Interfaces 4-19
Examples L . . e e e e e e e e e e 4-19

Contents-2

5.

Entering Data

Free-Field Enters S
Item Separators .
Ttem Terminators

Entering Numeric Data with the Num’{)er Buﬂder R

Entering String Data
Terminating Free-Tield ENTER Sta%ements
EOI Termination
Enters that Use Images
The ENTER USING Statement . . .
Images . .
Example of an Enter Usmg an Ema,g,e
Image Definitions During Enter
Numeric Images .
Examples of Numeric Imagu, .
String Images . .
Examples of String Imap"es .
Ignoring Characters .
Examples of Ignoring (‘harac%ers
Binary Images
Examples of Binary Immages
Terminating Enters that Use Images .
Default Termination Conditions .
EO1 Redefinition
Statement- Termination \flodlﬁers

Examples of Modifyving Termination Condmons .

Additional Image Features . . .
Repeat Factors
Image Reuse
Examples
Nested Images
Example .

I/0 Path Attributes
The FORMAT Attributes . . . Coa

Assigning Default FORMAT Attnbutes

Specifying 1/0 Path Attributes

Changing the EQOL Sequence Attribute

Restoring the Default Aftributes

Coneepts of Unified 1/0

Data-Representation Design Criteria

1/0 Paths to Files = . . .

BDAT, HPUX and DOS Fﬂes
ASC 11 Files . .

Data Representation Emmma;y R

Applications of Unified I/O

I/0O Operations with String Variables .
Outputting Data to String Variables . .
Example
Example
Entering Data From Strmﬁ Variables

.....

e

6-4
6-4

Co 6-6
.o 6-7
Co 6-7
Co 6-7
Co 6-7

(o]
T
R e

mqeglqtmqwm
N

]
[v B BES B

7
©

.. 6-1

6-2
6-3
6-3

6-4
6-5
6-5

6-8
6-9
6-9

Contents-3

Example o . o000 L. e e e e e - 6-10
Example L. e e e e co. 6-10

Index

Contents-4

Manual Overview

Introduction

‘This manual presents the concepts of comnputer interfacing that are relevant fo programming
in HP Instrument BASIC. Note that not all features described in this manual may be
implemented on your instrument. Pleage consult your instrument-specific manual for

& description of implemented features. The topics presented herein will increase your
understanding of interfacing the host instrument and external devices and computers with HP
Instrument BASIC programs.

Manual Organization

This manual is organized by topics and is designed as a learning tool, not a reference. The
text is arranged to focus your attention on interfacing concepts rather than to present only a
serial list of the HP Instrument BASIC language 1/O statements. Once you have read this
manual and are familiar with the general and specific concepts involved, you can use either
this manual or the HP Instrument BASIC Language Reference when searching for a particalar
detail of how a statement works.

This manual is designed for easy access by both experienced programmers and beginners.

Beginners may want to begin with Chapter 2, “Interfacing Concepts”, before reading
about general or interface-specific technigues.

Experienced may decide to go directly to the chapter in your instrument-specific mannal

programmers that describes the particular interface to be used. It is also usually helpful to
become familiar with display and kevboard 1/0 operations, since these are
helpful in seeing results while testing I/0 programs.

If you need more background as you read about a particular topic, consult
chapters 3 through 6 for a detailed explanation.

The brief descriptions in the next section will help vou determine which chapters you will need
to read for your particular application.

Manual Overview 1-1

Chapter Previews

This manual is intended to provide background and tutorial information for programmers
who have not written HP Instrument BASIC 1/0O programs before. It presents topics and
programming techniques applicable to all interfaces.

Chapter 2: Interfacing Concepts

This chapter presents a brief explanation of relevant interfacing concepts and terminology.
This discussion is especially useful for beginners as it covers much of the “why” and “how”
of interfacing. Experienced programmers may also want to review this material to better
understand the terminology used in this mannal.

Chapter 3: Directing Data Flow

This chapter describes how to specily which instrument resource is to send data to or receive
data. The use of device selectors, string variable names, and “I/O path names” in [/O
statements are desecribed.

Chapter 4: Qutputting Data

This chapter presents methods of outputting data to devices. All details of this process are
discussed, and several examples of free-field output and output using images are given. Since
this chapter completely describes outputiing data to devices, vou may only need to read the
sections relevant to your application.

Chapter 5: Entering Data

This chapter presents methods of entering data from devices. All details of this process are
discussed, and several examples of free-field enter and enter using images are given. As with
Chapter 4, you may only need to read sections of this chapier relevant to your application.

Chapter 6: I/O Path Atiributes

This chapter presents several powerful capabilities of the I/0 path names provided by the
BASIC langnage system. Interfacing to devices is compared to interfacing to mass storage
files, and the benefits of using the same statements to access both types of resources are
explained. This chapter is also highly recommended to all readers.

Specific Interfaces

Since each host instrument for HP Instrument BASIC implements the display, keyboard and
other interfaces in slightly different manners, this manual does not cover the operation of
interfaces. For specific details on the operation of interfaces with HP Instrument BASIC,
consult the instrument-specific manual for your host instrument.

1.2 Manual Overview

Interfacing Concepts

This chapter describes the functions and requirements of interfaces between the host
instrument and its resources. Concepts in this chapter are presented in an informal manner.
All levels of programmers can gain useful background information that will increase their
understanding of the why and how of interfacing.

Terminology

These terms are important to your understanding of the text of this manual. The purpose of
this section is to make sure that our terms have the same meanings.

computer

hardware

software

firmware

computer
resource

I/0

output

input

bus

is herein defined to be the processor, its support hardware, and the HP
Instrament BASIC-language system of the host instrument; together these
system elements manage all computer resources.

describes both the elecirical connections and electronic devices that make up
the circuits within the computer; any piece of hardware is an actual physical
device.

describes the user-written, BASIC-language programs.

refers to the preprogrammed, machine-language programs that are invoked by
BASIC-language statements and commands. As the term implies, firmware is
not usually modified by BASIC users. The machine-language routines of the
operating system are firmware programs.

is herein used to describe all of the “data-handling” elements of the system.
Computer resources include: internal memory, display, kevboard, and disc
drive, and any external devices that are under computer control.

is an acronym that comes from “Input and Ouiput”; it refers to the process of
copying data to or from computer memory.

involves moving data from computer memory to another resource. During
output, the source of data is compuier memory and the destination is any
resource, including memory.

is moving data from a resource to computer memory; the source is any
resource and the destination is a variable in computer memory. Inputting date
is also referred to as “entering data” in this manual for the sake of avoiding
confusion with the INPUT statement.

refers to a common group of hardware lines that are used to transmit
information between computer resources. The computer communicates
directly with the internal resources through the data and control buses.

interfacing Concepts 2-1

computer is an extension of these internal data and control buses. The computer
backplane communicates indirectly with the external devices through interfaces
connected to the backplane hardware.

Why Do You Need an Interface?

Thke primary function of an interface is to provide a communication path for data and
commands between the computer and its resources. Interfaces act as intermediaries between
resources by handling part of the “bookkeeping” work, ensuring that this communication
process flows smoothly. The following paragraphs explain the need for interfaces.

First, even though the computer bus is driven by electronic hardware that generates and
receives electrical signals, this hardware was not desigred to be connected directly to external
devices. The internal hardware has been designed with specific electrical logic levels and drive
capability in mind.

Second, you cannot be assured that the connectors of the computer and peripheral are
compatible. In fact, there is a good probability that the connectors may not even mate
properly, let alone that there is a one-to-one correspondence between each signal wire’s
function.

‘Third, assuming that the connectors and signals are compatible, you have no guarantee that
the data sent will be interpreted properly by the receiving device. Some peripherals expect
single-bit serial data while others expect data to be in 8 bit paraliel form.

Fourth, there is no reason to believe that the computer and peripheral will be in agreement as
to when the data transfer will occur; and when the transfer does begin, the transfer rates will
probably not mateh.

Asg you can see, interfaces have a great responsibility to oversee the communication between
computer and its resources,

Electrical and Mechanical Compatibility

Electrical compatibility must be ensured before any thought of connecting two devices occurs.
Often the two devices have input and output signals that do not match; if so, the interface
serves to match the electrical levels of these signals before the physical connections are made.

Mechanical compatibility simply means that the connector plugs must fit together properly.
The interfaces connect with the computer buses. The peripheral end of the interfaces have
connectors that match those on peripherals.

Data Compatibility

Just as two people must speak a common language, the computer and peripheral must agree
upon the form and meaning of data before communicating it. As a programmer, one of the
most difficult requirements to fulfill before exchanging data is that the format and mearing of
the data being sent is identical to that anticipated by the receiving device. Even though some
interfaces format data, most do not; most interfaces merely move data to or from computer
memory. The computer must make the necessary changes, if any, so that the receiving device
gets meaningful information.

2-2 Interfacing Concepts

Timing Compatibility

Since all devices do not have standard data-transfer rates, nor do they always agree as to
when the transfer will take place, a consensus between sending and receiving device must be
made. If the sender and receiver can agree on both the transfer rate and beginning point (in
time), the process can be made readily.

If the data transfer is not begun at an agreed-upon point in time and at a known rate, the
transfer must proceed one data item at a time with acknowledgement from the receiving
device that it has the data and that the sender can transfer the next data item; this process
is known as a “handshake.” Both types of transfers are utilized with different interfaces and
both will be fully described as necessary.

Additional Interface Functions

Another powerful feature of some interfaces is to relieve the computer of low-level tasks,
such as performing data-transfer handshakes. This distribution of tasks eases some of the
computer’s burden and also decreases the otherwise-stringent response-time requirements of
external devices. The actual tasks performed by each type of interface vary widely and are
described in the next section of this chapter.

Interfacing Concepts 2-3

Interface Overview

Now that you see the need for interfaces, you should see what kinds of interfaces are available
for the compater. Each of these interfaces is specifically designed for specific methods of data
transfer; each interface’s hardware configuration reflects its function.

The HP-IB Interface

This interface is Hewlett-Packard’s implementation of the IEEE-488 1978 Standard
Digital Interface for Programmable Instrumentation. The acronym “HP-IB” comes from
Hewlett-Packard Interface Bus, often called the “bus”.

Data

HP—IB < 2

Interface

Handshake :
Shieldaed Cable

'\
V|
Data and /‘ 3 \ §
Control | Hardware [N e § ta Devicel(s)
- 100 . 3
Connectors \‘—1/ Firmwars . [.
Cantrol ~
é = b E:
s 5 E
Logic and
Shield Grounds
% = N
N V|

Block Diagram of the HP-IB interface

The HP-IB interface fulfills all four compatibility requirements (hardware, electrical, data, and
timing) with no additional modification. Just about all you need to do is connrect the interface
cable to the desired HP-1B device and begin programming. All resources connected to the
computer through the HP-IB interface must adhere to this IEEE standard.

The “bus” is somewhat of an independent entity; it i¢ & communication arbitrator that
provides an organized protocol for communications between several devices. The bus can be
configured in several ways. The devices on the bus can be configured to act as senders or
receivers of data and control messages, depending on their capabilities.

2-4 Interfacing Concepts

The RS-232C Serial Interface

The serial interface changes 8-bit parallel data into bit-serial information and transmits the

data through a two-wire (usually shielded) cable; data is received in this serial format and is
converted back to parallel data. This use of two wires makes it more economical to transmit
data over long distances than to use 8 individual lines.

Bit—Serial
[ata
Parallel v, ‘___,@_Q_____
Data I qulfe”/ {(Out)
= Serigl p—————
- Cornverter] Handshoke
Dota and | (uarT) 2 Shielded Cable
Control . to o Device
Serial

Pﬁcmifme 100G Interface
Connectors \l—l/ .
’ Hardware Special Purpose

A

25

&

25-Pin Connector

Graunds

%
AN
< 5

N N7

Biock Diagram of the Serial Interface

Data is transmitted at several programmable rates using either a simple data handshake or no
handshake at all. The main use of this interface is in communicating with simple devices,

interfacing Concepts 2-5

Data Representations

As long as data is only being used internally, it really makes little difference how it is
represented; the computer always understands its own representations. However, when data
is to he moved to or from an external respurce, the data representation is of paramount
importance.

Bits and Bytes

Computer memory is no more than a large collection of individual bits (binary digits), each
of which can take on one of two logic levels (high or low). Depending on how the computer
interprets these bits, they may mean on or not on (off), true or not true (false), one or zero,
busy or not busy, or any other bi-state condition. These logic levels are actually voltage levels
of hardware locations within the computer. The following diagram shows the voltage of a
point versus time and relates the voltage levels to logic levels.

voltage of

a Point
+5y
— Logic High
Loqgic Gro(uond\ P [oqiC ROw
W) ¢ t t. Time
1 2 3

Voltage and Positive-True Logic

In some cases, you want to determine the state of an individual bit (of a variable in computer
memory, for instance). The logical binary functions (BIT, BINCMP, BINIOR, BINEOR,
BINAND, ROTATE, and SHIFT) provide access to the individual bits of data.

In most cases, these individual bits are not very useful by themselves, so the computer groups
them into multiple-bit entities for the purpose of representing more complex data. Thus, all
data in computer memory are somehow represented with binary numbers.

The computer’s hardware accesses groups of sixteen bits af one time through the internal data
bus; this size group is known as a word. With this size of bit group, 65 536 {65 536=-21%)
different bit patterns can be produced. The computer can also use groups of eight bits at a
time; this size group is known as a byte. With this smaller size of bit group, 256 {256=2%)
different patterns can be produced. How the computer and its resources interpret these
combinations of ones and zeros is very important and gives the computer all of its utility.

2-6 Interfacing Concepts

Representing Numbers

The following binary weighting scheme is ofter used to represent numbers with a single data
byte. Only the non-negative integers 0 through 255 can be represented with this particular

schemne,

Most-Significant Bit

Least-Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1 G G 1 G 1 1 {
Value=128 | Value=064 Value=32 Value=16 Value=8 Value:s4 Value—=2 Value=]

Notice that the value of a 1 in each bit position is equal to the power of two of that position.
For example, a 1 in the Oth bif position has a value of 1 (1=2"), a 1 in the 1st position has a
value of 2 (2=2), and so forth. The number that the byte represents is then the total of all
the individual bit’s values.

0x20=0

1x2t=2

1 x22=4 Number represented =
0x2°=0

Ix2t=16 244416+ 128 = 150
0x2°=0

0x2°=0

1 x 27 = 128

The preceding representation is used by the “NUM” function when it interprets a byte of
data. The next section explains why the character “A” can be represented by a single byte.

100 Number=NUM{"4")
110 PRINT * Humber = ';Number
120 END

pﬁni’s

Humber = 65

Representing Characters

Data stored for humans is often alphanumeric-type data. Since less than 256 characters are
commonly used for general communication, a single data byte can be used to represent a
character. The most widely used character set is defined by the ASCII standard. ASCII
stands for “American Standard Code for Information Interchange”. This standard defines the
correspondence between characters and bit patterns of individual bytes. Since this standard
only defines 128 patterns (bit 7 = 0), 128 additional characters are defined by the computer
(bit 7 = 1). The entire set of the 256 characters on the computer is hereafter called the
“extended ASCII” character set.

When the CHRS function is used to interpret a byte of data, its argument must be specified
by its binary-weighted value. The single (extended ASCII) character returned corresponds to
the bit pattern of the function’s argument.

interfacing Concepts 2-7

100 Number=65 ! Bit pattern iz "01000001"
110 PRINT " {haracter is ",

120 PRINT CHE$(Numbexr)

130 EHD

prints

Character is A

The 1/0 Process

When using statements that move data between memory and internal computer resources,
vou do not usually need to be concerned with the details of the operations. However, you
may have wondered how the computer moves the data. This section describes /0 operations
regarding kow the computer outputs and enters data.

I/O Statements and Parameters

The 1/0 process beging when an 1/0 statement is encountered in a program. The computer
first determines the type of 1/0 statement to be executed (such as, OUTPUT, ENTER,
USING, etc.) Once the type of statement is determined, the computer evaluates the
statement’s parameters.

Specifying a Resource

Each resource must have a unique specifier that ailows it to be accessed to the exclusion of
all other resources connected to the computer. The methods of uniquely specifyving resources
(output destinations and enter sources) are device selectors, string variable names, and I/0
path names. These specifiers are further described in the next chapter.

For instance, before executing an OUTPUT statement, the computer first evaluates the
parameter that specifies the destination resource. The source parameter of an ENTER
statement is evaluated similarly.

QUTPUT Dest_parameter;Socurce_item

ENTER Sourc_parameter;Dest _item

Data Handshake

Each byte {or word) of data is transferred with a procedure known as a data-transfer
handshake (or simply “handshake”). It is the means of moving one byte of data at a time
when the two devices are not in agreement as to the rate of data transfer or as to what point
in time the transfer will begin. The steps of the handshake are as follows:

1. The sender signals to get the receiver’s attention.
2. The receiver acknowledges that it is ready.

3. A data byte (or word) is placed on the data bus.
4

. The receiver acknowledges that it has gotten the data item and is now busy. No further
data may be sent until the receiver is ready.

5. Repeat these steps if more data items are to be moved.

2-8 interfacing Concepts

3

Directing Data Flow

Data can be moved between computer memory and several resources. These resources include:
& Computer memory

m Internal and external devices

m Mass storage files

This chapter describes in general terms how devices and string variables are specified in
I/0 statements. Each of these topics is covered in more detail in subsequent chapters. This
chapter also describes the use of I/O pathnames in specifying devices for later use in 1/0
statements.

Specifying a Resource

Fach resource must have a specifier that aflows it to be accessed to the exclusion of all other
compitter resources. String variables are specified by variable name, while devices can be
specified by either their device selector or a data type known as an I/0 path name. This
section deseribes how to specify these resources in QUTPUT and ENTER statements.

String-Variable Names
Data is moved to and from string variables by specifying the string variable’s name in an
QUTPUT or ENTER statement. Examples of each are shown below:

200 OUTPUY To_string$;Data_out$; ! ";" suppresses CR/LF.
240 ENTER From_string$;To_string$

Data is always copied to the destination string (or from the source string} beginning at the
first position of the variable; subscripts cannot be used to specify any other beginning position
within the variable.

Formatted String /O

The use of outputting to and entering from string variables is a very powerful method of
buaffering data to be output to other resources. With OUTPUT and ENTER statements that
use images, the data sent to the string variables can be explicitly formatted before being sent
to (or while being received from) the variable.

Directing Data Flow 3-1

Device Selectors

Devices include an internal CRT, keyboard, external printers and instruments, and all other
physical entities that can be connected to the computer through an interface. Each interface
has a unique number by which it is identified, known as its interface select code.

In order to send data to or receive data from a device, merely specify the select code of its
interface in an OUTPUT or ENTER statement. Examples of using select codes to access
_devices are shown below,

QUTFUT 1;"Data to CRT™
ENTER CRT;Crt _line$

HPib_device=722
QUTPUT 722;"FiRi"™
ENTER Hpib_device;Reading

The following pages explain select codes and device selectors.

Select Codes of Buill-In Interfaces

The internal devices are accessed with the following, permanently-assigned interface select
codes,

Note Some host instruments may not contain all of the following interfaces.

Select Codes of Built-In Devices

Built-In Interface /Device Permanent

Select Code
Alpha Display 1
Kevboard 2
Built-in HP-IB interface 7
Built-in serial interface 9

The host instrument may have other built-in interfaces. See your instrument-specific HP
Instrument BASIC manual for information regarding these interfaces and their select codes.

HP-IB Device Selectors

Fach device on the HP-1B interface has a primary address by which it is uniquely identified;
each address must be unigue so that only one device is accessed when one address is specified.
The device selector is then a combination of the interface select code and the device’s address.
Some examples are shown below.

3-2 Directing Data Fiow

HP-IB Device Selector Examples

Device Location Device Example I/0 Statement
Selector
interface select code 7, 722 CUTPUT 722;"Data" ENTER
primary address 22 722; ¥umber
interface select code 10, 1001 OUTPUT 1001;"Data" ERTER
primary address 01 1001 ; Humber

IO Paths

All data entered and output via an interface to files or devices is moved through an “I/0
Path.” The 1/O paths to devices and mass storage files can be assigned special names called
I/0 path names. I/0 paths to strings cannot use 1/0 path names. The next section describes
how to use I/O path names along with the benefits of using them. :

I/O Path Names

An I/0 path name is a data type that describes an 1/O resource. With HP Instrument
BASIC, you can assign I/O path names to either a device or a data file on a mass storage
device. The following examples show how this is done.

Devices LSSIGHN @Device TD 722
Files ASSIGN @File TO "MyFile"

Once assigned, the [/O path names can be used in place of the device selectors to specify the
resource with which communication is to take piace. For example:

ASSIGE €Display TO i Assigns the I/O path name @Display to the CRT.
OUTPUT @Display;''Data’ Sends characters to the display.

ASSIGE CPrinter TO 701 Assigns @Printer to HP-IB device 701.

QUTPUT @Printer;"Data Sends characters to the printer.

ASSIGH €Gpio TO 12 Assigns @Gpio to the interface at select code 12.

ENTER @Gpio;A_number Enters one numeric value from the interface.

Note HP Instrument BASIC does not support assigning an 1/0 path name to

multiple devices.

Since an I/O path name is a data type, a fixed amount of memory is allocated for the
variable, similar to the manner in which memory is allocated to other program variables
(integer, real and string). This I/O path information is only accessible to the context in which
it was allocated, unless it is passed as a parameter or appears in the proper COM statements.

ReAssigning 1/0 Path Names

If an I/O path name already assigned to a resource is to be reassigned to another resource, the
preceding form of the ASSIGN statement is also used. The resultant action is that the the
I/O path name to the device is implicitly closed. A new assignment is then made just as if the
first assignment never existed.

Directing Data Flow 3-3

160 ASSTGH @Printer TO 1 ! Initial assignment.
116 DITPUT OPrinter;'"Datal® -

120 !

130 ASSIGHN @Printer TO 701 ! 2nd ASSIGN closes ist

140 QUTPUT @Printer;'Data2” ! and makes a ney assigament.
150 PAUSE

160 END

The result of running the program is that “Datal” is sent to the CRT, and “Data2” is sent to
HP-IB device 701.
Closing /O Path Names

A second use of the ASSIGN statement is to ezplicitly close the name assigned to an [/0
path. For example, to close the path name @Printer you would use the following statement:

ASSIGN @Printer TO =%

After executing this statement for a particular I/ path name, the name cannot be used in
subsequent /O statements until it is reassigned.

I/0 Path Names in Subprograms

When a subprogram (either a SUB subprogram or a user-defined function) is called, the
“context” is changed to that of the called subprogram. The statements in the subprogram
only have access to the data of the new context. Thus, in order to use an /O path name in
any statement within a subprogram, one of the following conditions must be true:

w The I/O path name must already be assigned within the context {i.e., the same instance of
the subprogram)

m The I/O path name must be assigned in another context and passed to this context by
reference (i.e., specified in both the formal-parameter and pass-parameter lists)

a The I/O path name must be declared in a variable common (with COM statements) and
already be assigned within a context that has access to that common block

The following paragraphs and examples further describe using 1/O path names in
subprograms.

Assigning 1/O Path Names Locally Within Subprograms

Any I/0O path name can be used in a subprogram if it has first been assigned to an 1/0 path
within the subprogram. A typical example is shown below.

i0 CALL Subprogram_x

20 ENB

30 !

40 5UB Subproegram_X

50 ASSIGH QLog_device TQ 1 ! CRT.

60 OUTPUT @Llog_device;"Subprogras"
70 SUBEND

When the subprogram is exited, all I/O path names assigned locally within the subprogram
are automatically closed. If the program (or subprogram) that called the exited subprogram

3-4 Directing Data Fiow

attempts to use the I/O path name, an error results. An example of this closing local I/O
path names upon return from a subprogram is shown below.

10 CALL Subprogram_x

11 OUTPUT QLog.device;"Main'" ! inserted line
20 END

30 !

40 SUB Subprogram_x

50 ASSIGN @Log_device TG 1 ! CRT.

60 OUTPUT QLog_device;"Subprogram"

70 SUBEED

When the above program is run, ervor 177, Undefined I/0 path name, occurs in line 11.

Fach context has its own set of local variables. These variables are not automatically
accessible to any other context. Consequently, if the same [/O path name is assigned to I/0
paths in separate contexts, the assignment local to the context is used while in that context.
Upon return to the calling context, any [/O path names accessible to this context remain
agsigned as before the context was changed.

1 ASSIGN QLog_device to 701 ! Inserted line
2 OUTPUT QLog_device;"First Main® ! Inserted line
10 CALL Subprogram_x

11 OUTPUT 4QLog._device;"Second Main" ! Changed line

20 END

30 !

40 SUE Subprogram. x

50 ASSIGN @iocg device TO 1 ! CRT,

60 DUTPUT @Log_device;"Subprogran”

70 SUBEND

The results of the above program are that the outputs “First Main” and “Second Main”
are directed to device 701, while the output “Subprogram” is directed to the CRT. Notice
that the original assignment of @Log_device made to interface select code 1 was local to the
subprogram.

Passing I/O Names as Parameters

I/O path names can be used in subprograms if they are assigned and have been passed to the
called subprogram by reference; they cannot be passed by value. The 1/0O path names(s) to be
used must appear in both the pass-parameter and formal-parameter lists.

i ASSIGE @Log_device to 701
JUTPUT @Log.device;"First Main'

10 CALL Subpregram_x(QLog_device} i hdd pass parameter
11 0JTPUT @Log_device;'Second Main"

20 END

30 !

40 SUB Subprogram_x{€Log) t Add formal parameter

50 ASSIGN €Log TO 1 ! CRT.
60 GUTPUT @Log;"Subprogram”
70 SUBEND

Upon refurning to the calling routine, any changes made to the assignment of the 1/0 path
name passed by reference are maintained; the assignment local to the calling context is not
restored as in the preceding example, since the I/O path name is accessible to both contexts.
In this example, @lLog_device remains assigned to interface select code 1; thus, “Subprogram™
and “Second Main” are both directed to the CRT.

Directing Data Flow 3-5

Declaring 1/0 Path Names in Common

An I/O path name can also be accessed by a subprogram if it has been declared in a COM
statement (labeled or unlabeled) common to calling and called contexts, as shown in the
following example.

1 COM @Log._device ! Tnsert COM statement
3 ASSIGH €Log_device to 701
4 OUTPUT @Log_device;"First Main”

16 CALL Subprogram_x ! Parameters not necessary
11 OUTPUT €Log.device;"Second Main"

26 EED

3¢

40 SUB Subprogram_x ! Parameters not necessary
41 COM @ Log_device ! Tnsert (O statement

B¢ ASSIGN @Log device TG 1 ! CRT.
60 OUTPUT QlLog_device;"Subprogram'
70 SUBEND

If an I/O path name is common is modified in any way, the assignment is changed for all
subsequent contexts; the original assignment is not “restored” upon exiting the subprogram.
In this example, “First Main” is sent to the HP-IB device 701, but “Sabprogram” and
“Second Main” are both directed to the CRT. This is identical to the preceding action when
the I/O path name was passed by reference.

Benefits of Using 1/0 Path Names

Assigning names to I/O paths provide improvements in performance and additional
capabilities over using device selectors. These advantages fall in the following areas:

m execuiion speed
w redirecting data to or from other destinations
m access to mass storage files

u attribute control

Execution Speed

When a device selector is used in an 1/0 statement to specify the 1/O path to a device, first
the numeric expression must be evaluated, then the corresponding attributes of the I/0 path
must be determined before the I/0O path can be used. If an 1/O path name is specified in

an OUTPUT or ENTER statement, all of this information has already been determined at
the time the I/O path name was assigned. Thus, an 1/0 statement containing an [/O path
name executes slightly faster than using the corresponding 1/0 statement containing a device
selector (for the same set of source-list expressions).

3-6 Directing Data Flow

Redirecting Data

Using numeric-variable device selectors, as with 1/0 path names, allows a single statement
to be used to move data between the computer and several devices. Simple examples of
redirecting data in this manner are shown in the following programs.

Example of Re-Directing with Device Selectors

100 Device=1
110 GOSUB Data_out

200 Device=T01
210 GASUB Data_out

410 Data_out: QUTPUT Device;Data$
420 RETURN

Example of Re-Directing with 1/0 Path Names

10¢ ASSIGN €Device TO L
110 GOsUB Data_out

200 ASSIGN @Device TO 9
210 GBSUB Data_out

410 Data_out: OQUTPUT €Device:Data$
42¢ RETURE

The preceding two methods of redirecting data execute in approximately the same amount of
time.

Access to Mass Storage Files

The third advantage of using I/O path names is that device selectors carnot be used to direct
data to or from mass storage files. Therefore, 1/O path names are the only access to files. If
the data is ever to be directed to a file, you must use 1/0 path names.

Attribuie Control

I/O paths have certain “attributes” that control how the system handles data sent through
the I/0 path. For example, the FORMAT attribute possessed by an 1/0 path determines
which data representation will be used by the path during communications. If the path
possesses the attribute of FORMAT ON, the ASCII data representation wili be used. This

is the default attribute automatically assigned by the computer when 1/0O path names are
assigned to device selectors. If the I/O path possesses the attribute of FORMAT OFF, the
internal data representation is used; this is the defanlt format for BDAT files. Further details
of these and additional attributes are discussed in the “I/O Path Attributes” chapter.

The final factor that favors using I/O path names is that you can control which attribute(s)
are to be assigned to the /O path. Attributes can be attached to an I/O path name when
it is assigned to a device {via the ASSIGN statement) and can specify data representation
(ASCII or internal) as well as the end-of-line sequence for all data using the path. Details of
these attributes are discussed in the “I/O Path Astributes” chapter.

Directing Data Flow 3-7

Outputting Data

Introduction

This chapter describes the topic of outputting data to devices; outputting data to string
variables, and mass storage files is described in the “I/0 Path Attributes” chapter of this
mantal, in “Data Storage and Retrieval”, chapter 7 of HP Instrument BASIC Programming
Techniques.

There are two general types of output operations. The first type, known as “free-field
outputs”, use the HP Instrument BASIC’s default data representations. The second type
provides precise control over each character sent to a device by allowing you to specify the
exact “image” of the ASCII data to be output. '

Free-Field Outputs

Free-field outputs are invoked when the following types of OUTPUT statements are executed.

Examples

OUTPUT @Device;3.14*Rading”2
OUTPUT Printer;"String data”;fum_1
BUTPUT 9;Test,Score,Studentd

OUTPUT Escape,code$; CHR${27)&"&A1S";

The Free-Field Convention

The term “free-field” refers to the number of characters used to represent a data item.
During free-field outputs, HP Instrument BASIC does not send a constant number of ASCII
characters for each type of data item, as is done during “fixed-field outputs” which use images
(described later). Instead, a special set of rules is used that govern the number and type of
characters sent for each source item. The rules used for determining the characters output for
numeric and string data are described in the following paragraphs.

Standard Numeric Format

The default data representation for devices is to use ASCII characters to represent numbers.
The ASCII representation of each expression in the source list is generated during free-field
output operations. Even though all REAL numbers have 15 {and INTEGERSs can have up
to 5} significant decimal digits of accuracy, not all of these digits are output with free-field
QUTPUT statements. Instead, the following rules of the free-field convention are used when
generating a number’s ASCII representation.

Outputting Data 4-1

All numbers between 1E—5 and 1E+6 are rounded to 12 significant digits and output in
fioating-point notation with no leading zeros. If the number is positive, a leading space is
output for the sign; if negative, a leading “-” is output.

For example:

32767
~32768
123456.789012
~.000123456789012

If the number is less than 1K—5 or greater than 1E46, it is rounded to 12 significant digits
and output in scientific notation. No leading zeros are output, and the sign character is &
space for positive and “~” for negative numbers.

For example:

-1.2345678%012E+6
1.23456789012E-5

Standard String Format

No leading or trailing spaces are output with the string’s characters.

String characters.
Noe leading or trailing spaces.

Item Separators and Terminators

Data items are output one byte at a time, beginning with the left-most item in the source
list and continuing until all of the source items have been output. Items in the list must he
separated by either a comma or a semicolon. However, items in the data ouiput may or may
not be separated by item terminators, depending on the use of item separators in the source
lists.

The general sequence of items in the data output is as follows. The end-of-line (EOL)
sequence is discussed in the next section.

ist iterm 2nd item e last EOL
Hem terminator Hem terminator item sequence

Using a comma separator after an item specifies that the item terminator (corresponding
to the type of item) will be output after the last character of this item. A carriage-return,
CHRS(13}, and a line-feed, CHR$(10), terminate string items.

QUTPUT Device;"Item',-1234

! tle |mIiCR|ILF]-L 12134 EOL The defeult EOL sequence is a CR/LF
sequence

4-2 Outputting Data

A comma separator specifies that a comma, CHRS(44), terminates numeric items.

DUTPUT Device;-1234,"Ttem"

~ v fzlzatal b0t etm EOL
sequence

-1 a separator follows the last item in the list, the proper item terminatar will be output
instead of the EOL sequence.

QUTPUT Device;"Iten®, OUTPUT Device;-1234,

| t] e fjm |[CRILF - 1 2

Ln
g

Using a semicolon separator suppresses output of the (otherwise antomatic) item’s terminator.

QUTPUT 1;"Itemi”;"Item2" CUTPUT 1;-12;-34

tltfelm| 1] 1] tleimfal EOL ~ltlzl~1314 EOL
SEOUSNCE SEJUence

If a semicolon separator follows the last item in the list, the EOL sequence and item
terminators are suppressed.

QUTPUT 1;"Itemi”;"Item2";

Neither of the item ileminators nor
the EOL sequence are ouiput

If the item is an array, the separator following the array name determines what is output after
each array element. (Individual elements are output in row-major order.)

110 DIM Array{1:2,1:3}
120 FOR Row=1 TO 2

130 FOR Column=1 T0 3

140 Array{Row,Column)=Rou*10+Column

150 NEXT Column

160 HEXT Row

170 !

180 OUTPUT CRT;Array(*) ! No trailing separator.
180 H

200 QUTPUT CRT;Array(#), ! Trailing comma.

210 H

220 QUTPUT CRT;Array(#); ! Trailing semi-colon.
230 H

240 QUTPUT CRT;"Done'

250 END

Outputting Data 4-3

Resultant Output

. tiz] . 113 21 2 213 EQL

Sedquence
S A 113 21 212 213
11 112 1] 3 211 212 213

DIoIN|E ECL
SEUENOS

Item separaiors cause simitar action for string arrays.

110 DIM Array$(1:2,1:3){23
1290 FOR Row=1 TO 2

13¢ FOR Column=1 TO 3

140 Array${Row, Column)=VALS (Row*10+Colummn)
150 KEXT Column

160 HEXT Bow

17¢ !

180 QUTPUT CRT;Array$(*) ! No trailing separator.
190 !

208 OUTPUT CRT; Array$(*), ! Trailing comma.

216 !

220 QUTPUT CRT;Array$(#); ! Trailing semi-colon.
23% i

240 OUTPUT CRT;"Done"

250 END

Resultant Qutput

plrfer|eFl s 2 foR|LFL 1 3 JCR|LFl 2 i 1 iCrILF 2 2 Jer|LF| 2| 3 ECL
sequence
i1 er{tFi v 2 lcRILFP 1 3lerR|LF| 2z vicrILFl 2 2 [eriLF| 21 3 ECL
SEQUENCE

L2 T O L IV I R

R,
v
P
P
[

oloin|E ECL

SEGUences

Changing the EOL Sequence

An end-of-line (EQL) sequence is normally sent following the last item sent with OUTPUT.
The default EOL sequence consists of a carriage-return. and line-feed (CR/LF), sent with
no device-dependent END indication. It is also possible to define your own special EOL
sequences that include sending special characters, and sending an END indication.

In order to define non-default EOL sequences to be sent by the OUTPUT statement, an 1/0
path must be used. The EQL sequence is specified in one of the ASSIGN statements that
describe the 1/0 path. An example is as follows.

ASSIGE @Device TO 7;EOL CHR$ (10)ECHR$(10)ECHRE(13)

The characters following EOL are the new EOL-sequence characters. Any character in the
range CHR${0) through CHR${255) may be included in the string expression that defines the
EOL characters; however, the length of the sequence is imited to eight characters or less.

4-4 OQuiputting Data

I END is included in the EOL attribute, an interface-dependent “END” indication is sent
with (or after) the last character of the EOL sequence. However, if no EOL sequence is sent,
the END indication is also suppressed. The following statement shows an example of defining
the EOL sequence to include an END indication.

ASSIGN @Device TO 7;EO0L CHR$(13)&CHR$(10) END

With the HP-IB Interface, the END indication is an End-or-Identify message (EOI) sent with
the last EOL character.

The default EOL sequence is a CR and LF sent with no END indicafion; this default can be
restored by assigning EOL OFF to the 1/0 path.

EOL sequences can also be sent by using the “L” image specifier. See “Outputs that Use
Images” for further details.

Using END in Freefield OUTPUT

The secondary keyword END may be optionally specified following the last source-item
expression in a freefield OUTPUT statement. The result is to suppress the End-of-Line
(EOL) sequence that would otherwise he output after the last byte of the last source item. If
a comma is used to separate the last item from the END kevword, the corresponding item
terminator will be output as before (carriage-return and line-feed for string iterns and comma
for numeric items).

The END keyword has additional significance when the destination is a mass storage file. See
the “Data Storage and Retrieval” chapter of HP Instrument BASIC Programming Techniques
for further details.

Additional Definition

HP Instrument BASIC defines additional action when END is specified in a freefield
OUTPUT statement directed to the HP-IB interface.

END with HP-IB Interfaces

With HP-IB interfaces, END has the additional function of sending the End-or-Identify signal
{EOI} with the last data byte of the last source item; however, if no data is sent from the last
source item, FOI is not sent.

Exampies

ASSIGH @Device TO 701

QUTPUT #Device;~10,END

-1 110

N

EOL sent with the last charocter
{numeric e terminatar).

Qutputting Data 4-5

QUTPUT @Device;''AB" ;END

AT B

vl

EOl sent with the ifast character of the item.

"QUTPUT @Device;END
QUTPUT €Device; ""END

Neither EOL sequence nor EOI is sent, since no data is sent.

Outputs that Use Images

The free-field form of the OUTPUT statement is very convenient to use. However, there may
be times when the data output by the free-field convention is not compatible with the data
required by the receiving device.

Several instances for which you might need to format outputs are: special control characters
are to be output; the EOL sequence (carriage-return and line-feed) needs to be suppressed; or
the exponent of a number must have only one digit. This section shows you how to use image
specifiers to create your own, unique data representations for output operations.

The OUTPUT USING Statement

When this form of the OUTPUT statement is used, the data is output according to the
format image referenced by the “USING” secondary keyword. This image consists of one or
more individual image specifiers that describe the type and number of data bytes (or words)
to be output. The image can be either a string Hteral, a string variable, or the line label or
number of an IMAGE statement. Examples of these four possibilities are listed below.

106 OUTPUT 1 USING "64,3DDD.DDD,3X";" K= ",123.45

100 Image_str$="64,SDBD.DDD,3X"
110 QUTPUT CRT USING Image_str$;" K= ";123.45

100 OUTPUT CRT USING Image_stmt;'" K= '';123.45
110 Image_stmt: IMAGE 6A,SDDB.DDBD,3X

100 OQUTPUT 3§ USING 110;" K= ";123.45
110 IMAGE 6A,SDDD.DDD,3X

4-6 OQOutputting Data

Images

Images are used to specify the format of data during I/0O operations. Each image consists
of groups of individual image {or “field”) specifiers, such as 6A, SDDD.DDD, and 3X in the
preceding examples. Fach of these field specifiers describe one of the following things:

m It describes the desired format of one item in the source list. For example, 6A specifies that
a string item is to be output in a “6-character Alpha” field. SDDD.DDD specifies that
a numeric item is to be output with Sign, 3 Decimal digits preceding the decimal point,
followed by 3 Decimal digits following the decimal point,

m It specifies that special character(s} are to be output. For example, 3X specifies that 3
gpaces are to be cutput. There is no corresponding item in the source list.

Thus, you can think of the image list as either a precise format description or as a procedure.
It is convenient to talk about the image list as a procedure for the purpose of explaining how
this type of QUTPUT statement is executed.

Again, each image list consists of images that each describe the format of data item to be
output. The order of images in the list corresponds to the order of data items in the source
list. In addition, image specifiers can be added to output (or to suppress the output of)
certain characters.

Example of Using an Image

We will use the first of the four, equivalent output statements shown above. Don’t worry if
you don’t understand each of the image specifiers used in the image list; each will be fally
described in subsequent sections of this chapter. The main emphasis of this example is that
you will see how an image list is used to govern the type and number of characters output.

OUTPUT CRT USING "64,3DDD.DDD,3X";" K= ",123 .45

The data stream output by the computer is as follows.

Kot o= + 1P 213 41510 CRILF
\ A o A A e W
GA s O b b . D b D 3% default EOL
sagyance
Step 1. The computer evaluates the first image in the list. Generally, each group of

specifiers separated by commas is an “image”; the commas tell the computer
that the image is complete and that it can be “processed”. In general, each
group of specifiers is processed before going on to the next group. In this case,
6 alphanumeric characters taken from the first item in the source list are to be
output.

Step 2. The computer then evaluates the first item in the source kst and begins outputting
it, one byte (or word) at a time. After the 4th character, the first expression has
been “exhausted”. In order to satisfy the corresponding specifier, two spaces
(alphanumeric “fil” characters) are output.

Step 3. The computer evaluates the next image (note that this image consists of several
different image specifiers}. The “S” specifier requires that a sign character be

Outputting Data 4-7

Step 4.

Step 5.

Step 6.

output for the number, the “D” specifiers require digits of a number, and the

#7 gpecifies where the decimal point will be placed. Thus, the number of digits
following the decimal point have been specified. All of these specifiers describe the
format of the next item in the source list.

The next data item in the source list is evaluated. The resultant number is output
one digit at a time, according to its image specifiers. A trailing zero has been
added to the number to satisfy the “DDD” specifiers following the decimal point.

The next image in the list {“3X”)is evaluated. This specifier does not “require”
data, so the source list needs no corresponding expression. Three spaces are cutput
by this image.

Since the entire image list and source list have been “exhausted”, the computer
then outputs the current (or default, if none has heen specified) “end-of-line”
sequence of characters (here we assume that a carriage-return and line-feed are the
current EOL sequence).

The execution of the statement is now complete. As you can see, the data specified in the
source list must match those specified in the output image in {ype and in number of items.

image Definitions During Outputs

This section describes the definitions of each of the image specifiers when referenced by
OUTPUT statements. The specifiers have been categorized by data type. If is suggested that
you scan through the description of each specifier and then look over the examples. You are
also highly encouraged to experiment with the use of these concepis.

4.8 OQutputting Data

Numeric Images

These image specifiers are used to describe the format of nunbers.

Sign, Digit, Radix and Exponent Specifiers

Image Specifier

Meaning

&

Specifies a “+” for positive and a “—” for negative nurnbers is to be ouiput.

Specifies a leading space for positive and a *

output.

~” for negative numbers is to be

Specifies one ASCIT digit (“0” through “97) is to to be output. Leading spaces
and trailing zeros are used as fill ckaracters. The sign character, if any, “foats”
to the immediate left of the most-significant digit. If the number is negative and
ro S or M is used, one digit specifier will be used for the sign.

Same as “D” except that leading zeros are output. This specifier cannot appear
to the right of a radix specifier (decimal point or R).

Like D, except that asterisks are output as leading fill characters (instead of
spaces). This specifier cannot appear to the right of a radix specifier {decimal
point or R},

Specifies the position of a decimal point radix-indicator (American radix) within
a number. There can be only one radix indicator per numeric image item.

ESYZ
ESZ7Z

Specifies the position of a comma radix indicator {European radix) within a
number. There can be only one radix indicator per numeric image item.

Specifies that the number is to be output using scientific notation. The “E" must
be preceded by at least one digit specifier (D, Z, or *}. The default exponent is a
four-character sequence consisting of an “E”, the exponent sign, and two
exponent digits, equivalent to an “ESZZ” image. Since the number is left-justified
in the specified digit field, the image for a negative number must contain a sign
specifier (see the next section).

Same as “II” but only 1 exponent digit is output.

Same as “E” buot three exponent digits are cutput.

K, —K

H, -H

Specifies that the number is to be output in a “compact” format, similar to the
standard numeric format; however, neither leading spaces (that would otherwige
"R

replace a “+” sign) nor item terminators {commas) are output, as would be with
the standard avmeric format.

Like K, except that the number is fo be output using a comma radix { European
radix).

Outputling Data 4.9

Numeric Examples

QUTPUT @Device USING "DDDD";~123.762

B

EOL
sequence

JUTPUT @Device USING "4D";-1.2

ECL
sequence

QUTPUT @Device USING “ZZ.DD";1.875

SEqUence

EOL

QUTPUT @Device USING "Z.D"; .35

EOL
sequence

OUTPUT @Device USIKG "DD.E"; 12345

EOL

seguence

CUTPUT @Device USING "2D.DDE";2E-4

= EOL

QUTPUT @Device USING "K";12.400

ECGL
sequence

OUTPUT CRT USING "MDD.2D";~12.449

EoL
seguernce

4-10 Outputting Data

sequence

QUTPUT CRT USING "MDD.DD";2.09

2 laly EOL
Saguence
QGUTPUT 1 USING "SD.D";2.449
+1z| |4 EOL.
sequence
QUTPUT { USING "SZ.DD"; .49
+1o| a9 ECL
Sequence

QuUTPUT CRT USING “SDD.DDEY;-2.35

—ftzbat Aslolel-tol EOL
SEgUance

OUTPUT @Device USING "#x,DY%;2.6

«1z2] |8 ECL
SEQUENCE

OUTPUT €Device USING "DRDDY;3.1418

3 P4 ECL
SEeguance
OUTPUT @Device USING "HY":3.1416
30 1114l]s EOL
sequence

Outputting Data 4-11

String Images

These types of image specifiers are used to specify the format of string data items.

Character Specifiers

Image Specifier

Meaning

A

“literal”

K, ~K, H, -H

Specifies that one character is to be output. Trailing spaces are used as fill
characters if the string contains less than the number of characters specified.

All characters placed in quotes form a string literal, which is ouiput exactly as is.
Literals can be placed in cutput images, which are part of OUTPUT statements
by enclosing them in double guotes.

Specifies that the string is to be output in “compact” format, similar to the
standard string format; however, ne item terminators are output as with the
standard string format.

String Examples

CUTPUT @Device USING "8A";"Characters"

QUTPUT @Device USING "K";" Hello "

DUTPUT @Device USING "5AY;" Hello *

Clhia rialc Pl e EOL
sequence
AT B L i tlelr]a] EOL
seguence
Hlel t] 1]e EOL
SEAUEFCE
Hi e EQL
sequence

4-12 Outputting Data

Binary Images

These image specifiers are used to output hytes (8-bit data) and words (16-bit data) to the
destination. Typical uses are to output non-ASCIT characters or integers in their internal

representation.

Binary Specifiers

Image Specifier

Meaning

B

W

Specifies that one byte (8 bits) of data is to be cutput. The source expression is
evaluated, rounded fo an integer, and interpreted MOD 256, 1f it is less than
-32 768, CHRS(0) is output. If is greater than 32 767, CHRS${255) is output.

Specifies that one word of data (16 bits) are to be sent as a 16-bit,
two's-complement integer. The corresponding source expression is evaluated and
rounded to an integer. If it is less than ~32 768, then --32 T68 is sent; if it is
greater than 32 767, then 32 767 is sent,

If the destination 18 a BDAT or HPUX file, or string variable, the WORD
attribute is ignored and all data are sent as bytes; however, pad byte(s),
CHRS3(0), will also be cutput whenever necessary to achieve alignment on a word
boundary.

Since HP Instrument BASIC only supports 8-bit interfaces, two bytes are always
output, with the most significant byte first. This image specifier has been
included primarily to mamntain compatibility with HP Series 200/306 BASIC
programs that include this specifier.

Like W, except that no pad bytes are output o achieve alignment on a word
boundary.

Binary Examples

QUTPUT €Device USING "B,B,B";65,66,67

AlBlC| __E9L
Sequence

OUTPFUT @Device USING "B";13

QUTPUT @Device USIHG "W";266%65+68

Al B ECL
) SeAUerce

Outputting Data 4-13

Special-Character Images

These specifiers require no corresponding data in the source list, They can be used to output
spaces, end-of-line sequences, and form-feed characters,

Special-Character Specifiers

Image Specifier

Meaning

X Specifies that a space character, CHR$(32), is to be output.

/ Specifies that a carriage-return character, CHR3{13), and a line-feed character,
CHRS(10), are to be output.

@ Specifies that a form-feed character, CHR${12}, 1s to be output.

Special-Character Examples

QUTPUT @Device USING "A,&X, 4" ;" M","A"

sequence

OUTPUT @Device USING "5O0XY

v~ (50 spaces) —Pm EOL
sEqUenca

OUTPUT @Device USING "@, /"

FEicRILF}] EOL
sequence

OUTPUT @Davice USING /"

CcrlLF} EOL
Seguence

4-14 Qutputting Data

Termination Images

These specifiers are used to output or suppress the end-of-line sequence output after the last
data item.

Termination Specifiers

Image Specifier Meaning

L Specifies thai the current end-of-line sequence is to be output. The defanlt EQL
characters are CR and LF; see “Changing the EOL Sequence” for details on how
to redefine these characters.

Specifies that the EOL sequence that normally follows the last item is to be
suppressed.,

% Is ignored in output images but is allowed to be compatible with ENTER, tmages.

+ Specifies that the EOL sequence that normally follows the last item is to be

replaced by a single carriage-return character (CR).

- Spectfies that the EOL sequence that normally follows the last item is to he
replaced by a single line-feed character (LF).

Termination Examples

CUTPUT @Device USING "44A,L";"Data"

olalelal ECL ECL
Seguence | sequendce

BUTPUT @Device USIRG "#,K";"Data"

QUTPUY @Device USING "#,B";12

GUTPUT @Device USING "+,K";"Data"

Outputting Data 4-15

QUTPUT @Device USING "=~ ,L,K";"Data"

EOL O] a t o | LF
Sequence

Additional Image Features

Several additional features of outputs that use images are available with the computer.
Several of these features, which have already been shown, will be explained here in detail.

Repeat Factors

Many of the specifiers can be repeated without having to explicitly list the specifier as many
times as it is to be repeated. For instance, to a character field of 15 characters, you do not
need to use “AAAAAAAAAAAAAAAY; instead, you merely specify the number of times that
the specifier is to be repeated in front of the image (“15A7). The following specifiers can be
repeated by specifying an integer repeat factor; the specifiers not listed cannot be repeated in
this manner.

Repeatable Specifiers Nonrepeatable Specifiers

Z,D A X,/ G L SSM, ,R,EKHBWY,# %, +,-

Examples

QUTPUT @Device USING "4Z.3D";328.03

olzlz2tial . lolzlo =0
SEequence

Dialt]a o EOL
SEGUSACE

QUTPUT @Device USING "5X,24"%;"Data"

8] a ECGL
SEJguUencs

4-16 OQutputting Data

OUTPUT @Device USING "2L.,44";"Data"

EOL EoL |plalelal EOL
Sequence | seguence Seduences

QUTPUT @Device USING "84,20";"The Eng"

Tintie Elnid FEEFF EQL
SEgUence

OQUTPUT @Device USING “2/"

crlLF Rl LR EOL
sequernce

Image Re-Use

If the number of items in the source list exceeds the number of matching specifiers in the
image list, the computer attempts to reuse the image(s) beginning with the first image.

110
120
130
140
150
160
170

ASSTGH @bewice TD CRT

Hum_1=1

Hum, 2=2

!

0GTPUT €Device USING "K";Hum_ 1,"Data, i",Num_2,'"Data 2"
OUTPUT @Device USING "K,/";Num_i,"Data_1",Num_2,"Data_2"
EKD

Resultant Display

1Data_12Data_ 2

1

Data_i%

2

Data_2

Since the “K” specifier can be used with both numeric and string data, the above OUTPUT
statements can reuse the image list for all items in the source list. If any item cannot be
output using the corresponding image item, an error results. In the following example, “Error
100 in 1507 occurs due to data mismatch.

110
120
130
140
150
160

ASSIGH @Device TD CRT

Bum_1=1

Num 22

i

GUTPET @Device USIEG “DD.DD";Num_ 1, ,Mum. 2, '"Data_i"
EHND

Outputting Data 4-17

Nested Images

Another convenient capability of images is that they can be nested within parentheses. The
entire image list within the parentheses will be used the number of times specified by the
repeat factor preceding the first parenthesis. The following program is an example of this
feature.

106 ASSIGN @Device TO 701

116 !
120 OUTPUT @bevice USING "3(B),X,DD,X,DD";65,66,67,68,69
13¢ EHND

Resultant Qutput

slelc 818 619 ECL
aac;uence

This nesting with parentheses is made with the same hierarchy as with parenthetical nesting
within mathematical expressions. Ouly eight levels of nesting are allowed.

END with OUTPUTs that Use Images

Using the optional secondary keyword END in an OUTPUT statement that uses an image
produces results that differ from those of using END in a freefield OUTPUT statement.
Instead of always suppressing the EOL sequence, the END keyword only suppresses the EOL
sequence when no date are output from the last source-list expression. Thus, the “#” image
specifier generally confrols the suppression of the otherwise automatic EOL sequence, while
the END keyword suppresses it only in less common usages.

Examples

Device=12

OUTPUT Device USING "K“;"ABC" ,END
OUTPUT Device USING "E';"ABC™;END
0UTPUT Device USING "K' ;"ABC™ END

AjB]lC EGL The EOL sequence is not suppressed
sequence

0UTPUT Device USING “L,/,""Literal"" X,@"

EOL criwFlubilelelelall Fr ECL
Seguence Sequence

4-18 Outputting Data

In this case, specifiers that require no source-item expressions are used to generate characters
for the output; there are no source expressions. The EQL sequence is output after all
gpecifiers have been used to output their respective characters. Compare this action to that

shown in the next example,

OUTPUT Device USING "L,/ ,""Literal"", X,@";END

ECL crluel o
SeguUences

FE

The 1XOL sequence is suppressed because no source items were included in the statement; ail
characters output were the result of specifiers that require no corresponding expression in the

source Hst.

Additional END Definition

The END secondary keyword has been defined to produce additional action when included in

an OUTPUT statement directed to HI*-IB interfaces.

END with HP-IB Interfaces

With HP-1B interfaces, END has the additional function of sending the End-or-Identify signal
(BEOT) with the last character of either the last source item or the EOL sequence (if sent). As
with freefield OUTPUT, noe EOI 5 sent if no data is sent from the last source ilem and the

ECGL sequence is suppressed.
Examples.

ASSIGH @Device TO 701

OUTPUT @Device USING "K";"Data" ,EED
OUTPUT @Device USING "K";"Data™,"",END

01 a t{a EOL
SequUence
e o’
EGI sent with last character
of the EOL sequence.

QUTPUT @Device USING "#,K";"Data" END

8]

EQ sent

-~

with this character

FOI is sent with the last character of the last source item when the EOL sequence is
suppressed, because the last source item contained data that was used in the output.

OUTPUT @Device USIEG "#,K";"Data',"" ,END
QUTPUT @Device USIEG """Data" " ;END

Outputting Data 4.19

The FEOT was not sent in either case, since no data were sent from the last source item and the
EOL sequence was suppressed.

4-20 Outputting Data

<

Entering Data

'This chapter discusses the topic of entering data from devices. You may already be familiar
with the OUTPUT statement described in the previous chapter; many of those concepts are
applicable fo the process of entering data. Earlier in this manual, you were told that the

data output from the sender had to malch that expected by the receiver. Because of the many
ways thai data is represented in external devices, entering data can sometimes require more
programming skill than outputting data. In this chapter, you will see what is involved in
being the receiving device. Both free-field enters and enters that use images are described, and
several examples are given with each topic.

Free-Field Enters

Executing the free-field form of the ENTER invokes conventions that are the “converse” of
those used with the free-field OUTPUT statement. In other words, data output using the
free-field form of the OUTPUT statement can be readily entered using the free-field ENTER,
statement; no explicit image specifiers are required. The following statements exemplify this
form of the ENTER statement.

For example:

ENTER @Voltmeter;Reading

ENTER 724;Readings(*)

ENTER From_string$;Average,Student_named
ENTER €From_filejData_code,$ir_element$(X,¥)

ltem Separators

Destination items in ENTER statements can be separated by either a comma or a semicolon.
Unlike the OUTPUT statement, it makes no difference which is used; data will be entered
into each destination item in a manner independent of the punctuation separating the
variables in the list. However, no trailing punctuation is allowed. The first two of the
following statements are equivalent, but an error is reported when the third statement is
execuied.

For example:

ENTER @From_a_device;N1,K2,N3
ENTER @From_a_device;N1;E2;N3

Entering Data 5-1

Item Terminators

Unless the receiver knows exactly how many characters are io be sent, each data item output
by the sender must be terminated by special character(s). When entering ASCII data

with the free-field form of the ENTER statement, the computer does not know how many
characters will be output by the sender.

Item terminators must signal the end of each item so that the computer enters data into the
proper destination variable. The terminator of the last item may also terminate the ENTER
statement (in some cases). The actunal character(s) that ferminate entry into each type of
variable are described in the next sections.

In addition to the termination characters, each item can be terminated (only with selected
interfaces) by a device-dependent END indication. For instance, some interfaces use a signal
known as EOI (End-or-ldentify}. The EOI signal is only available with the HP-iB, and
keyhoard interfaces. EOI termination is further described in the next sections.

Entering Numeric Data with the Number Builder

When the free-field form of the ENTER statement is used, numbers are entered by a routine
known as the “number builder”. This firmware routine evaluates the incoming ASCII numeric
characters and then “builds” the appropriate internal-representation number. This number
builder routine recognizes whether data being entered is to be placed inte an INTEGER or
RFEAL variable and then generates the appropriate internal representation.

The number builder is designed to be able to enter several formats of numeric data. However,
the general format of numeric data must be as follows to be interpreted properly by HP
Instrument BASIC.

Mantissa § Mantisso | E | Exponent | Exponent Terminator
sign digit{s) sign digit(s) {character or
END indication)
L ru " _— " N o IIIJ
Optional AL least Optional Required
ane digit

is required

Numeric characters include decimal digits “07 through “9” and the characters .7, “4&7,
“-r S“E”, and “e”. These last five characters must occur in meaningful positions in the data
stream to be considered numeric characters; if any of them occurs in a position in which it
cannot be considered part of the number, it will be treated as a non-numeric character,

5-2 Entering Data

The foliowing rules are used by the number builder to construct numbers from incoming
streams of ASCII numeric characters.

1. All leading non-numerics are ignored; all leading and embedded spaces are ignored.

160 AS3IGN @Device TO Device_selector
110 ENTER @Device;Bumber ! Default is data type REAL.
120 END

Consumed
-
Nlulmiblel]lri= 1) T LF
\ WVJ
b
lgnored Nurnber Terminator

{for both item
and statement)

The result of entering the preceding data with the given ENTER statement is that Number
receives a value of 123. The line-feed (statement terminator) is required since Number is
the last item in the destination list.

2. Trailing non-numerics terminate entry into a numeric variable, and the terminating
characters {of both string and numeric items) are “consumed”. In this manual, “consumed”
characters refers to characters used fo lerminale an itern but not entered into the variable;
“lgnored” characters are entered but are not used.

ENTER @Device;Real_number,String$

Consumed Consumed
FM W\
Miufml|e]e|r]= tlzls] Jelatelc]o]rer crip
(W P A . . 7
v hd " ondd ad v
lgnored Real_number Numeric String$ Terminator
item {for both item

terminator and stotement)

The result of entering the preceding data with the given ENTER statement is that
Real_number receives the value 123.4 and String$ receives the characters “BCD”. The “A”
was lost when it terminated the numeric item; the string-item terminator{s) are also lost.
The string-item terminator{s) also terminate the ENTER statement, since String} is the
lagt item in the destination list.

3. If more than 16 digits are received, only the first 16 are used as significant digits. However,
all additional digits are treated as trailing zeros so that the exponent is built correctly.

Entering Data 5-3

ENTER @Device;Real_number.1

Consumed
p~r
Lifolalals]e]|vfale]ol i a]a]e]c]s]r]
A " A
Feal number_.1 Terminator

{for both item
and statement)

The result of entering the preceding data with the given ENTER statement is that
Real_number_1 receives the value 1.234567830123456 E+15.

ENTER @Device;Real_number. 2

Used only
o build
the exponent. Consumed
M
?23456789012345678%
- A A“-\ﬂ
Real number. 2 Terminator

(for both item
and staterneant)

The resalt of entering the preceding data with the given ENTER statement is that
Real _number_2 receives the value 1.234567890123456 E+17.

4. Any exponent sent by the source must be preceded by at least one mantissa digit and an
E{or e) character. If no exponent digits follow the E (or e), no exponent is recognized, but
the number ig built accordingly.

ENTER @Device;Real_number

Consumed
e
| e sl . lals el-l1]afc]o]o]]|
N V Ay N !
igriored Real.number Numeric Ignored Terminator
itern

terminator

The resuit of entering the preceding data with the given ENTER statement is that
Real_number receives a value of 8.85 E—~12. The character “C” terminates entry into
Real_number, and the characters “oul” are entered (but ignored) in search of the required
line-feed statement ferminator. If the character “C” is to be entered but not ignored, you
must use an image. Using images with the ENTER statement is described later in this

chapter,

5-4 Entering Data

5. If & number evaluates to a value outside the range corresponding to the type of the numeric
variable, an error is reported. If no type has been declared explicitly for the numeric
variable, it is assumed to be REAL.

ENTER @Device;Real_number

Consumed
-
el ele]]3] o] 7 F| Evauates to 1.234E4300.
i\ \ v ;
The resultont value Terminator
cannot bhe stored {for hoth items
in Real_number. ond siatement)

The data is entered but evaluates to a number outside the range of REAL numbers.
Consequently, error 19 is reported, and the variable Real _number retains its former
value.

6. If the item is the last one in the list, both the ilem and the statement need to be properly
terminated. If the numeric item is terminated by a non-numeric character, the statement
will not be terminated until it either receives a line-feed character or an END indication
{such as EOI signal with a character}. The topic of terminating free-field ENTER
statements is described later.

Entering String Data

Strings are groups of ASCII characters of varying lengths. Unlike numbers, almost any
character can appear in any position within a string; there is not really any defined structure
of string data. The routine used to enter string data is therefore much simpler than the
number builder. It only needs to keep track of the dimensioned length of the string variable
and look for string-item terminators (such as CR/LF, LI, or EOI sent with a character),

String-item terminator characters are either a line-feed (LF} or a carriage-return followed by
a line-feed (CR/LF). As with numeric-item terminators characters, these characters are not
entered into the string variable (during free-field enters); they are “lost” when they terminate
the entry. The FOI signal also terminates eniry info a string variable, but the variable must
be the last item in the destination list (during free-field enters).

All characters received from the source are entered directly iemph appropriate string variable
until any of the following conditions oceurs:

s An item terminator character is received.
m The number of characters entered equals the dimensioned length of the string variable.
m The EOI signal is received.

The following statements and resultant variable contents illustrate the first two conditions; the
next section describes termination by EOI Assume that the string variables Five_char$ and
Ten_char$ are dimensioned to lengths of 5 and 10 characters, respectively.

Entering Data 5-5

ENTER @Device;Five_char$}

Consumed
e
AlBICIDIE]IF G| HIJCR|LF
A™ o N oY w
Five_char$ lgnoread Termminator

{for both item
and statement)

The variable Five_char$ only receives the characters “ABCDE”, but the characters “FGH” are
entered (and ignored) in search of the terminating carriage-return/line-feed (or line-feed).

ENTER @Device;Ten_char$

Consumed Consumed
A AM
ABCDE!FGLY' or AJBICIDIE]|F]GICRILF
A\ v rl) i\ v A\ ’
Ten_chard Terminator Ten..chard Terminator
{for both item {for both item
and statement) and staterment)

The result of entering the preceding data with the given ENTER statement is that Ten_char$
receives the characters “ABCDEFG” and the terminating LF (or CR/LF) is lost.

5-8 Entering Data

Terminating Free-Field ENTER Statements
Terminating conditions for free-field ENTER statements are as follows.

1. If the last item is terminated by a line-feed or by & character accompanied by EOI, the
entire statement is properly terminated.

2. If an END indication is received while entering data into the last item, the statement is
properly terminated. Examples of END indications are encountering the last character of a
string variable while entering data from the variable and receiving EOI with a character.

3. If one of the preceding statement-termination conditions has not occurred but entry into
the lnst item has been terminated,up to 256 additional characters are entered in search of a
termination condition. If one is not found, an error occurs.

One case in which this termination eondition may not be obvious can occur while entering
string data. If the last variable in the destination list is a string and the dimensioned length
string has been reached before a terminator is received, additional characters are entered (but
ignored) until the terminator is found. The reason for this action is that the next characters
received are still part of this data item, as far as the daia sender is concerned. These
characters are accepted from the sender so that the next enter operation will not receive these
“leftover” characters.

Another case involving numeric data can also occur. (See the example given with “rule 47
describing the number builder.) If a trailing non-numeric character terminates the last item
{(which is a numeric variable), additional characters will be entered in search of either a
line-feed or a character accompanied by EQIL Unless this terminating condition is found before
256 characters have been entered, an error is reported.

EOQO! Termination

A termination condition for the HP-IB Interface is the EOI {End-or-Identify) signal. When
this message is sent, it immmediately terminates the entire ENTER statement, regardiess

of whether or not all variables have been satisfied. However, if all variable items in the
destination list have not been satisfied, an error is reported.

For example:

ENTER @Device;String$

|A|E§|C|D|£!FIW|A]BIC|D|E|F]LE’|or]A|%]C|DIEI? CR|LF |
e S -
Sent with Sent with Sent with

EOl £ol _ E0I

The result of entering the preceding data with the given ENTER statement is that String$
receives the characters “ABCDEF”. The EOI signal being received with either the last
character or with the terminator character properly terminates the ENTER statement. If the
character accompanied by EOL is a string character (not a terminator), it is entered into the
variable as usunal.

Entering Data 5-7

For example:

ENTER @Device;Number

Used io
build Number Consumed Consumed

p— =

[ila]afe]s]or| alals]alar | 3 a5 |iF
‘w\w A A Jv \ . 1\,./

Number Sent with Mumber Sant with Mumber Sent with
ECH EQL EO

Rl

3]

‘The result of entering any of the above data streams with the given ENTER statement is that
Number receives the value 12345. If the EOI signal accompanies a numeric character, it is
entered and used to build the number; if the EOT is received with a numeric terminator, the
terminator is lost as usual.

ENTER @Device;Number,String$

An error is reported

- K I
] ! | - l - I 4 | Z 1 (Error 183 insufficient data for ENTER),

w\w
Mumber Sent with
EX

The result of entering the preceding data with the given statement is that an error is reported
when the character “5” accompanied by EQOI is received. However, Number receives the value
12345, but String$ retains its previous value. An error is reported because all variables in
the destination list have not been satisfied when the EOI is received. Thus, the EOI signal is
an immediale statement terminator during free-field enters. The EOI signal has a different
definition during enters that use images, as deseribed later in this chapter.

Enters that Use images

The free-field form of the ENTER statement is very convenient fo use; the computer
auntomatically takes care of placing each character into the proper destination item. However,
there are times when you need to design your own images that match the format of the

data output by sources. Several instances for which you may need to use this type of enter
operations are: the incoming data does not contain any terminators; the data stream is not
followed by an end-of-line sequence; or two consecutive bytes of data are to be entered and
interpreted as a two’s-complement integer.

5-8 Entering Data

The ENTER USING Statement

The means by which you can specify how the computer will interpret the incoming data is to
reference an image in the ENTER statement. The four general ways to reference the image in
ENTER statements are as follows.

100 EFNTER @Device_x USING "6A4,DDD.DB";String var$,lNum, var

160 Image, str$="64,DDD.DD"
110 ENTER @Device_x USING Image_str$;String var$,Num_var

100 ENTER @Device USING Image_stmt;String var$,Num_var
110 Image_stmt: TMAGE 6A,DDD.DD

100 ENTER @Device USING 110;String_var$,Num_var
110 TIMAGE 64,DBD.DD

Images

Images are used to specify how data entered from the source is to be interpreted and placed
into variables: each image consists of one or more groups of individual image specifiers that
determine how the computer will interpret the incoming data bytes {or words). Thus, image
lists can be thought of as a description of either

m the format of the expected data, or
m the procedure that the ENTER statement will use to enter and interpret the incoming data
bytes.

The examples given here treat the image list as a procedure.

All of the image specifiers used in image lists are valid for both enters and outputs. However,
most of the specifiers have a slightly different meaning for each operation. If you plan to use
the same image for output and enter, you must fully understand how both statements will use
the image.

Exampie of an Enter Using an Image

This example is used to show you exactly how the computer uses the image to enter incoming
data into variables. Look through the example to get a general feel for how these enter
operations work. Afterwards, you should read the descriptions of the pertinent specifier(s).

Assume that the following stream of data bytes are to be entered into the computer,

[rdefmlel [=] [[«lefs] [o] [efofnlrfefn]n]-]i]
L v . v J‘WL v J
lgnored Degrees Units$ lanaored A

Assume EQL s
sent with
this character

Entering Data 5-9

Given the preceding conditions, let’s look at how the computer executes the foliowing ENTER
statement that uses the specified IMAGE statement.

300 ENTER @Device USING Image_ 1;Degrees,Units$
31¢ Image_1: TIMAGE 8X,SDDD.D,A

Step 1. The computer evaluates the first image of the IMAGE statement. It is a special
image in that it does not correspond to a variable in the destination list. It
specifies that eight characters of the incoming data stream are to be ignored. Bight

characters, “Temp.= 7, are entered and are ignored (i.e., are not entered into any
variable}.
Step 2. The computer evaluates the next image. It specifies that the next six characters

are to be used to build a number. Even though the order of the sign, digit, and
radix are explicitly stated in the image, the actual order of these characters in
the incoming data stream does not have to maich this specifier exactly. Only the
number of numeric specifiers in the image (here, six) is all that is used to specify
the data format. When all six characters have been entered, the number builder
attempts to form a number,

Step 3. After the nember ig built, it is placed into the variable “Dagrees”; the
representation of the resultant number depends on the numeric variable’s type
(INTEGER, or REAL).

Step 4. The next image in the IMAGE statement is evaluated. It requires that one
character be entered for the purpose of filling the variable “Units$”. One byte is
then entered into Units$.

Step 5. All images have been satisfied; however, the computer has not yet detected a
statement-terminating condition. A line-feed or a character accompanied by EQI
must be received to terminate the ENTER statement. Characters are then entered,
but ignored, in search of one of these conditions. The statement is ferminated
when the EOI is sent with the *t”. For further explanation, see “Terminating
Enters that Use Images”.

The above example should help you to understand how images are used to determine the
interpretation of incoming data. The next section will help vou to use each specifier to create
your desired images.

Image Definitions During Enter

‘This section describes the individual image specifiers in detail. The specifiers have been
categorized into data and function type.

5-10 Entering Data

Numeric Images

Sign, digit, radix, and exponent specifiers are all used identically in ENTER images. The
number builder can also be used to enter numeric data.

Numeric Specifiers

Image Specifier

Meaning

D

Specifies that one byte i1s to be entered and interpreted as a numeric character. If
the characters is non-numeric (including leading spaces and item terminators), it
will stiil “consume” one digit of the image item.

Same action as D. Keep in mind that A and * can only appear to the lefi of the
radix mdicator (decimal point or R) in a pumeric image item.

Same action as D in that one byte is to be entered and interpreted as a numeric
character. At least one digit specifier must follow either of these specifiers in an
image item.

Same action as D in that one byte is to be entered and interpreted as a numeric
character. At least one digit specifier must accompany this specifier in an image
item,

Same action as D in that one byte is to be entered and interpreted as a numeric
character; however, when R is used in a nuwmeric image, it directs the number
builder to use the comma as a radix indicator and the period as a terminator to
the numeric item. At least one digit specifier must accompany this specifier in
the irnage item.

Equivalent to 4D, if preceded by at least one digit specifier (Z, *, or D) in the
image item.

The following specifiers must also be preceded by at least one digit specifier.

ESZ
£5727
ESZZZ

Equivalent to 3D.
Equivalent to 4D.
Equivalent to 5D.

K, —K

Specifies that a variable number of characters are to be entered and interpreted
according to the rules of the number builder (same rules as used in “free-field”
ENTER operations).

Like K, except that a comma is used as the radix indicator, and a period is used
as the terminator for the numeric item.

Examples of Numeric Images

These 5 are equivalent:

ENTER @Device USING "SDD.D";HNumber
EETER @Device USING "3D.D";Fumber
EBTER €Device USING "5D";Number

ENTER @Device USING "DESZZY;Humber
ENTER €Device USING "*%.DD";Number

Uise the tules of the number builder:

ENTER Device USIRG "K";Humber

Entering Data 511

Enter five characters, using comma as radix:

ENTER @Device USING "DDRDD";Humber

Use the rules of the number builder, buf use the comma as radix:

EHTER @Device USING "H";Number

String Images

" The following specifiers are used to determine the number of and the interpretation of data
bytes entered into string variables.

String Specifiers

Image Specifier

Meaning

A

K H

Specifies that one byte is to be entered and interpreted as a string character. Any
terminators are entered into the string when this specifier is used.

Specifies that “free-field” ENTER conventions are to be used $o enter data into a
string variable; characters are entered directly into the variable until 2
terminating condition is sensed {such as CR/LF, LF, or an END indication).

~K, ~H

L,@

Like K, except that line-feeds (LF’s) do not terminate entry inte the string;
instead, they are treated as string characters and placed in the variable.
Receiving an END indication terminates the image item (for instance, receiving
EOI with a character on an HP-IB interface, encountering an end-of-data, or
reaching the variable’s dimensioned length).

These specifiers are ignored for ENTER operations; however, they are allowed for
compatibility with QUTPUT statements {that is, so that one image may be used
for both ENTER and OUTPUT statements}. Note that it may be necessary to
skip characters (with specifiers such as X or /) when ENTERing data that has
been sent by ncluding these specifiers in an OUTPUT statement.

Examples of String Images

Fnter 10 characters:

ENTER @Device USING "i04A";:Ten_chars$

Enter using the free-field rules:

EHTER @Device USING "K";Any_siring$

Enter two strings:

ENTER @Device USING "5A,K";String$,Number$

Enter a string and a number:

ENTER @bPevice USING "5A,K“;String$,Number

Enter characters until string is full or END is received:

ENTER @Device USING "-X":;i11_chars$

5-12 Entering Data

Ignoring Characters

These specifiers are used when one or more characters are to be ignored (i.e., entered but not
placed into a string variable).

Specifiers Used to ignore Characters

Image Specifier Meaning
X Specifies that a character is to be entered but ignored (not placed into a variable).
“literal” Specifies that the number of characters in the literal are to be entered but
ignored {not placed into a variable).
/ Specifies that all characters are to be entered but ignored (not placed intc a
variable) until a line-feed is received. EOI is also ignored until the line-feed is
received.

Examples of Ignoring Characters

Tgnore first five and use second five characters:

ENTER @Device USING "5X,5A";Five_chars$

Ignore 6th through 9th characters:

ENTER @Device USING "5A,4X,104";8_1$,8.2¢%
Ignore 1st item of unknown length:

ENTER @Device USING "/,K";String2$
Ignore two characters:

ERTER @Device USING "““zz'" ,AA";5_2¢

Binary Images

These specifiers are used to enter one byte {(or word) that will be interpreted as a number.

Binary Specifiers

Image Specifier Meaning
B Specifies that one byte is to be entered and interpreted as an integer in the range
0 through 255.
W Specifies that one 16-bit word is to be entered and interpreted as a 18-bit, two's

complement INTEGER. Since all HP Instrument BASIC interfaces are 8-bit, two
bytes are always entered; the first byte entered is most significant. If the scurce is
a file, or string variable, all data are entered as bytes; however, one byte may still
be entered and ignored when necessary to achieve alignment on a word boundary.

Y Like W, except that pad bytes are never entered to achieve word alignment.

Entering Data 5-13

Examples of Binary Images
Enter three bytes, then look for LF or END indication:
ENTER @Device USIKG "B,B,B";W1,K2,N3
Enter the first two bytes as an INTEGER, then the rest as string data:

ENTER @Device USING “W,K";N,N$

Terminating Enters that Use Images

This section describes the defanlt statement-termination conditions for enters that use images
{for devices). The effects of numeric-item and string-item terminators and the end-or-identify
{EOT) signal during these operations are discussed in this section. After reading this section,
you will be able to better understand how enters that use images work and how the default
statement-termination conditions are modified by the #, %, +, and - image specifiers.

Default Termination Conditions

The default statement-termination conditions for enters that use images are very similar to
those required to terminate free-field enters. Either of the following conditions will properly
terminate an ENTER statement that uses an image.

m An END indication (such as the EOI signal or end-of-data) is received with the byte that
satisfies the last image item within 256 bytes after the byte that satisfied the last image
item.

N

m A line-feed is received as the byte that satisfies the last image itern (exceptions are the “B”
and “W?” specifiers) or within 256 bytes after the byte that satisfied the last image item.

EOI Redefinition

It is important fo realize that when an enter uses an image (when the secondary keyword
“USING™ is specified), the definition of the EOI signal is automatically modified. 1f the

EOI sigral terminates the last image ttem, the entire statement is properly terminated, as
with free-field enters. In addition, multiple EOI signals are now allowed and act as item
terminators; however, the EOI must be received with the byte that satisfies each image item.
If the EOI is received before any image is satisfied, it is ignored. Thus, all images must be
satisfied, and EOI will not cause early termination of the ENTER-USING-image statement.

The following table summarizes the definitions of EOQI during several types of ENTER
statement. The statement-terminator modifiers are more fully described in the next section.

5-14 Entering Data

Effects of EOl During ENTER Statements

Free-Field ENTER ENTER ENTER
ENTER USING USING USING
Statements without # or % with # with %
Definition of EOI Immediate fem ternyinator Item terminator | Immediate
statement or statement or statement statement
serminator terminator terminator terminator
Statement Terminator | Yes Yes No No
Reguired?
Early Termination No No No Yes
Allowed?

Statement-Termination Modifiers

These specifiers modify the conditions that terminate enters that use images. The first one
of these specifiers encountered in the image list modifies the fermination conditions for the
ENTER statement. If another of these specifiers is encountered in the image list, it again
modifies the terminating conditions for the statement.

Statement-Termination Modifiers

Timage Specifier

Meaning

Specifies that a statement-termination condition is nof required: the ENTER
statement 3 antomatically terminated as soon as the last image em is satisfied.
% Also specifies that a statement-termination condition is not required. In addition,
EOI is redefined fo be an smmediate statement terminator, allowing carly
termination of the ENTER before all image items have been satisfied. However,
the statement can only be terminated on a “legal item boundary”. The legal
boundaries for different specifiers are as follows:
Specifier Legal Boundary
K.—-K With any character, since this specifies a variable-width field of
characters.
SMDEZ, A, Onlywith the last character that satisfies the image (e.g., with
X literal BW the 5th character of & 5A image). H BOI is received with any
other character, it is ignored.
/ Only with the last line-feed character that satisfies the image
(e.g., with the 3rd ne-feed of a “3/” image); otherwise, it is
ignored.
-+ Specifies that an END indication is required to terminate the ENTER statement.

Line-feeds are ignored as statement terminators; however, they will still terminate
items {unless a —K or —H image is used for strings).

Specifies that a line-feed is required to terminate the statement. EOl is ignored,
and other END indications (such as EOF or end-of-data) cause an error if
encountered before the line-feed.

Entering Data 5-15

Examples of Maodifying Termination Conditions
Enter a single byte:
ENTER @Device USING "#,B";Byte
Enter a single word:
ENTER @Device USING "#,W";Integer
Enter an array, allowing eazly termination by EOL
ENTER @Device USING ",K";Array(x)

Enter characters into String$ until line-feed received, then continue entering characters it
until END received:

ERTER @Device USING “+,K“;String$

Enter characters until line-feed received; ignore EOL if received:

ENTER @Device USING "~ ,K";String$

Additional image Features

Several additional image features are available with this BASIC larguage. Some of these
features have already been shown in examples, and all of them resemble the additional
features of images used with OUTPUT statements.

Repeat Factors

All of the following specifiers can be preceded by ar integer that specifies how many times the
specifier is to be used.

Repeatable Specifiers Non-Repeatable Specifiers
Z'; DJ A? X? /7 @7 L S] 1\[‘[1 bl R”]::} K! H1 B? “7; Y! #7 %3 ‘+‘F—

Image Reuse

If there are fewer images than items in the destination list, the list will be reused, beginning
with the first item in the image list. If there are more images than there are items, the
additional specifiers will be ignored.
Examples
The "B" is rensed:

ENTER @Device USING "#,B";B1,B2Z,B3
The "W" is not used:

ENTER @Device USING "24,24,W";A$,B3

5-16 Entering Data

Nested Images

Parentheses can be used to nest images within the image list. The hierarchy is the same
as with mathematical operations; evaluation is from inner to ouier sets of parentheses. The
maximam number of levels of nesting is eight.

Example
ENTER @Source USING »2(B,BA,/),/";N1,H1%$,82,N2%

Entering Data 5-17

1/0 Path Atiributes

This chapter contains two major topics, both of which involve additional features provided by
I/0O path names.

w The first topic is that [/O path names can be given attributes which control the way
that the system handles the data sent and received through the I/0 path. Attributes
are available for such purposes as controlling data representations and defining special
end-of-line (EOL} sequences.

® 'The second topic is that one set of 1/O statements can access most system resources instead

of using a separate set of statements {6 access each class of resources. This second topic,
kerein called *“unified 1/0”, may be considered an implicit attribute of 1I/O path names.

The FORMAT Atiributes

All I/0O paths possess one of the two following attributes:

m FORMAT ON-means that the data are sent in ASCII representation.

m FORMAT OFF-—means that the data are sent in BASIC internal representation.

Before getting into how to assign these attributes to I/O paths, let’s take a brief look at each
one.

With FORMAT ON, internally represented numeric data must be “formatted” into its ASCII
representation before being sent to the device. Conversely, numeric data being received from
the device must be “unformatted” back into its internal representation. These operations are
shown in the diagrams below:

! ; ““fw,:
nternal—Form ASCI Date
Daota

Computer M“?ormctter” Computer
Memaory \1—|/ Routine Resource

Numeric Data Transformations with FORMAT ON

With FORMAT OFF, however, no formatting is required. The data items are merely copied
from the source to the destination. This type of I/O operation requires less time, since fewer
steps are involved,

/O Path Attributes 6-1

internal—Form
Data
Computer ,/‘-—————‘\ Computer

Memory PN———/| Resource

Numeric Data Transfer with FORMAT OFF

The only requirement is that the resource also use the exact same data representations as the
internal HP? Instrument BASIC representation.

Here are how each type of data item is represented and sent with FORMAT OFF:

n INTEGER: two-byte (16-bit), two's complement.

m REAL: eight-byte (64-bit) IEEE floating-point standard.

w String: four-byvte (32-bit} length header, followed by ASCI characters. An additional ASCII
space character, CHRS(32), may be sent and received with strings in order to have an even
number of bytes.

Here are the FORMAT OFF rules for QOUTPUT and ENTER operations:

e No item terminator and no EOL sequence are sent by QUTPUT.

m No item terminator and no statement-termination conditions are required by ENTER.

» [f either OUTPUT or ENTER uses an IMAGE {such as with OUTPUT 701 USING
“41).D7}, then the FORMAT ON attribute is automatically used.

Assigning Default FORMAT Atiributes

As discussed in the “Directing Data Flow” chapter, names are assigned to 1/0 paths between
the computer and devices with the ASSIGN statement. Here is a typical example:

ASSIGN 4ny_name T0 Device_selector

This assignment fills a “table” in memory with information that describes the I/0 path.

This information includes the device selector, the path’s FORMAT attribute, and other
descriptive information. When the I/O path name is specified in & subsequent I1/O statement
{(such as OUTPUT or ENTER), this information is used by the system in completing the 1/0
operation.

Different default FORMAT attributes are given to devices and files:

m Devices—since most devices use an ASCII data representation, the default attribute
assigned to devices is FORMAT ON. (This is also the defanlt for ASCII files.)

m BDAT and HP-UX or DOS files—the default for BDAT and HPUX or DOS files is
FORMAT OFF. (This is because the FORMAT OFT representation requires no translation
time for numeric data; this is possible becanse humans never see the data patterns written
to the file, and therefore the items do not have to be in ASCII, or humanly- readable, form.)

One of the most powerful features of this BASIC system is that you can change the attribuies
of I/O paths programmatically.

6-2 1/0 Path Attributes

Specifying 1/0 Path Attributes
There are two ways of specifying attributes for an I/O path:

Specify the desived attribute(s) when the /O path name is initially assigned. For example:
100 ASSIGH @Device TO Dev_selector; FORMAT ON

or

100 ASSIGH @Device TO Dev_selector ! Default for devices is FORMAT CN.

Specify only the attribute(s) in a subsequent ASSIGN statement:
250 ASSIGN @Device; FORMAT OFF ! Change only the attribute.

The result of executing this last statement is to modify the entry in the [/O path name
table that describes which FORMAT attribute is currently assigned to this I/0O path. The
implicit ASSIGN @Device TO #, which is automatically performed when the “T0 ... ” portion
is included, is not performed. Also, the I/0 path name must currently be assigned (in this
centexﬁ:), or an error is reported.

Changing the EOL Sequence Attribute

In addition to the FORMAT attributes, another attribute is available to direct HP Instrument
BASIC system to redefine the end-of-line sequence normally sent after the last data item in
output operations.

An end-of-line (EOL) sequence is normally sent following the last item sent with free-field
OUTPUT statements and when the “L” specifier is used in an OUTPUT that uses an
image. The default EOL characters are carriage-return and line-feed (CR/LF), sent with
no device-dependent END indication. You can also define vour own special EOL sequences
that include sending special characters, sending an END indication, and delaying a specified
amount of time after sending the last EOL character.

In order to define non-default EOL sequences to be sent by the OUTPUT statement, an
1/0 path must be used. The EOL sequence is specified in one of the ASSIGN statements
that describe the I/O path. Here is an example that changes the EOL sequence to a single
line-feed character.

ASSIGN @File TO "file_one™;EOL CHRS{i0)

The characters following the secondary keyword EOL are the EQL characters. Any character in
the range CHR$(0) through CHRS(255) may be included in the string expression that defines
the TNOL characters; however, the length of the sequence is limited to eight characters or less.

If END is included in the EQL attribute, an interface-dependent “END” indication is sent
with (or after) the last character of the EOL sequence. However, if no EOL sequence is sent,
the END indication is also suppressed. The following statement shows an example of defining
the EQL sequence to include an END indication.

ASSIGHN @Device TO 20;EGL CHR$(13)&CHR$(10) END

With the HP-IB Interface, the END indication is an End-or-Identify message (EOI) sent with
the last EOL character.

The default EOL sequence is a CR and LF sent with no end indication. This default can be
restored by using the EOL OFF attribute.

/O Path Attributes 6-3

Restoring the Default Atiributes

If any attribute is specified, the corresponding entry in the I/O path name table is changed
(as above); no other attributes are affected. However, if no attribute is assigned (as below},
then all attributes are restored to their default state (such as FORMAT ON for devices.)

340 ASSIGE @Device ! Restores ALL defaul: attributes.

Concepts of Unified 1,0

The HP Instrument BASIC language provides the ability to communicate with the several
system resources with the QOUTPUT and ENTER statements,

The next section of this chapter describes how data can be moved to and from string variables
with QOUTPUT and ENTER statements. And, if you have read about mass storage operations
in the “Data Storage and Retrieval” chapter of HP Instrument BASIC Programming
Techniques, you know that the ENTER and OUTPUT statements are also used to move data
between the computer and mass storage files.

This ability to move data between the computer and all of its resources with the same
statements is a very powerful capability of the HP Instrument BASIC language.

Before briefiy discussing I/0 paths to mass storage files, the following discussion will
present some background information that will help you understand the rationale behind
implementing the two data representations used by the computer. The remainder of this
chapter then presents several uses of this language structure.

Data-Representation Design Criteria

As you know, the computer supports two general data representations——the ASCII and the
internal representations. This discussion presents the rationale of their design.

The data representations used by the computer were chasen according to the following
criteria:

% (0 maximize the rate at which computations can be made

» to maximize the rate at which the computer can move the data between its resources
a to minimize the amount of storage space required to store a given amount of data

m to be compatible with the data representation used by the resources with which the
computer is to communicate

The internal representations implemented in the computer are designed according to the first
three of the above criteria. However, the last criterion must always be met if communication is
to be achieved. If the resource uses the ASCII representation, this compatibility requirement
takes precedence over the other design criteria. The ASCII representation fulfills this last
criierion for most devices and for the computer operator. The first three criteria are further
discassed in the following description of data representations used for mass storage files.

6-4 1/O Path Attributes

1/O Paths to Files

There are three types of data files: ASCII, BDAT, and HP-UX or DOS. Only the ASCII data
representation is used with ASCIH files, but either the ASCII {FORMAT ON) or the internal
(FORMAT OFF) representation can be used with BDAT and HP-UX or DOS files.

BDAT, HPUX and DGS Files

BDAT, HP-UX and DOS files have been designed to maximize the efficiency with which

HP Instrument BASIC moves, stores and manipulates data. Both numeric and string
computations are much faster. These internal data representations allow much more data to
be stored on a disc because there is no storage overhead (for numeric items), that is, there are
no “record headers” for numeric items.

The transfer rates for each data tvpe has also been inereased. Numeric output operations
are always much fasier because there is no time required for “formatting”. Numeric

enter operations are also faster because the system does not have to search for item- and
statement-termination conditions.

In addition, I/O paths to BDAT and HP-UX files can use either the ASCII (FORMAT ON)
or the internal (FORMAT OFF) representation.

The following program shows a few of the features of BDAT files. The program first cutputs
an internal-form string (with FORMAT ON), and then enters the length header and string
characters with FORMAT OFF.

110 DIM Length$[4],Data$f266],Int_forz$i2b6]
120 H

130 ! Create a BDAT file {1 record; 256 bytes/record.)
140 ON ERROR GOTO Already_created

150 CREATE BDAT "B_file",1

160 Already_created: OFF ERROR

170 H

180 ! Use FORMAT OF during output.

190 ASSIGN @Xo_path TO "B_file';FURMAT ON

200 !

210 Length$=CHR$(O)}ZCHRE(0} ! Create length header.
220 Length$=Length$&CHRS (0)&CHRE(252)

230 ¢

240 ! Generate 256-character string.

250 Data$="01234567T"

260 FOR Doubling=1 TO 5

270 Data$=Data$&Datad

280 NEXT Doubling

280 ! Use only 1st 252 characters.

360 Data$=Data$liz,252]

310 !

320 ! Generate internal-form and output.

330 Int_form$=Length$&Datal

340 OUTPUT @Io_path;Int_form$;

350 ASSIGE @lo_path TO *

360 1

370 ! Use FORMAT OFF during enter (default).
380 ASSIGE @Io_path TG "B _file'

390 ¢

(Continued)

I/0 Path Attributes 6-5

400 ! Enter and print data and # of characters.
410 ENTER Data$

420 PRINT LEN(Data$);''characters entered."

430 PRINT

440 PRINT Data$

450 ASSIGE @Io_path TO * ! Close 1/D path,

460 !
470 END
ASCII Files

ASCII files are designed for interchangeability with other HP computer systems. This
interchangeability hmposes the restriction that the data must be represented with ASCII _
characters. Each data item sent to these files is a special case of FORMAT ON representation;
each item is preceded by a two-byte length header (analogous to the internal form of string
data). In order to maintain this compatibility, there are two additional restrictions placed on
ASCIT files:

a The FORMAT OFF attribute cannof be assigned to an ASCII file
m You cannot use QUTPUT..USING or ENTER..USING with an ASCII file.

The following program shows the /0 path name @lo_path being assigned to the ASCII
file named ASC_FILE. Notice that the file name is in all uppercase letters; this is also a
compatibility requirement when using this file with some other systems.

The program creates an ASCI] file, and then outputs program lines to the file. The program
then gets and runs this newly created program. (If you type in and run this program, be sure
to save it on disc, because running the program will load the program it creates, destroying
itself in the process.)

100 DIM Line$(1:3)[100] ! Array te store program.
110t

120 ! Create if not already on disc.

130 08 ERROR GOTO Already, exists

140 CREATE ASCII "ASC _FILE",1 ' 1 record.

150 Already_exists: OFF ERROR

160 !

170 ASSIGN @Io_path TO "ASC_FILE"

180 STATUS @lo_path.6;Pointer

190 PRIKT "Initially: file pointer=";Pointer
200 PRINT
210 !

220 Line$(1)="100 PRINT ""New program."" "
230 Line$(2)="110 BEEP"

240 Line$(3)="120 EAND"

250 i

260 OUTPUT @Io_path;Line$(s}

279 STATUS @Jo_path,8;Pointer

280 PRINT "After OUTPUT: file pointer=";Pointer

2%¢ PRIRT

30¢ !

310 GET "ABC_FILE" | Implicitly cleoses I/0 path.
320 !

330 EED

6-6 1/0 Path Attributes

Data Representation Summary

The following table summarizes the control that programs have on the FORMAT attribute
assigned to 1/0 paths.

Program Control of the FORMAT Attribute

Type of Default FORMAT Can Default FORMAT
Resource Attribute Used Attribute Be Changed?
Devices FORMAT ON Yes (if an I/O path is used)!
BDAT files FORMAT OFF Yes
HP-UX or DOS files FORMAT OFF Yes
ASCTI files FORMAT ON? No
String variables FORMAT ON No

'FORMAT ON is always used whenever an QOUTPUT ... USING or ENTER ... USING
statement is used, regardless of the FORMAT atiribute assigned to the I/O path.

“The data representation used with ASCII files is a special case of the FORMAT ON
representation.

Applications of Unified 1/0

This section describes two uses of the powerful unified-I/O scheme of the computer. The first
application contains further details and uses of I/0 operations with string variables. The
gsecond application involves using a disc file to simulate a device.

1/0 Operations with String Variables

This section describes both the details of and several uses of outpuiting data to and entering
data from string variables.

OQutputting Data to String Variables

When a string variable is specified as the destination of data in an QUTPUT statement,
source items are evaluated individually and placed into the variable according to the free-field
rules or the specified image, depending on which type of OUTPUT statement is used. Thus,
item terminators may or may not be placed into the variable. The ASCII data representation
is always used during outputs to string variables.

Characters are always placed into the variable beginning at the first position; no other
position can be specified as the beginning position at which data will be placed. Thus,
random access of the information in string variables is not allowed from OUTPUT and
ENTER statements; all data must be accessed serially. For instance, if the characters “1234”
are output to a string variable by one OUTPUT statement, and a subsequent QUTPUT
statement outputs the characters “5678" to the same variable, the second output does

not begin where the first one left off (i.e., at string position five). The second OUTPUT

1/O Path Attributes -7

gtatement beging placing characters in position one, just as the first QUTPUT statement did,
overwriting the data initially output to the variable by the first OUTPUT statement.

‘T'he string variable’s length header (4 bytes) is updated and compared to the dimensioned
length of the siring as characters are ountput to the variable. If the string is filled hefore

all items have been output, an error is reporied; however, the string contains the first n
characters ontput (where n is the dimensioned length of the string).

Example

The foliowing program outputs string and numeric data items to a string variable and then
calls a subprogram that displays each character, its decimal code, and its position within the
variable.

160 ASSIGE @Crt TO 1 ! CRT is disp. device.

110 !

120 OUTPUT Str _var$;12,"AB",34

130 !

140 CALL Read_string(@Crt,Str_var$)

150 '

160 ERD

170 ¢

180 ¢

190 SUB Read_string(@Disp,Str var$)

200 !

210 ! Table heading.

220 OUTPUT @Bisp;"~~r—mr——mom s e !

230 OUTPUT @bisp;"Character Code Pos."

240 QUTPUT @Disp;"'————————— ———— =t

250 Dsp_img$="2X,44,56%,3D,2X,3D"

260 !

270 ! Now read the string’s contents.

280 FOR Str_pos=1 TO LEN(Str_var$)

290 Code=HNUM(Str_var$§[Str_pos;1])

300 IF Code<32 THEN ! Don’t disp. CTREL chars.
31¢ Char$="CTRL"

32¢ ELSE

330 Char$=Str_var${Str_pos;i] ! Disp. char.
340 E¥D IF

35¢ !

360 OUTPUT @Disp USING Dep_img$;Char$,Code,Str_pos
370 HEXT Str_pos

380 H

390 { Finish %table.

400 QUTPUT QDisp;"Memm oo s .
410 QUTPUT @Disp ! Blank line.

420 !

430 SUBEND

6-8 1/O Path Attributes

Character Code Pos.

32 i
1 438 2
2 50 3
N 44 4
A 65 5
B 66 6
CTRL 13 7
CTRL 10 8

32 2
3 51 10
4 52 11
CTRL 13 i2
CTRL 16 13

Outputting data to a string and then examining the string’s contents is usually a more
convenient method of examining output data streams than using a mass storage file. A string
may contain both printing and non-printing (control) characters. Printing string contents that
contain control characters could interfere with examining the data stream. The preceding
subprogram may facilitate viewing this data without viewing such strings.

Example

Qutputs to string variables can also be used to generate the siring representation of a number,
rather than using the VALS$ function (or a user-defined function subprogram). The main
advantage is that you can explicitly specify the number’s image while still using only a single
program line. The following program compares the string generated by the VAL$ function to
that generated by outputting the number to a string variable.

106 X=12345678

116 i

126 PRINT VAL$(D

136 !

140 OUTPUT Val$ USING "#,3D.E";X

150 PRINT Val$

160 !
170 END

1.2345678E+7 Printed results
123 ,E+05

Entering Data From String Variables

Data are entered from string variables in much the same manner as output to the variable.
All ENTER statements that use string variables as the data source interpret the data
according to the FORMAT ON attribute. Data is read from the variable beginning at the
first string position; if subsequent ENTER. statements read characters from the variable, the
read also begins at the first position. If more data are to be entered from the string than are
contained in the string, an error is reported; however, all data entered into the destination
variable(s} before the end of the string was encountered remain in the variable(s) after the
eITOT 0CCUTrs,

/O Path Attributes 6-9

When entering data from a string variable, the computer keeps track of the number

of characters taken from the variable and compazes it to the string length. Thus,
statement-iermination conditions are not required; the ENTER statement automatically
terminates when the last character is read from the variable. However, item terminators are
still required if the items are to be separated and the lengths of the items are not known. If
the length of each item is known, an image can be used to separate the items.

Exampie

The following program shows an example of the need for either item terminators or length of
each item. The first item was not properly terminated and caused the second item fo not be
recognized.

100 OUTPUT String$;"ABC123"; t QUTPUT w/o CR/LF.
110 !

126 { Now enter the data.

13¢ 0N ERROR GOTS Try_again

140 H

15¢ First_try: !

166 EHTER String$;Str$,Bum

17¢ OQUTPUT 1;"First try results:®

189 OUTPUT 1;"Str$= ";S5trd, "Fum=";Num

196 BEEP ! Report getting this far.

200 STOP

214 H

220 Try_again: OQUTPUT 1;"Error”;ERRH;" on 1st try"
230 QUTPUT 1;"STR$=";Str$, "Hum=";Num
240 OUTPUT 1

250 OFF ERROR ! The next one will work.
260 !

270 ENTER String$ USING "34,3D";Sir$,HNun
280 GUTPUT 1;"Second try results:"

290 OUTPUT 1;"Str$= ";Str$,"Fum=";Num
300 !

310 EED

This technique is convenient when attempfing to enter an unknown amount of data or when
numeric and string items within incoming data are not termirated. The data can be entered
into a string variable and then searched by using images.

Example

ENTERs from siring variables can also be used to generate a number from ASCII numeric
characters (a recognizable collection of decimal digits, decimal point, and exponent
information), rather than using the VAL function. As with outputs to string variables, images
can be used to interpret the data being entered.

30 Number$="Value= 43.5879F~13"
40 1

50 ENTER Bumber$:Value

60 PRIRT "VALUE=";Value

70 END

6-10 1/O Path Attributes

Index

A

Additional Interface Functions, 2-3
Address, primary, 3-2

ASCII Files, 6-6

ASSIGN statement, 3-3, 3-4, 6-2
Attribute control, 3-7

Attributes, EOL Sequence, 6-3
Attributes, FORMAT, 6-1
Attributes, [/O Path, 6-1

Attributes, Restoring the Default, 6-4

Backplane, computer, 2-2
BDAT Files, 6-b

Binary images, 4-13
Binary Images, 5-13
Binary specifier, 4-13
Bits and Bytes, 2-6

Bus, 2-1

c

Chapter Previews, 1-2
Characters, Ignoring, 5-13
Character specifier, 4-12
Characters, Representing, 2-7
Closing I/0O Path Names, 3-4
Comma separator, 4-2
Computer backplane, 2-2

3}

Data Compatibilisy, 2-2
Data, Entering, 5-1

Data Flow, Directing, 3-1
Data Handshake, 2-8
Data, Outputting, 4-1
Data, Re-Directing, 3-7

Data-Representation Design Criteria, 6-4

Data Representations, 2-6

Data Hepresentation Summary, 6-7
Device Selectors, 3-2

Digit specifier, 4-9

Directing Data Flow, 3-1

E

Electrical and Mechanical Compatibility, 2-2
END in Freefield OUTPUT, 4-5

End-of-line {(EQL}, 4-2

End-of-line sequence, 4-4, 6-1, 6-3
End-or-identify, 5-7, 5-14

END with HP-IB Iaterfaces, 4-5, 4-19

END witk OUTPUTs that Use Images, 4-18
ENTER images, 4-15

Entering Data, 5-1

Entering String Data, 5-b

ENTER statement, 2-8, 3-1, 5-1, 5-8

¥aters that Use Images, 5-8

ENTER USING statement, 5-9

ECGT Redefinition, 5-14

Execution Speed, 3-6

Explicitly close, 3-4

Exponent specifier, 4-8

F

Files, ASCII, 6-6

Files, BDAT, 6-5

Files, 1/0O Paths to, 8-5

FORMAT attribuies, 6-1
FORMAT Attributes, Assigning Default, 6-2
FORMAT OFF statement, 3-7, 6-1
FORMAT ON statement, 3-7, 6-1
FORMAT statement, 6-1
Free-Field Enters, 5-1

Free-Field ENTER Statements, 5-7T
Free-field output, 4-1

Freefield OUTPUT, END i, 4-5

H

Handshake, Data, 2-8
HP-1B Device Selectors, 3-2
HP-IB mterface, 2-4

Image Definitions During Outputs, 4-8
Image output, 4-1

Image QUTPUT, 4-1

Image Repeat Factors, 4-15

Imaage Re-Use, 4-17

Image Reuse, 5-15

Index-1

Images, 4-7, 5-9

Images, binary, 4-13

Images, ENTER, 4-15

Images, nested, 4-18

Images, numeric, 4-9

Images, Qutputs that Use, 4-6
Imnages, Special-Character, 4-14
Images, string, 4-12

Images, Terminating Enters that Use, 5-14
Input, 2-1

Interface Functions, Additional, 2-3
Interface, primary function of an, 2-2
Interfaces, select codes, 3-2
Interfacing Concepts, 2-1

1/0, 2-1

}/O, Applications of Unified, 6-7
}/0, Concepts of Unified, 6-4

I/O Operations with String Variables, 6-7
1/O Path Attributes, 6-1

I/O Path Attributes, Specifying, 6-3
I/O Path Benefits, 3-8

I/0 patk name, 3-3, 6-1

1/0 Path Names, Closing, 3-4

I/O Path Names, Re-Assigning, 3-3
I/0O paths, 3-3

I/O Paths to Files, 6-5

I/O Process, 2-8

1/0O Statements and Parameters, 2-8
Ltemn Separators, 4-2, 5-1

Itern Terminators, 4-2, 5-2

M

Manual Organization, 1-1

Mechanical Compatibility, Electrical and, 2-2

Modifiers, Statement-Termination, 5-15

N

Names, string-variable, 3-1
Nested Images, 4-18, 5-17
Non-Repeatable Specifiers, 5-16
Number builder, 5-2

Numbers, Representing, 2-7
Numeric Format, Standard, 4-1
Numeric Images, 4-9, 5-11
Numeric specifier, 5-11

0

Ouiput, 2-1

OUTPUT statement, 2-8, 3-1, 4-1, 5-1
Outpute that Use Images, 4-6
Outputting Data, 4-1

OUTPUT USING statement, 4-6

index-2

p

Previews, Chapter, 1-2
Primary address, 3-2
Primary function of an interface, 2-2

R

Radix specifier, 4-8

Reassigning I/Q Path Names, 3-3
Redirecting Data, 3-7

Repeatable specifier, 4-16, 5-16
Hepeat Factors, 5-16

Repeat Factors, Image, 4-16
Resource, specifying a, 3-1
RS5-232C Serial Interface, 2-5

S

Select codes (of built-in interfaces), 3-2
Selectors, Device, 3-2
Selectors, HP-IB Device, 3-2
Sericolen separator, 4-3
Separator, Comma, 4-2
Separator, semicolon, 4-3
Serial Interface, RS-232C, 2-5
Sign specifier, 4-9
Special-Character Irnages, 4-14
Specifiers
Binary, 4-13
Character, 4-12
Dagit, 4-9
Exponent, 4-9
Numeric, b-11
Radix, 4-8
Repeatable, 4-16
Sign, 4-9
Special-Character, 4-14
Termination, 4-15
Specifying an I/0 resource, 3-1
Speed, Execution, 3-8
Statement-Termination Modifiers, 5-15
String Data, Entering, 5-5
String Format, Standard, 4-2
String images, 4-12, 5-12
String-variable names, 3-1
String Variables, Entering Data From, 6-9
String Variables, Outputting Data to, 6-7

T

Terminating Enters that Use Images, 5-14
Termination Conditions, Default, 5-14
Termination specifier, 4-15

Terminology, 2-1

Timing Compatibility, 2-3

u
Unified 1/0, 6-7

HP Instrument BASIC
Language Reference

KA crcicarc

Printed in USA August 1892

(© Copyright 1992 Hewlett-Packard Company. All rights reserved.

Contents

1.

Using the Language Reference
Syntax Drawings Explained
Comments
Keywords and Spaces
Kevboards

Keyword Dictionary

ABORT
ABS .. 0oL
ACS . o o o000
ALLOCATE
ALPHA ON/OFEF
AND ..o oo
AREA L.
ASN . o oL oo oL
ASSIGN
ATN oo 0o

BINAND
BINCMP
BINEOR

CAT

CHRS

cory . ..o 0oL
COPYLINES
cCos ...
CREATE

...................... 1-2
...................... 1-3
..................... 1-4
C e e e e e e 1-5

..................... 2-2
...................... 2-4
...................... 2-5
...................... 2-6
...................... 2-8
...................... 2-9
...................... 2-106
...................... 2-12
...................... 2-13
...................... 2-18
...................... 2-19
...................... 2-21
...................... 2-22
...................... 2-23
...................... 2-24
...................... 2-25
...................... 2-26
...................... 2-27
...................... 2-28
...................... 2-29
...................... 2-32
...................... 2-33
...................... 2-37
...................... 2-38
...................... 2-39
...................... 2-48
...................... 2-41
...................... 2-42
...................... 2-43
...................... 2-46
...................... 2-47
...................... 2-49
...................... 2-51
...................... 2-53
...................... 2-b4

Contents-1

CREATE ASCIT o o o oo oo e 2-56

CREATE BDAT« o o o o0 oo 2-57
CREATLE DIR 0 o o o o0 o oo oo s 2-59
CRT o s e e 2-60
CSIZE . . . o o o s e e 2-61
DATA L o e e e e e e e 2-62
DATE . . . o o oo s s e 2-64
DATES e e e e e 2-65
DEALLOCATE . . o . . . o o o 0 oo 2-66
DEFEN © © o 0oL s s e s 2-67
DEGo e e e 2-69
DEL . o o e e e e e 2-70
DELSUB . . . o . o oo e e e 2-71
DET . . o o o e s e e e e e e 2-72
DIM . 0 0o o e e s e e e e 2-73
DISABLE o e 2-75
DISABLEINTR« o oo 2-76
DISP . . . o e s e e e e e e e e 2-7

DIV . o o o s s s e e e e s s 2-84
DOT . o o o oo L e e e s e e 2-85
DRAW G e e e e e e e e e 2-86
DROUND C e e e e e e e e e 2-87
DUMP C e e e e e e e e e e e e e e e 2-88
DVAL C e e e e e e e e e e e 2-89
DVALS G e e e e e e e e e e e e e e e e 2-91
EDGE G e e e e e e e e e e e 2-93
EDIT 0. C e e e e e e e e e e e 2-94
ELSE e e e e e e e e e e e e 2-96
ENABLE 0o oo o e 2-97
ENABLEINTR o o oo o oo 2-98
END . . oo L e e e 2-99
ENDIF . . . 0 oo e e e e e 2-100
ENDLOOP o o s e e e 2-101
END SELECT o o 0o s e e e e e 2-102
ENDWHILE« . v o o 0 o o0 e e e e e e s e e e e 2-163
ENTER o o o 0 o e s e e e e e e e 2-104
EOL e e e e e e e e e e e 2-113
ERRL e e e e e e e e e e e 2-114
ERREN e e e e e e e e e e e 2-115
ERRMS e e e e e e e e e e 2-116
ERRN .« . o o o e e 2-117
ERROR o o o o o e 2-118
0 2-119
EXOR o o o o s e e e 2-120
EXP o e e e e e e e e 2-121
FILL . . o o o o o e s e e e 2-122
FN e s e s e e 2-123
FNEND e e e e e 2-125
FORMAT e e e e s s 2-126
FOR ... NEXT o o o s e e 2-127
FRACT C e e e e 2-129

Contents-2

FRAME e e e e e e e e e e 2-130

GCLEAR L e e 2-131
GESCAPE e e e 2.132
GET . . 2-135
GINIT . . . o oo 2-138
GLOAD e e 2-139
GOSUB o e 2-141
GOTO . . . o o 2-142
GRAPHICS oo e 2-143
GRIDo e, 2-144
GSTORE o . o o Lo 2-146
IDN . .o e e e e e e e e e e 2-148
IDRAW . . L e 2-149
IF..THEN . o 0 L 0 0 s e 2-150
IMAGE . . . o o o 0 0 e 2-153
IMOVE . . . o o o o o o e e 2-156
INDENT . . o 0 oo s 2157
INITIALIZE e e e e e e e e e e e 2-159
INPUT . o o o o o oo e e 2-162
INT . o oo s e e e e e 2-165
INTEGER o o e 2-166
INTR e e e e e e e e e e 2-167
IPLOT o e 2-168
IVAL . . . o o o e e 2173
IVALS e e e e e e e e 2-175
KBD . . . oo e 2-176
LABEL o oo 17T
LDIR . . . o o o e e 2183
LEN o o oo e 2-185
I 2-186
LT oo e e e e e e e e e e e 2-188
LINETYPE o oo o oo e 2189
3 1 2101
LOAD oo e e 2-192
LOADSUB o . o 0 o e 2194
LOCAL o o . o o o s e 2396
LOCAL LOCKOUT o oo oo 2-198
LOG o o e e e 2-200
LOOP o e e e 2-201
LORG o o e e 2-203
LWCS . . o o o e 2-205
MASS STORAGEISo 2-206
MAT . o o o o L e 2-209
MAT REORDERo, 2-214
MAX o o oo e e 2-215
MAXREAL o o o 2-216
MERGE ALPHA o oo 2217
MIN . o0 e e e e e e s 2-218
MINREAL o o o oo s e e 2-219
MOD e e e e e e e e e 2-220
MODULO o o oo o o 2-221

Contents-3

MOVE . . . o o e
MOVELINES o s e s e e
MSI . o o e e e e e e e e
NEXT . . . o o o o e s s e e e e e e
NOT . o o o e s s e
NUM o o o e s s e e e e e e e e e
OFF CYCLE o o s s e e e e s
OFF ERROR o o e s s e e
QFFINTR e s s e e e e
OFF KEY o o o s s
OFF TIMEOUT e e e e
ON L o e e s s
ONCYCLE e e s
ON ERROR o o o s e e e s
ONINTR e e
ON KEY . . e e,
ON TIMEQUT o e e e e e
OPTION BASE e
OR e e e e e
OUTPUY o e e e
PASSCONTROL T,
PAUSE o s e e e .
PDIR o o e e e e e e
PEN . . . e e
PENUP e e e e e e e e e e e e e e e e e e
PI e e e e e e e e e e e e e e e e e e
PIVOT s e e e e e e e
PLOT o e e e e e e e e e
PLOTTERIS o o o o e e s e e e e
POLYGON e e e e e e e e
POLYLINE o . o o e e e e e e e e e
POS . e s
PRINT o e e e e
PRINTERIS« e e e e e e
PROUND o o e e e e e e e e
PRTo T,
PURGE o o e
RAD L e e e e e e e s s e e
RANDOMIZE o oo
BANK o o e e e e e e e e e e e
RATIO . . . v o o o e e e e e e e e e s
READ e e e e e e s e e
REAL« o o e e e e e s e e
RECTANGLE e e e e e e e e
REDIM o e e e e e
REM . . o . o o e e e s e e
REMOTE o e e e e e
REN . s
RENAME o e e
REPEAT ... UNTIL e e e
RE-SAVE e e e

Contents-4

RESTORE« . . o oo 0o 2-310

RE-STORE 2-311
RETURN 2-312
RETURN o o e e e e 2-313
REVS . . o o e 2-314
RND . . 2-315
ROTATE . . . o o v o i e e e 2-316
RPLOT . . . o oot e e C . 2317
RPTS . o o o o e e 2-322
RUN . oot o o e 2323
SAVE . . . 2.325
SCRATCH . . . o . o o o 2-327
SECURE . . . o o v v 2328
SELECT ... CASE o oo i 2-329
SEPARATE ALPHA o i e e 2-331
SET ALPHA MASK o 2-332
SET PEN . . . o o v i 2-333
SET TIME . . . o . . v 2335
SET TIMEDATE o oot i 2-336
SON . o 2-337
SHIFT . . . o o o o o 2-338
SHOW 2-339
SIN © . . 2-340
SIZE . . . 2-341
SPOLL o 2-342
SQR . . . 2-344
SQRT 2-345
STATUS .« . o o v o o e e e L. 2-346
STOP . . . o o o, 2-348
STORE .« . v v v e e 2-349
SUB . o o, 2-350
SUBEND . . . o o vt it e 2-352
SUBEXIT . . o v oo e e o e e e 2-353
SUM . . 2-354
SYSTEM PRIORITY o it 2-355
SYSTEMS . . . o . vt e e 2-356
TAB . . 2357
TABXY . . . o, 2-358
TAN . ., 2-359
TIME .« . . . 2-360
TIMES . . . o o 2-361
TIMEDATE 2-362
TRIGGER 2-363
TRIMS o 2-364
UNTIL . . o o o o 2-365
UPCS o 2-366
VAL L L, 2-367
VALS . . 2-368
VIEWPORT e, 2-369
WAIT . . . 2-370
WHERE o e 2-371

Contents-5

WHILE . o o 0 00 oo oo 2-372
WILDCARDS S 2-373
WINDOW 0 oo 2-375
A. Error Messages
B. Glossary

C. Iuterface Registers

I/O Path Registers oL C-1

Registers for ANI/O Paths C-1

I/0 Path Names Assigned toan ASCIL File C-1

I/O Path Names Assigned toa BDAT File C-2

I/O Path Names Assigned toa DOS File C-3

CRT and CONTROL Registers C-3

Keyboard STATUS and CONTROL Registers C-3

HP-IB STATUS and CONTROL Registers C-3

R5232C Serial STATUS and CONTROL Registers C-3
Index

Contents-6

Using the Language Reference

This section contains an alphabetical reference to all the keywords currently available with
the HP Instrument BASIC language. Fach entry defines the keyword, shows the proper
syntax for its use, gives some example statements, and explains relevant semantic details. A
cross reference is provided in the “Keyword Guide to Porting” chapter of the HP Instrument
BASIC Programming Technigues manual, that groups the keywords into several functional
categories,

Using the Language Reference 1-1

Syntax Drawings Explained

Statement syntax is represented pictorially. All characters enclosed by a rounded envelope
must be entered exactly as shown. Words enclosed by a rectangular box are names of items
used in the statement,

A description of each item is given either in the table following the drawing, another drawing,
or the Glossary.

Statement elements are connected by lines. Each line can be followed in only one direction,
as indicated by the arrow at the end of the line. Any combination of statement elements that
can be generated by following the lines in the proper direction is syntactically correct. An
element is optional if there is a path around it. Optional items usually have default values.
The table or text following the drawing specifies the default value that is nsed when an
optional item is not included in a statement.

-2 Using the Language Reference

Comments

Comments

Comments may be added to any valid line. A comment is created by placing an exclamation
point after a statement, or after a line number or line label.

106 PRINT "Helle"” ' This is a comment.
110 ! Thig is also a comment.

'The text following the exclamation point may contain any characters in any order.

The drawings do not necessarily deal with the proper use of spaces {ASCII blanks). In
general, whenever you are traversing a line, any number of spaces may be entered. If two
envelopes are touching, it indicates that no spaces are allowed between the two items.
However, this convention is not always possible in drawings with optional paths, so it is
important to understand the following rules for spacing.

Using the Language Reference 1-3

Keywords and Spaces

HP Instrument BASIC uses spaces, as well as required punctuation, to distinguish the
boundaries between various keywords, names, and other items. ln general, at least one space
is required between a keyword and a name if they are not separated by other punctuation.
Spaces cannot be placed in the middle of keywords or other reserved groupings of symbols.
Also, keywords are recognized whether they are typed in uppercase or lowercase. Therefore,
to use the letters of a keyword as a name, the name entered must contain some mixture of
uppercase and lowercase letters. The following are some examples of these guidelines.

Space Between Keywords and Names

The keyvword NEXT and the variable Count are properly entered with a space between them,
as in NEXT Count. Withont the space, the entire group of characters is interpreted as the name
Nextcount.

No Spaces in Keywords or Reserved Groupings

A function call to “A$” must be entered as FNA$, not as FN A §. The I/0 path name
“@Meter” must be entered as @Meter, not as € Meter. The “exceptions” are keywords that
contain spaces, such as END IF.

Using Keyword Letters for a Name

Attempting to store the line IF X=1 THEN END will generate an error because END is a keyword
not allowed in an IF ... THEN. To create a line label called “End”, type IF X=1 THEN ENd.
This or any other mixture of uppercase and lowercase will prevent the name from being
recognized as a keyword.

Also note that names may begin with the letters of an infix operator (such as MOD, DIV,
and EXOR). In such cases, you should type the name with a case switch in the infix operator
portion of the name (e.g., MOdULE, DiVISOR).

1-4 Using the Language Reference

Keyboards

Keyboards
The HP Instrument BASIC instruments and computers support many keyboard styles.

Throughout the manuals that document HP Instrument BASIC, specific keys are mentioned.
Becatse many key labels are different on each keyboard, vou will not have all the keys
mentioned. For example, (ENTER] and (Return) normally have the same meaning, but only one of
them appears on any one keyboard. The instrument-specific HP Instrument BASIC manual
included with your instrument discusses the keyboard for your device.

Using the Language Reference 1-5

Keyword Dictionary

Keyword Dictionary 2-1

ABORT

ABORT terminates /O activity on the specified HP-1B interface.

Syntax
— mterface
zalect cods
y /0 path
’ name
Item I Description | Range

interface select numeric expression, rounded to an integer 5, 7 through 31
code
I/0 path name name assigned to an HP-IB interface —

Example Statements
ABORT 7
ABORT Isc
IF Stop_code THEN ABORT @Source

Details

Use ABORT to control only GPIB and HP-IB interfaces. If you specify a select code for any
other type of interface, error 150 will result.

If the computer is the system controller, but not currently the active controller, executing
ABORT caunses the computer to assume active control.

Note that ABORT interface_select is allowed, but ABORT primary_address is not. For example:

ARORT 7 allowed
ABORT 721 notl allowed

2-2 Keyword Dictionary

ABORT

Summary of Bus Actions

System Controller Not System Controller
Active Controller 1FC (duration ATN
>100 psec) MTA
REN UNL
ATN ATN
Not Active Controller IFC {duration No
>100 psec)t Action
REN
ATN

! The IFC message allows a non-active controller (which is the system controller) to become
active.

Keyword Dictionary 2-3

ABS

ABS returns the absolute value of its argument.

Syntax
O O
Ttemn Description/Default Range
Restrictions
argument HLmeTIc eXpressicn within valid ranges of

INTEGER and REAL data
types for INTEGER and
REAL arguments.

Example Statements
PRINT “Value =";ABS(X1)

2-4 Keyword Dictionary

ACS

ACS

ACS returns the arccosine of its argument.

Syntax
ACS o 3 argurnant -P@'*—I
Item Description/Default Range
Restrictions
argument nemeric expression —1 through -+1 for INTEGER.

and REAL arguments,

Example Statements
Angle=ACS(Cosine)

Details

The angle mode (set by RAD or DEG) determines whether the value returned is in degrees
or radians. If the current angle mode is DEG, the range of the result is 0 to 180 degrees. If
the current angle mode is RAD, the range of the result is 0 to 7 radians. The angle mode is
radians unless you specify degrees with the DEG statement.

Keyword Dictionary 2-5

ALLOCATE

ALLOCATE dynamically allocates memory for arrays and string variables during program
execution.

Syntax

-

” { e
\—y

string f"\ - ztring I l
"l name _‘J '®_' tength (:) 4

{ e
£ A\
O fies
T
{ Ve

L { ')=
farray (o] upper
I nome L T bating

NTEGER) T

Item Description Range
alray name name of a numeric artay any vahid name
lower bound numeric expression, rounded to an integer; ~32 768 through +32 767 {see
default = OPTION BASE value (0 or 1) “array” in Glossary)
upper bound numeric expression, rounded to an integer —32 768 through +32 767 {see
“array” in Glossary)
string name name of a string variable any valid name
string length aumeric expression, rounded to an integer 1 through 32 767

Example Statements
ALLOCATE Temp(Low:High)
ALLOCATE INTEGER Array{Index,2,8)
ALLOCATE R$[LEN(A$)+1]
ALLOCATE Text$(Lines) [80]

2-6 Keyword Dictionary

ALLOCATE

Details

Memory reserved by the ALLOCATE statement can be freed by the DEALLOCATE
statement. However, because of the stack discipline used when allocating, the freed memory
space does not become available unless all subsequently allocated items are also deallocated.
For example, assume that AS is allocated first, then B$, and finally C$. If a DEALLOCATE
AS statement is execuied, the memory space for A$ is not available until B$ and C§ are
dezllocated.

The variables in an ALLOCATE statement cannot appear in the same context in declaration
statements such as COM, DIM, or INTEGER. If variable(s) are to be allocated in a
subprogram, the variable(s) cannot have been included in the subprogram’s formal parameter
list. Implicitly declared variables cannot be allocated. Numeric variables for which a type is
not specified are assumed to be REAL. A variable can be reallocated in its program context
only if it has been deallocated and its type and number of dimensions remain the same.

ALLOCATE allows you to dynamically allocate memory for arrays. However, the array
dimensions are determined statically. Thus you can change the size of the dimensions, but you
cannot change the number of dimensions of an array within & program context.

Exiting a subprogram automatically deallocates any memory space allocated within that
program context.

Keyword Dictionary 2.7

ALPHA ON/OFF
ALPHA ON shows the alpha window; ALPHA OFF hides it.

Syntax

(aema - on

OFF

Example Statements
ALPHA ON
IF Graph THEN ALPHA OFF

2.8 Keyword Dictionary

AND

AND
AND returns a 1 or a ¢ based on the logical AND of its two arguments.
Syntax

] Spreasion AND erprossion [

Example Statements
IF Flag AND Test2 THEN Process
Final=Initial AND Valid

Details

A non-zero value (positive or negative) is treated as a logical 1; only zero is treated as a
logical 0.

AB.AAND B
{ 0
a1 0
110 il
111 1

Keyword Dictionary 2-9

AREA

ARIA sets the color used to shade in graphical regions subsequently created by various
graphics plotting commands,

Syntax

hue -’O—* staturation —PO-P lurniroaity

INTENSITY red —FO—-’P green —"O—'P blue
pen
selector
Item Description Range

hue numeric expression () through 1
saturation nurnetle expression ¢ through 1
leminosity numeric expression 0 through 1
red numeric expression 0 through 1
green numeric expression 0 through 1
blue nuwmeric expression 0 through I
pen selector numeric expression, rounded to an integer —32 768 through +32 767

Example Statements
AREA COLOR Hue,Saturation,Luminosity
AREA INTENSITY Red(I),Green(I),Blue(I)
AREA PEN 3

Details

The default fill color is the color specified by pen 1. This color is solid white after power-up,
SCRATCH A, GINIT.

A fil} color remains in effect until the execution of an AREA, GINIT, or SCRATCH A. Other
statements that may alter the current fill color (if the data passed to them is an array) are

e PLOT
® RPLOT
s I[PLOT

SET PEN affects pen colors, and therefore can also affect fill colors specified with AREA
statements.

2.10 Keyword Dictionary

AREA

Specifying color with the SET PEN and AREA PEN statements (resulting in non-dithered
color) results in a much more accurate representation of the desired color than the same color
requested with an AREA COLOR or AREA INTENSITY statement.

AREA PEN Details ...
ARFA COLOR Details . ..
Alternate Pen Mode ...

AREA PEN

A fill color specified with AREA PEN is guaranteed o be non-dithered, and the AREA PEN
statement executes faster than AREA COLOR or AREA INTENSITY.

‘The pen numbers have the same effect as described in the PEN statement for line color except
that ir the alternate pen mode, negative pens erase as in the normal pen mode; they do not
complement. Pen 0 in normal pen mode erases; it does not complement,

AREA COLOR

When AREA COLOR executes, the HSL parameters are converted to RGB values. Then, if
the color requested is not available in the color map, the computer creates the closest possible
color in RGB color space to the one requested by filling the 4 by 4 dither cell with the best
combination of colors from the color map.

Alternate Pen Mode Fills

If the alternate drawing mode is in effect when the fill is performed, the area will be filled with
non-dominant color. See GESCAPE operation selectors 4 and 5.

In the alternate pen mode, negative pens erase as in the normal pen mode; they do not
complement.

Keyword Dictionary 2-11

ASN

ASN returns the arcsine of its argument.

Syntax
ASN c argurment —P@-—I
Item Description/Default Range
Restrictions
argument numeric expression —1 through +1 for INTEGER and

REAL arguments

Example Statements
Angle=ASN(Sine)

Details

The angle mode (set by RAD or DEG) determines whether the value returned is in degrees
or radians. If the current angle mode is DEG, the range of the result is -90 to +90 degrees.
If the current angle mode is RAD, the range of the result is -7 /2 to +7/2 radians. The angle
mode is radians unless you specify degrees with the DEG statement.

2.12 Keyword Dictionary

ASSIGN

ASSIGN

ASSIGN assigns an [/O path name and attributes to one of the following:
= 2 file
= an instrument

® 2 peripheral device

Syniax for Files

(assion y{@] VO P *

10 Y o] device

selectar

file attribute ¥
spacifier

—O

literal form of file gpecifien

" > fite 3 0
name
directory < L protect welume

path code specifiar
\.........WMJ . 7
Y
HES or DOS files only LF files anly

directary path:

directory
-—’ - r
\ name x </)
e o o
! 1
DAS ondy e

and—af—ine .
characters

Keyword Dictionary 2-13

ASSIGN

Ttem

Deseription

Range

I/O path name
device selector
file specifier
attribuie
directory path

file name
LIF protect code
volume specifier

- end-of-line
charaeters

name identifving an 1/0 path

numeric expression

string expression

attribute to be assigned to the [/O path
literal

literal

literal; first two non-blank characters are
significant

literal

string expression; default=CR and LF

Example Statements

These statements assign an I/0O path name to a file:

any valid name

(see Glossary)

{see drawing)

(see drawing)

(see MASS STORAGE IS)

depends on volume’s format (see
Glossary)

> not allowed

(see MASS STORAGE 1S)

up to 8 characters

ASSIGN @File TO File_name$
ASSIGN @File TO File_name$; FORMAT OFF
ASSIGE €File TO File.name$; FORMAT OFF, SWAP OFF
ASSIGN @File TO * ! Close the file.

These statements assign an 1/0 path name to an instrament:
ASSIGN CHpib_scope TO 724
ASSIGN @Serial._scope TO 9

Details

The ASSIGN statement serves a variety of purposes. Its main purpose is to open {create}
an 1/0 path name and assign that name to a resource. ASSIGN can specify attributes that
describe how data is shared with the resource. ASSIGN can also close {(terminate) an 1/0
path.

1/0 path names can be placed in COM statements and can be passed by reference as
parameters to subprograms. They cannot be evaluated in a numeric or string expression and
cannot be passed by value.

Using ASSIGN with Files ...
Using ASSIGN with Instruments ...

2-14 Keywaoard Dictionary

ASSIGN

Wildcards

Wildcard file specifiers used with ASSIGN must match one, and only one, file name. You
must first enable wildcard recognition using WILDCARDS. Refer to the keyword entry for
WILDCARDS for details.

Using FORMAT

- Assigning the FORMAT ON atiribute to an I/0 path name directs the computer to use its
ASCII data representation while sending and receiving data through the I/O path. Assigning
the FORMAT OFT attribute to ar I/0 path name direcis the computer to use its internal
data representation when using the I/0O path.

If the file was created with the CREATE ASCII statement, the file is always accessed as
a LIF ASCII file. LIF ASCILis a file type used by certain HP computers, such as the
HP BASIC Workstation. If you specify FORMAT ON or FORMAT OFT for such a file, it is

ignored.,

If a FORMAT attribute is not explicitly given to an I/0 path, a default is assigned. The
following table shows the defauit FORMAT attribute assigned to computer resources,

Resource Default Attribute
interface/device FORMAT ON
ASCIT file {always ASCH f{ormat)
BDAT file FORMAT OFF
POS file FORMAT OFF
HP-UX file FORMAT OFF

Using Files

Assigning an [/O path name to a file associates the I/0 path with the file and opens the file
for reading and writing. The file must be a data file. You cannot, for example, ASSIGN an
I/O path to a PROG (program) file. The file must already exist; ASSIGN does not do an
implied CREATE.

Files have a position pointer that is associated with each I/O path name. The pointer
identifies the next byte to be written or read. The pointer is reset to the beginning of the file
when the file is opened and updated with each ENTER or OUTPUT that uses that 1/0 path
name. It is best if a file is open with only one 1/0 path name at a time.

BDAT files have an additional physical end-of-file pointer. This end-of-file pointer (which
resides on the media) is read when the file is opened. This end-of-file pointer is updated on
the media at the following times:

w the current end-of-file changes

a END is specified in an OUTPUT statement directed to the file

» a CONTROL statement directed to the I/O path name changes the position of the
end-of-file pointer

Keyword Dictionary 2-15

ASSIGN

Using Instruments and Other Devices

I/O path names are assigned to instruments and other devices by placing the device selector
after the keyword TO. The statement ASSIGN @Meter TO 710 creates the 1/O path name
@Meter and assigns it to a device on HP-IB.

A device can have more than one I/0 path name associated with it. Each 1/O path name
can have different attributes (such as FORMAT and SWAP), depending upon how the device
is used. The specific /O path name used for an I/O operation determines which set of
attributes is used for that operation.

Changing Attributes

'The attributes of a currently valid I/O path may be changed, without otherwise disturbing
the state of that I/O path or the resource(s) to which it is assigned, by omitting the

TC resource clause of the ASSIGN statement. For example, ASSIGN @File;FORMAT OFF assigns
the FORMAT OFT attribute to the 1/O path name @File without changing the file pointers
(if assigned to a mass storage file).

A statement such as ASSIGN @Device restores the default attributes to the 1/0 path name, if
it is currently assigned.

Using ASSIGN With SWAP

The secondary keyword SWAP sets the order in which bytes are transferred for an I/0 path
assigned with FORMAT OFF. If the ASSIGN statement does not create the [/O path with
FORMAT OFF, any SWAP clause in the statement is ignored. The defanlt behavior of
ASSIGN is SWAP OFF.

Wher SWAP is OFF, data is transferred by sending the least significant byte first. When
SWAP is ON, data is transferred by sending the most significant byte first.

SWAP affects only these types of data:

m two-byte integers {such as INTEGER variables)

m eight-byte reals (such as REAL variables)

w strings written to BDAT files with FORMAT OFY

Note that no other type of data is handled properiy by SWAP. For example, you cannot
properly read a long integer (a four-byte integer) into two INTEGER. variables with SWAP
ON.

SWAP is useful in these situations:

m You want to transfer integer or real numbers between an instrument and
HP Instrument BASIC with FORMAT OFF to increase throughput. Use SWAP ON/OFT
as necessary to transfer bytes in the order that is compatible with the instrument.

m You want to share BDAT or DOS data files written with FORMAT OFF between
HP Instrument BASIC and other versions HP BASIC. In this case, you must use SWAP
ON.

Suppose you want to send commands to an instrument as strings and receive numeric data
from the instrument as unformatted bytes. You also want to read string data from the
instrument, such as error messages. You could use this approach:

2-16 Keyword Dictionary

ASSIGN

100 ASSIGN €Device TC Dev_selector
110 ASSIGHN @Device_bin TO Dev_selector;FIRMAT QOFF,SWAP ON

120 QUTPUT @Device;Cmd$! Cmd$ contains an instrument command.
130 ENTER @Device_bin;Real_var ! Real_var is a REAL variable.
140 ENTER @Device;Err_msg$! Exr_msg$ contains an error message string.

Suppose you want to read a BDAT file written on a DOS disk by the HP Measurement
Coprocessor. These are the statements that wrote the file:

100 INTEGER Int_var

110 CREATE BDAT "MYFILE"

120 ASSIGN @File TO "MYFILEY ! Default for BDAT files is FORMAT OFF.
13¢ OUTPUT @File;Real_var,Int_var,String$

It is important to note that the default formatting for I/0O paths assigned to BDAT files
is FORMAT OFF. To read MYFILE with HP Instrument BASIC, you must use these
statements:

100 INTEGER Int_var
110 ASSIGN @File TO "MYFILE";SWAP ON
120 ENTER @Fi}.e;Realnvar,lnt"var,Strin@

Closing 1/O Paths

There are a number of ways that I/O paths are closed and the I/0O path names rendered
invalid. Closing an I/0 path cancels any ON-event actions for that I/O path. I/O path names
that are nof included in a COM statement are closed at the following times:

m when they are explicitly closed; for example, ASSIGN @File TO *

m when a currently assigned 1/0 path name is reassigned to a resource, the original I/0 path
is closed after the new one is opened. The reassignment can be to the same resource or a
different resource. No closing occurs when the ASSIGN statement only changes attributes
and does not include the “TO ... 7 clause.

w when an I/0 path name is a local variable withir a subprogram, it is closed when the
subprogram is exited by SUBEND, SUBEXIT, ERROR SUBEXIT, RETURN..expression,
or ON-event.. RECOVER.

w when SCRATCH, SCRATCH A, or SCRATCH C is executed, any form of STOP occurs, or
an END, LOAD, or GET is executed.

I/O path names that are included in & COM statement remain open and valid during a
LOAD, GET, STOP, END, or simple SCRATCH. I/O path names in COM are only closed at
the following times:

m when they are explicitly closed; for example, ASSIGN @File TO *
o when SCRATCH A or SCRATCH C is executed

s when a LOAD, GET, or EDIT operation brings in a program that has a COM statement
that does not exactly match the COM statement containing the open 1/0 path names

Keyword Dictionary 2-17

ATN

ATN returns the arctangent of its argument.

Syntax
ATN V o argument —’@-’I
Ttem Description/Default Range
Restrictions
argument numeric expression within valid ranges of INTEGER
or REAT data types for
INTEGER and REAL arguments

Example Statements
Angle=ATN(Tangent)

Details

The angle mode (set by RAD or DEG) determines whether the value returned is in degrees
or radians. If the current angle mode is DEG, the range of the result is -90 to +90 degrees.
If the current angle mode is RAD, the range of the result is -7/2 to +7/2 radians. The angle
mode is radians unless you specify degrees with the DEG statement.

2-18 Keyword Dictionary

AXES

AXES

AXES draws a pair of axes with optional, equally spaced tick marks.

Syntax
(axes) -+
L w sk
spacing
y ek »
Spasing -
Y axis
tocation
X Qxis
location J -
X major 2
count -
¥ major -
count
major
tick size
Item Description Range

x tick spacing

y tick spacing

y axis location

x axis location

X major count

v major count

major tick size

rumeric expression in current units;
default = 9, no ticks

nieric expression in current units;
defauit = 9, no ticks

numeric expression specifying the location of
the v axis in x-axis units; defauli = 0

numeric expression specifying the location of
the x axis in y-axis units; default = 0

numeric expression, rounded to an integer,
specifying the number of tick intervals between
major tickmarks; default = 1 (every tick is
major)

numeric expression, rounded to an integer,
specifying the number of tick intervals between
major tick marks; default = 1 {every tick is
major)

numeric expression i graphic display units;
default = 2

(see text)

{see text)

I through 32 767

1 through 32 767

Keyword Dictionary 2-19

AXES

Example Statements
AXES 10,10
AXES Xspace,Yspace

AXES Xspace,Yspace,Xlocy,Ylocx,Xmajor,Ymajor,Majorsize

Details

Tick marks are positioned so that a major tick mark coincides with the axis origin, whether or
not that intersection is visible. Both axes and tick marks are drawn with the current line type
and pen. Minor tick marks are drawn half the size of major tick marks.

The X and Y tick spacing must not generate more than 32,768 tick marks in the clip area
(including the axis), or error 20 will be generated.

The axes and tick marks drawn by AXES are affected by scaling resulting from SHOW and
WINDOW. The axes and tick marks are nof affected by rotations resulting from PIVOT and
PDIR.

2-20 Keyword Dictionary

BASE

BASE

BASE returns the lower subseript bound of a dimension of an array.

Syntax
array . A)
ASE: o narme " dimensian ‘,@—P{
Item | Description ' Range
array mname name of an array any valid name
dimension numeric expression, rounded to an integer 1 through 6;

< the RANK of the array

Example Statements
Lowerbound=BASE (Array,Dimension)

Upperbound(2)=BASE(4,2)+SIZE(4,2)~1

Keyword Dictionary 2-21

BDAT
See the CREATE BDAT statements.

2-22 Keyword Dictionary

BEEP

BEEP

BEEP generates an audible tone.

Syntax
(eer) C 5 »
frequency ‘*o—b seconds
Item Description Range
frequency numeric expression, rounded to the nearest 81 through 5208
tone; defauit = 1220.7
seconds numeric expression, rounded to the nearest 01 through 2.55

hundredth; default = (0.2

Example Statements

BEEP

Keyword Dictionary 2.23

BINAND
BINAND returns the bit-by-bit logical AND of its arguments.

Syntax
o argurment —'P'O—-) Frgumeant —>@—>
Ttem 1 Description t Range
argument I nuzmeric expression, rounded to an integer I —32 768 through +32 767

Example Statements
Low_4_bits=BINAND(Byte,15)
IF BINAKD(Stat,3) THEN Bit_set

Details

The arguments for BINAND are Tpnrpaeﬂ‘rpé as 16-bit two 5_ngmn|cmrmnf integers. Fach bit in

an argument is AND’ed with the corresponding bit in the other argument. The results of all
the AND’s are used to construct the integer which is returned.

In the foliowing example, the statement Ctrl_word=BINAND(Ctrl_word,-9) clears bit 3 of
Ctrl_word without changing any other bits.

12 = 00000000 00001100 old Ctri_word
-9 = 141111141 11110118 mask to clear bit 3
4 = 00000000 00060100 new Ctrl_word

2-24 Keyword Dictionary

BINCMP

BINCMP
BINCMP returns the value of the bit-by-bit complement of its argument.
Syntax
O O
Ttem I Description] Range
argument l numeric expression, rounded to an integer] —-32 768 through +32 767

Example Statements
True=BIKCHMP (Inverse)
PRINT X,BINCHMP(X)

Details

The argument for BINCMP is represented as a 16-bit, two’s-complement integer. Each bit in
the representation of the argument is complemented, and the resulting integer is returned. For
example, the complement of -9 equals +8:

-9 = 11111111 11110111 argument

+8 = 00000000 00001000 complement of argument

Keyword Dictionary 2-25

BINEOR

BINEOR returns the bit-by-bit exclusive OR of its arguments.

Syntax
o grgument —DO—> argument ->®—>
E
Liem E Description [Range
argument numeric expression, rounded to an infeger I —32 768 through +32 767

Example Statements
Toggle=BINEOR(Toggle, 1)
True_byte=BINEOR(Inverse_byte,255)

Details

The arguments for BINEQR are represented as 16-bit, two’s-complement integers. Fach bit

in an argument is exclusively OR’ed with the corresponding bit in the other argument. The
results of all the exclusive OR’s compose the returned integer.

In the following example, the statement Ctrl_word=BINEDR(Ctrl_word,4) inverts bii 2 of
Ctrl_word without changing any other bits.

12 = 00000000 00C01100 old Cirl_word
4 = 00000000 00C00100 mask to invert bif 2
g = 00000000 00001000 new Cirl_word

2-26 Keyword Dictionary

BINIOR

BINIOR

BINIOR returns the bit-by-bit inclusive OR of its arguments.

Syntax
: o argument —PO—D argument —>®——
Item ' Description l Range
argument 'numeric expression, rounded to an integer l 32 768 through +32 767

Example Statements
Bits_.set=RBINICR(Valuet,Value2)
Top_bit_on=BINIOR(A1l_bits,2715)

Details

The arguments for BINIOR are represented as 16-bit, two’s-complement integers. Each bit
in an argument is inclusively OR’ed with the corresponding bit in the other argument. The
results of all the inclusive OR’s are used to consiruct the integer which is returned.

In the following example, the statement Ctrl_word=BINIOR(Ctrl_word,8) sets hits 1 and 2 of
Ctrl_word without changing any other bits.

19 = 00006000 00010011 old Cltri_word
6 = 00000000 00000110 mask to set bits 1 & 2
23 = 000C0000 00010111 new Ctri_word

Keyword Dictionary 2-27

BIT

BIT resurns a 1 or 0 representing the value of the specified bit of its argument.

Syntax
BT . o drgument —i-o—r po;ion —P@—>
Item E Deseription l Range
argument numeric expression, rounded to an mteger —32 768 through -+32 T67
bit position numeric expression, rounded to an integer {0 through 15

Example Statements
Flag=BIT{Infc,0)
I¥ BIT(Word,Test) THEN PRINT "Bit #';Test;"is set"

Details

The argument for BIT is represented as a 16-bit, two’s-complement integer. Bit 0 is the
least-significant bit, and bit 15 is the most-significant bit.

The following example reads the controller status register of the internal HP-IB and takes a
branch to “Active” if the interface is currently the active controller.

100 STATUS 7,3;8 Reg 3 = control status
110 IF BRIT{S,6) THEN Active Bit § = active conirol

2-28 Keyword Dictionary

CALL

CALL

CALL transfers program execution to the specified subprogram and optionally passes
parameters to the subprogram.

Syntax

subprogram wl
fieiartd F
pass
parameters
string -
name -
_ pUss 3 (:)
WITH 0 paramsters
poss parameters:
e
I S l
‘@ 70 path .
TAEA name s

- varkable

name

variable
name

string oF numernic
array element

¥

substring

—C

literal @—»

w

string expressions

FrIeric

& xpressions

Keyword Dictionary 2.29

CALL

tem Description Range

subprogram name | name of the SUB or CSUB subprograms to | any valid name
be called

string name a simple string variable containing the name |loaded SUBs and OSUBS
of a user-defined subprogram

I/0O path name name assigned o a device, devices, or mass | any valid name (see ASSIGN)
storage file

variable name name of a string or numeric variable any valid name

substring string expression eontaining substring (see Glossary)
notation

literal siring constant composed of characiers from | —

the keyboard

Example Statements
CALL Process(Reference, (Value) ,@Path)
CALL Transform(Array(*))

CALL MySub$
CALL MySub$ WITH (X,Y,A$)

Details
Subprograms may be invoked recursively.

The keyword CALL may be omitied if it is the first word in a program line. However, the
keyword CALL is required in all other instances.

The pass parameters must be of the same type (numeric, string, or 1/0 path name) as

the corresponding parameters in the SUB statement. Numeric values passed by value are
converted to the numeric type of the corresponding formal parameter. Variables passed by
reference must match the corresponding parameter in the SUB statement exactly. An entire
array may be passed by reference by using the asterisk specifier.

If there is more than one subprogram with the same name, the lowesi-numbered subprogram
is invoked by a CALL.

Program execution generally resumes at the line following the subprogram CALL. However,
if the subprogram is invoked by an event-initiated branch, program execution resumes at the
point at which the event-initiated branch wag permitted.

2-30 Keyword Dictionary

CALL

CALL Using String Names

You can specify the subprogram accessed by CALL using either the subprogram name or a
string expression that evaluates to the subprogram name. All of the calls to Mysub in the
following code segment are legal:

100
110
120
120
130
140
150
180
170

Name$="HMysub" using subprogram name with CALL
CALL Mysub(1)

Myzub(2) using subprogram name without CALL
CALL Name$ WITH (3) wusing string nome with CALL

END

!
SUB Mysub(I)

PRINT "HELLO";I
SUBEND

Note that the string name must match the subprogram name ezactly, including upper and
lower case letters. Also note that you must use the keyword CALL with string subprogram

LraImes.

Keyword Dictionary 2-31

CASE
See SELECT ... CASE.

2-32 Keyword Dictionary

CAT

CAT

CAT lists the contents (files} in a specified directory or mass storage volume.

Syntax
(CAT} T -;i
L directory j m . i cataiog .
specifier \ / U, device selactor o
string
array narme $ (x)
literal form of directory specifier:
™ . > directary “
name
direstory volume
path specifier
HFS ar DOS files only
Ttem Deseription Range

directory specifier |string expression; default=MASS STORAGE | (see MASS STORAGE IS)
IS directory

volume specifier string expression; defauit=MASS STORAGE | (see MASS STORAGE IS)

IS volume
directory path literal {see MASS STGRAGE IS)
catalog device numeric expression, rounded 1o an integer; {see Glossary)
selector default=PRINTER IS device
string array name | rame of a string array (see text) any valid name
media specifier sting expression specifying media address any valid media

Example Statements

CAT ! List the contents of the current MSI veolume/directory.

CAT TD A$(*) ! List the contents of the current MSI to a string variable.
CAT "Dir1/Dir2" ! List the contents of a subdirectory.

CAT ":,701,0"% ! Example of media specifier.

Keyword Dictionary 2-33

CAT

Details

The catalog shows information such as the name of each file, whether or not it is protected,
the file’s type and length, and the number of bytes per logical record.

See the WILDCARDS statement for more on the use of wildcards with CAT.

Note that the format of the catalog listing is different depending on whether the catalog
information is sent to the alpha window or a string variable.

CAT "A:\DIRI\DIR2" ! This catalog listing is sent to
! the alpha display in DOS format.

CAT "A:\DIRI\DIR2" TO A$(*) ! This catalog listing is sent to
! the the string variable A$ in
b "to string® format.

LIF Catalogs

The LIF catalog format is shown below. This catalog format requires that the PRINTER IS
device have the capability of displaying 65 or more characters. If the printer width is less than
65, the DATE and TIME columns are omitted.

'CSSO TOO

FILE NAME PRD TYPE REC/FILE BYTE/REC ADDRESS DATE TIME

MyProg PROG 14 256 16 23-May-87 7:58
VisiComp ASCII 29 266 30 8-Apr-87 6:00
GRAPH BIN 171 256 59 1-May-87 1:00
GRAPHX BIN 108 2568 230 10-Aug-87 9:00

The first line of the catalog shows the volume specifier (:CS80,700 in this example).

The second line shows the volume label-—a name, containing up to 6 characters, stored on the
media (B9836 in this example).

The third line labels the columns of the remainder of the catalog. Here is what each columun
means:

FILE NAME lists the names of the files in the directory (up to 10 characters).

PRO indicates whether the file has a protect code (* is listed in this column if the
file has a protect code).

FILE TYPE lists the type of each file.

REC/FILE indicates the number of records in the file.

BYTE/REC indicates the record size.

ADDRESS indicates the number of the beginning sector in the file.
DATE indicates when the date the file was last modified.
TIME indicates the time the file was last modified.

2-34 Keyword Dictionary

CAT

DOS File System Catalogs
Here iz a typical catalog listing of a DOS directory:

DIRECTORY: C:\PRGJECTS\PROJECT.CNE
LABEL: HARD_DISK_C
FORMAT: DOS
AVATILABLE SPACE: 66776

FILE NUM REC MODIFIED
FILE NAME TYPE RECS LEN DATE TIME PERMISSION
ASCII_ 1 ASCIT 100 286 15~Apr-91 18:06 RW-RW-RW-
BDAT. 1 BDAT 5 256 15-Apr-91 18:10 RW-RW-RW-
MEMOS bIR 0 1 15-Apr-91 14:29 RWXRWXRWX

The first line of the catalog shows the path name of the directory to be cataloged
(C:\PROJECTS\PROJECT_CHE in this example).

The second line gives the volume label of the MS-DOS disk.

The third line gives the format of the mass storage medium, which is “DOS” for any DOS

volume.

The forth line lists the number of 266-byte sectors on the disk (66776 in this example).

'The fifth and sixth lines label the columns of the catalog.

FILE NAME

FILE TYPE

NUM RECS

REC LEN

MODIFIED
DATE TIME
PERMISSION

Lists the name of the file. The standard MS-DOS file-name conventions are
used (ap to eight characters followed by an optional period and an extension
of up to three characters).

Lists the type of the file. DIR specifies a directory. ASCII, BDAT, and
PROG specily the standard HP Instrument BASIC data and program file
types. DOS specifies an “untyped” M5-DOS file.

Lists the number of logical records (the number of records allocated to the file
when it was created). For a DIR file, NUM RECS is always 0.

The logical record size. The record length is always 206 for an ASCII file, and
always 1 for a DOS file. The defanlt record length for a BDAT file is 256,

but you can specify a user-defined record length. For a DIR file, REC LEN is
always 1.

The date and time when the file was last modified.

Specifies who has access rights to the file:
R indicates that the file can be read. W indicates that the file can be written
to. X indicates that the file can be searched (meaningful for directories only).

There are three classes of user permissions for each file:

OWNER {left-most 3 characters). GROUP {center 3 characters). OTHER
{right-most 3 characters).

By defaunlt, the DFS binary sets the permissions for all new files to
“RW-RW-RW-” and for all new directories to “RWXRWXRWX”. You can use
the PERMIT statement to make a file read-only. However, if you change the

Keyword Dictionary 2-35

CAT

OWNER bits, the GROUP and OTHER bits will also change. Refer to the
PERMIT statement for more details.

CAT to a String Array
Refer to CAT listings for details on fields. Note the different DOS and LIF formats.

The catalog can be sent to a string array. The array must be one-dimensional, and each
element of the array must contain at least 80 characters for a directory Listing or 45 characters
for a PROG file listing. 1f the directory information does not fill the array, the remaining
elements are set to null strings. If the directory information “overflows” the array, the
overflow is not reported as an error. When a CAT of a mass storage directory is sent to a
string array, the catalog’s format is different than when sent to a device. This format (the
SRM directory format) is shown below. Protect status is shown by letters, instead of an
asterisk. An unprotected file has the entry MRW in the PUB ACC (public access) column. A
protected BDAT file has no entry in that column. Other types of protected files show R (zead
access). In addition to the standard information, this format also shows OPEN in the QPEN
STAT column when a file is currently assigned.

:C880,702,0
VOLUME LABEL: B9836
FORMAT: LIF
AVATILABLE SPACE: 11

SY3 FILE NUMBER RECORD MODIFIED PUB OPEN
FILE NAME TYPE TYPE RECORDS LENGTH DATE TIME ACC STAT
SYSTEM,_BAS 1 98%6 SYSTH 1024 256 29 Kov 86 15:24:55 MAW
AUTOST 1 98%X8 PRAOG 38 256 29 Nov 86 09:25:07 MBW

To aid in accessing the catalog information in a string, the following table gives the location of
some important fields in the string.

Field Position (in String)

File Name 1 through 21

Fite Type 32 through 36
Number of Records 37 through 45
Record Length 48 through 54
Time Stamp 56 through 71
Public Access Capabilities 73 through 75
Open Status 77 through 80

2-36 Keyword Dictionary

CAUSE ERROR

CAUSE ERROR

CAUSE ERROR simulates the occurrence of an error of the specified number, affecting error
functions: ERRN, LRRMS, ERRL, and ERRLN.

Syntax

(cause ermor)l 2T o

Ttem ' Description ' Range

error number numeric expression, rounded to an integer 1 through 999;

1001 through 1G80

Example Statements
CAUSE ERROR Err_num
IF Testing THEE CAUSE ERROR 80

Details

When the CAUSE ERROR statement is executed, it initiates the normal error-reporting
action taken by the system when an error is encountered in a program line.

If ON ERROR is in effect and CAUSE ERROR is executed in a program line, the appropriate
branch is initiated—just as if an actual error oecurred on that line. When executed from a
running program, CAUSE ERROR affects the error indications ERRN, ERRM$, ERRL, and
ERRILN; each is set to the value appropriate for the specified error number and line number.
However, ERRDS is not affected.

If CAUSE ERROR is executed at the keyboard, or if executed in a running program (while
ON ERROR is not in effect), HP Instrument BASIC shows the error number and error
message in the system message line of the alpha window. (Note that errors cansed by
executing statements from the command line do not affect the error indications listed in the
preceding paragraph.)

Keyword Dictionary 2-37

CHR$

CHRS converts a numeric expression into an ASCII character.

Syntax
Q- O~
Ttem I Description i ' Range
argument inumer%c expression rounded to an integer t 0 through 255

Example Statements
Lowercase$=CHR$ (NUM(Uppercase$)+32)
A$[Marker;t]=CHR$ (Digit+128)
Esc$=CHR$ (27)

2-38 Keyword Dictionary

CLEAR

CLEAR

CLIEAR clears the specified HP-IB interface by sending a Device Clear or Selected Device
Clear message.

Syntax
(Loer e’ iﬁi‘j"
device
selector
Item Description I Range
}/O path name name assigned to a device or devices any vahd name (see ASSIGN)
device selector numeric expressicn, rounded te an integer (see Glossary)

Example Statements
CLEAR 7
CLEAR Voltmeter
CLEAR @Socurce

Details

HP-IB Interfaces

CLEAR places all or only selected HP-IB devices into a predefired, device-dependent state,
The computer must be the active controller to execute this statement. The bus messages sent
are the same whether or not the computer is the system controller. When primary addresses
are specified, the bus is reconfigured and the SDC (Selected Device Clear) message is sent to
all devices that are addressed by the LAG message.

Summary of CLEAR Bus Actions

Interface Select Code Only Primary Address Specified
ATN ATN
LCL MTA
UNL
IJAG
SDC

Keyword Dictionary 2-39

CLEAR SCREEN
CLEAR SCREEN clears the contents of the alpha window.

Syntax

(CLEAR SCREEN)y

k cLs

Example Statements
CLS
CLEAR SCREEN
IF Loop_count=1 THEN CLEAR SCREEN

2.40 Keyword Dictionary

CcLp

CLIP

CLIP defines, enables, or disables the soft clip limits for subsequent graphics cutput,

Syntax
right battom top
edge edge sdge T i
Item Description Range
left edge numeric expression in current units |-
right edge numeric expression in current units —
bottom edge nurieric expression in current units —
top edge numeric expression in current units —

Example Statements
CLIP Left,Right,Bottom,Top
CLIP O%
CLIP OFF

Details

Executing CLIP with numeric parameters allows the soft clip area to be set to the specified
soft clip limits. If CLIP is not executed, the clipping area is either the entire graph window
(if VIEWPORT has not been executed) or the area defined by the most recent VIEWPORT
statement. All plotted points, lines, or labels are clipped at this boundary.

The hard clip area is determined by the physical limits of the graphics display area. The
soft clip area is specified by the VIEWPORT and CLIP statements. CLIP ON sets the soft
clip boundaries to the last specified CLIP or VIEWPORT boundaries, or to the hard clip
boundaries if no CLIP or VIEWPORT has been executed. CLIP OFF sets the soft clip
boundaries to the hard clip limits.

Keyword Dictionary 2-41

CLS
CLS is identical to CLEAR SCREEN.

2-42 Keyword Dictionary

COM

COM

COM dimensions and reserves memory for variables in a special “common” memory area so
more than one program context can access the variables.

Syntax

o) declared
(COM> T iterms >
biock
name
Expanded diagram:
(COM }
biock
narme
y (O
o] NurnEric |
narme ~ I Y
INTEGER I { '}
. __»G wpper 3 -
fower
bound
\ { \ -
» (x) } e
siring f-\ string » (:)
> name Gj :®—’ lenqih

bower
bound

woper string
Baurd lenqgth

/0 path
@ name

¥
Y

{_®)

Keyword Dictionary 2-43

COM

Ttem

Description

Range

bleck name
declared items
nUMeric hame
string name

lower bound

upper bound

string length

1/O path name

name identifying a labeled COM area
list of common variables

rame of a numeric variable

name of a string variable

integer constant; default = OPTION BASE
value (0 or 1)

integer constant

integer constant

name assigned o a device, devices, mass
storage file, or buffer

Example Statements

CBM X,Y,Z

CO¥ /Block/ Text$,@Path,INTEGER Points(*)
COM INTEGER I,J,REAL Array(-128:127)

Details

any valid name
see expanded diagram
any valid name
any valid name

—32 767 through +32 767 (see
“array” in Glossary)

—32 787 through +32 767 (see
“array” in Glossary)

1 through %2 767
any valid name (see ASSIGN)

Storage for COM is allocated at prerun time in an area of memory that is separate from the
data storage used for program contexts. This reserved portion of memory remains allocated
until SCRATCH A or SCRATCH C is executed.

Changing the definition of the COM space is accomplished by a full program prerun. This can
be done hy

m pressing the or key when no program is running
& executing a RUN command when no program is running
» executing any GET or LOAD from a program

m executing a GET or LOAD command that tells program execution to begin (such as LOAD
"File",1)

Wher COM allocation is performed at prerun, the new program’s COM area is compared
to the COM area currently in memory. When comparing the old and new areas,

HP Instrument BASIC locks first at the types and structures declared in the COM
statements. If the “text” indicates that there is no way the areas could match, then those
areas are considered mismatched. If the declarations are consistent, but the shape of an array
in memory does not match the shape in a new COM declaration, HP Instrument BASIC
takes the effect of REDIM into account. If the COM areas could be matched by a REDIM,
they are considered to be in agreement. When this happens, the treatment of the arrays

in memory depends upon the program state. If the COM matching occurred because of

a programmed LOADSUD, the arrays in memory keep their current shape. H the COM
matching occurred for any other reason {such as RUN or programmed LLOAD), the arrays

2-44 Keyword Dictionary

COoM

in memory are redimensioned to match the declarations. Any variable values are left intact.
All other COM areas are rendered undefined, and their storage area is not recovered by

HP Instrument BASIC. New COM variables are initialized at prerun: numeric variables to 0,
string variables to the null string.

Fach context may have as many COM statements as needed (within the limits stated below),
and COM statements may be interspersed between other statements. If there is an OPTION
BASE statement in the context, it must appear before COM statement. COM variables do
not have to have the same names in different contexts. Formal parameters of subprograms are
not allowed in COM statements. A COM mismatch between contexts causes an error.

The total number of COM elements is limited to a maximum memory usage of 16 777 215
bytes (or limited by the amount of available memory, whichever is less).

If 2 COM area requires more than one statement to describe its contents, COM statements
defining that block may not be intermixed with COM statements defining other COM areas.

Numeric variables in a COM list can have their type specified Specifying a variable type
implies that all variables that follow in the list are of the same type. The type remains in
effect until another type is specified. String variables and 1/0 path names are considered a
type of variable and change the specified type. Numeric variables are assumed to be REAL
unless their type has been specified otherwise.

COM statements (blank or labeled) in different contexts that refer to an array or string must
specify it to be of the same size and shape. The lowest-numbered COM satement containing
an array or string name must explicitly specify the subscript bounds and/or string length.
Subsequent COM statements can reference a string by name only or an array only by using an
asterisk specifier (*).

No array can have more than six dimensions. The lower botnd value must be less than or
equal to the upper bound value. The default lower bound is specified by the OPTION BASE
statement.

Any LOADSUDB that attempt to define or change COM areas while a program is running
generates errar 145.

Unlabeled or Blank COM

Blank COM does not contain a block name in its declaration. Blank COM (if it is used)
must be created in a main context. The main program can contain any number of blank
COM statements (limited only by available memory}. Blank COM areas can be accessed by
subprograms, if the COM statements in the subprograms agree in type and shape with the
main program COM statements.

Labeled COM

Labeled COM contains a name for the COM area in its declaration. Memory is allocated
for labeled COM at prerun time according to the lowest-numbered occurrence of the labeled
COM statement. Fach context that contains a labeled COM statement with the same label
refers to the same labeled COM block.

Keyword Dictiochary 2-45

CONT

CONT resumes execution of a paused program at the specified line. If no line is specified,
execution resumes at the next line that would have executed if the program had not PAUSEd.

Syntax
(CONTJ '&}
line
number
line
label
Ttem Deseription Range
line number integer constant identifying a program line; |1 through 32 766
default = next program line

line label name identifying a program line any valid name

Example Commands

CONT
CONT 55O
CONT Sort

Details

CONT can be executed by pressing or by executing a CONT command. Variables
retain their current values whenever CONT executes. CONT causes the program to resume
execution at the next statement that would have occurred, unless a line is specified.

When a lne label is specified, program execution resumes at the specified line, provided that
the line is in either the main program or the current subprogram. If a line number is specified,
program execution resumes at the specified line, provided that the line is in the current
program context. If there is no line in the current context with the specified line number,
program execution resumes at the next higher-numbered line. If the specified line label does
not exist in the proper context, an error resulis.

2-46 Keyword Dictionary

CONTROL

CONTROL

The behavior of this statement will be instrument specific. Refer to the instrument specific
manual for more information.

Appendix C containg more information on registers for I/0 path names, interfaces, and
pseudo-select code 32.

CONTROL writes data to one of the following:

w hardware interface registers

m the internal table associated with an I/O path name

Syntax
interface »
CONTROL salect code —I | : J i
register
TR nurmhaer
@ name
ftem Deseription

santrod

word

Range

interface select
code

1/0 path name

register number

control word

nuemeric expression, rounded to an integer

name assigned to a device, devices, mass
storage file, or buffer

numeric expression, rounded to ean integer;
default = 0

numeric expression, rounded to an integer

Example Statements

CONTROL @Rand_file,7;File_length
CONTROL Interface,Register;Value

CONTROL @Serial,3;9600

1 through 32
(interface-dependent)

any valid name

(see ASSIGN)
mterface-dependent

—23 through 231—1
(interface-dependent)

I Write to a file.

' Write to a hardware interface.

! Set the baud rate of a serial interface.

Keyword Dictionary 2-47

CONTROL

Writing to File 1/O Paths

1/O path names assigned to files have an association table that can be accessed as a set of
registers.

CONTROL writes to this table, starting with the specified register and continuing in furn
through the remaining registers until all control words are used. The number of control words
must not exceed the number of registers available,

Register assignments can be found in the instrument-specific HP Instrument BASIC maneal
included with your instrument.
Writing to Hardware Interfaces

Control words are written to the interface registers, starting with the specified register number
and continuing in turn through the remaining registers until all the control words are used.
The number of control words must not exceed the number of registers available,

Register assignments can be found in the instrument-specific HP Instrament BASIC manual
ineluded with vou instrument.

2-48 Keyword Dictionary

COPY

COoPY

COPY copies individual files or entire disks. When an entire disk is copied, all old files on the
destination disk are destroyed.

Syntax
ia file ,() NN N
copY SO{J\ECiﬁeI" 0 2ﬁecifi‘e? i
ji%e
ald wval w o volurne
jspec?fl‘el::e -.@.’ nespec?fier
literat form of file specifier:
" fil ol
-’O nar:\e O—’l
L»directoryj L@_’ LiF protect "_@__J L voilme _j
path code specifier
St b v -
HFS or DOS files andy LIF files only
Item Description Range
file specifier string expression {see drawing)
directory path literal (see MASS STORAGE 1IS)
file name literal depends on volume’s format; 10
characters for LIF; 8 characters for
DOS (short file name); (see
Glossary)
LIF protect code | literal; first two non-blank characters are > not allowed
significant
volume specifier string expression {see MASS STORAGE IS)

Example Statements
COPY YOLD_FILE" TO "New_file™
COPY “new"” TO "archive" ;PURGE
COPY "A:\DIR\FILEL" TO "B:\DIR\FILE2"

Details
The contents of the old file are copied into the new file, and a directory entry is created.
HP Instrument BASIC will not replace existing files unless you specify the PURGE option.

Axr error is returned if there is not enough room on the destination device, or if the new file
name aiready exists in the destination directory and the PURGE option is not specified.

If the mass storage volume specifier (msvs) is omitted from a file specifier, the MASS
STORAGE IS device is assumed.

Keyword Dictionary 2-48

corPy

If the directory path is also omitted, the MASS STORAGE IS directory is assumed.

Using Wildcards with COPY ...
Using PURGE with COPY ...

Using Wildcards with COPY

I you are using a version of HP Instrument BASIC that supports wildcards, you can use them
in file specifiers with COPY. You must first enable wildcard recognition using WILDCARDS,
Refer to the keyword enfry for WILDCARDS for more details.

You may use wildcards in both the source and destination of the COPY. If the wildcard
specification for the source matches more than one file, then the destination must be a
directory,

Note that HP Instrument BASIC handles the command
COPY "file_name” TO "dir_name'
in a different manner when wildcards are enabled than when they are disabled.

When wildcards are enabled, HP Instrument BASIC permits you to copy a file to a directory.
It interprets the above command as make a copy of £ile_name and place that copy in a
directory cailed dir_name.

When wildcards are disabled, HP Instrument BASIC Interprets the above command as make

a copy of Tile_name and place it in the file called dir_name. If a file or a directory already
exists that uses the name dir _name, HP Instrument BASIC generates ERROR 54, Duplicate
file name.

Using the PURGE Option
The PURGE option allows the COPY command to replace existing files.

HP Tanstrament BASIC interprets the command COPY "£ilel" TO "£ile2”; PURGE as copy the
file filel to file2, replacing file2 if it exists.

HP Instrument BASIC interprets the command
COPY "file_name" TG "dir_name"; PURGE
in different ways depending on whether wildcards are enabled or disabled.

When wildcards are enabled, the preceding statement copies £ile_name into the directory
dir_name. If a file with the name file_name already exists in that directory, COPY wil
replace it.

When wildeards are disabled, HP Instrument BASIC replaces the directory identified by
dir_name with the file specified by £ile_name. This works only if dir_name is empty.

2.50 Keyword Dictionary

COPYLINES

COPYLINES copies contiguous program lines from one location to another.
Syntax
(\ o endin 5 (Y
COPYLINES } [; fing iﬂim?sber D, >
beginmng target
line number - lne nimber
areling
fine label
Bigginnirg target
line label line label
Item Description _ Range
beginning line integer constant identifying program line 1 to 32 766
number
beginning line label | name of a program line any valid name
ending line number | integer constant identifying program Hne 1 to 32 766
ending line label name of a program line any valid name
target line number |integer constant identifving program kne 1o 32 766
target line label name of a program line any valid name

Example Commands

COPYLINES 1200 TO 3255
COPYLINES 10,120 TO 500
COPYLINES Labell,Label2 TG Label3

Details
If the beginning line identifier is not specified, only one line is copied.

The target line identifier will be the line number of the first line of the copted program
segment. Copied lines are renumbered if necessary. Any lines that are “pushed down” to make
room for the copied lines are renumbered as necessary.

Line number references to the copied code are updated as they would be using REN, with
these exceptions: line number references in lines not being copied remain linked to the source
lines rather than being renumbered; references to non-existent lines are renumbered as if the
lines existed.

If there are any DEF FN or SUB statements in the copied code, the target line number must
be greater than any existing line number.

If you iry to copy a program segment to a line rumber contained in the segment, an error will
be reported and no copying will eccur.

If the starting line number does not exist, the next line is used. If the ending line number
does not exist, the previous line is used. If a line label doesn’t exist, an error occurs and no
copying occurs.

Keyword Dictionary 2-51

COPYLINES

If an error occurs during a COPYLINES (for example, a memory overflow}, the copy is
terminated and the program is left partially modified.

2-52 Keyword Diclionary

cos

COs

COS refurns the cosine of the specified angle.

Syntax
COs . o argument —P®~>|
Item Description/Default Range
Restrictions
argument numeric expression in current units of angle |absolute values less than 1.708 312

Example Statements
Cosine=C0S(Angle)
PRINT COS(X+45)

Details

when INTEGER or REAL argument

772 2 E+10 deg. or 2.981 h68 244
292 04 E+8 rad. for INTEGER
and REAL arguments

The angle mode set by RAD or DEG determines whether the angle is interpreted in degrees or
radians. The angle mode is radians unless you specify degrees using the DEG statement.

Keyword Dictionary 2-53

CREATE
CREATE creates a DQOS file.

Syntax

file number of
(CREATE) specifier (_) racords _’i

literal form of file specifier:

" of ilE o
TYnome o
directory LIF protect warburng

path code specifier

M : b

MF5 or DOS files only U fie onie
25 only

Item Description Range
file specifier string expression {see drawing)
number of records | numeric expression, rounded to an integer i through 231 -1
directory path liseral {see MASS STORAGE IS)
file name literal depends on volume’s format (see
Glossary)
LIF protect coede | literal; first two non-blank characters are > not allowed
significant
volume specifier literal (see MASS STORAGE 18)

Example Statements
CREATE File_spec$,N_records
CREATE "My_file",12

Details

The name of the newly created file must be unique within its directoryv. CREATE does not
open the file; that is performed by ASSIGN. If there is an error, ne directory entry is made
and the file is not created.

The number of records parameter specifies how many logical records are to be initially
allocated to the file. Files created with CREATE are extensible; refer to the following
explanation of extensible files for details.

The data representation used in the file depends on the FORMAT option used in the ASSIGN
statement used to open the file. See ASSIGN for details.

2-64 Keyword Dictionary

CREATE

Extensible Files

Files created with CREATE are “extensible”. This means that the file system aztomatically
allocates additional space for the file as new data is written to it.

Keyword Dictionary 2-55

CREATE ASCII

CREATIE ASCII is supported for backward compatibility with older versions of other
HP BASIC producets. For new applications, use CREATT, instead of CREATE ASCIL

CREATE ASCII creates a file using LIF ASCII format. LIF ASCII is a format used by older
HP computers and disk drives.

Syntax

file numbar of
(CREATE ASCH) specifier -"O_’. records >

iteral form of file specifier

" 5l file "
name
directory LIF protect volurie

path cade specifier
\ ; ‘))
HES or D03 files anly LF files only
Item Description Range
file specifier string expression (see drawing)
number of records | numeric expression, rounded to an integer 1 through (2% — 1)/256
directory path literal (see MASS STORAGE 1S)
file name literal depends on volume’s format (see
Glossary)

LIF protect code | literal; first two non-blank characters are > not allowed

significant
volume specifier literal (see MASS STORAGE 1S5)

Example Statements
CREATE ASCII "TEXT",100
CREATE ASCII "/Dir1/Dir2/AsciiFile",25
CREATE ASCII "C:\MYFILE.ASC",100

Details

CREATE ASCII creates a new ASCII file and directory entry on the mass storage media.
The name of the newly created ASCII file must be unique within its containing direciory.
CREATE ASCII does not open the new file; that is performed by the ASSIGN statement. In
the event of an error, no directory entry is made and the file is not created.

The physical records of an ASCII file have a fixed length of 256 bytes; logical records have
variable lengths that are antomatically determined when the OUTPUT, SAVE, or RE-SAVE
statements are nsed,

2-56 Keyword Dictionary

CREATE BDAT

CREATE BDAT

CREATE BDAT is supported for backward compatibility with older versions of other
HP BASIC products. For new applications, use CREATE instead of CREATE BDAT.

CREATE BDAT creates a file using LIF BDAT (Binary DATa) format. LIF BDAT is a
format used by older HP computers and disk drives,

Syntax
() 2 file ’() o] numbEr of |
CREATE BDAT spacifisr recorda
record
size
likgral form of file specifier:
" fite wf v
N rame o
directory LIF protect valurneg
path code spacifier
_Y"’"'"J - 4
-
HES or [0S files only LF files only
Item Description Range

file specifier

number of records

record size

directory path

file name

LIF protect code

volume specifier

string expression

numeric expression, rounded to an integer

numeric expression, rounded to next even
integer {except 1), which specifies
bytes/record; default = 256

literal
literal

literal; first two non-blank characters are
significant

string expression

Example Statements

CREATE BDAT
CREATE BDAT
CREATE BDAT
CREATE BDAT
CREATE BDAT

"File" ,Records,Rec_size
"George",48

"Protected<PC>" ,Length,128
Name$gVolume§ ,Bytes,1
"/Dirl/Dir2/BDATfile",25,128

(see drawing)

1 through
(230 — 769)/(record size)

1 through 65 534

(see MASS STORAGE 1S)
depends on volume’s format
(see Glossary)

> not allowed

(see MASS STORAGE IS)

Keyword Dictionary 2-57

CREATE BDAT

Details

CREATE BDAT creates a new BDAT file and directory entry on the mass storage media.
The name of the newly created BDAT file must be unique within its containing directory.
CREATE BDAT does not open the file; that is performed by ASSIGN. In the event of an
error, no directory entry is made and the file is not created.

A sector at the beginning of the file is reserved for system use. This sector cannot be directly
accessed by HP Iastrument BASIC programs.

2-58 Keyword Dictionary

CREATE DIR

CREATE DIR

CREATE DIR creates the specified directory.

Syntax

ftem

()! directory
CREATE DiR specifier _’f

lteral form of file specifier

...@ o) directory
1 nome

L—b directory _j

path

directory path:

voluime
specifier

2

i

narme A

R 3

DOS only () -

Description

directory » @__,,

Range

directory specifier
directory path

directory name

volume specifier

string expression
literal

literal

literal

Example Statements

CREATE DIR "WORK_DIR"
CREATE DIR "C:\DIR_1\DIR_2\MY_DIR"
CREATE DIR "Dir3/Dir4:,700"

Details

(see drawing)
{see drawing)

depends on volume’s format; 8
characters for DOS {shor file
name}; (see Glossary)

(see MASS STORAGE IS)

The name of the newly created directory must be unique within its parent directory.

If no directory path is included in the specifier for the new directory, the new directory is
created within the current working directory (the directory specified in the latest MASS
STORAGE IS statement).

Keyword Dictionary 2-59

CRT

CRT returns 1, the device selector of the CRT,

Syntax

. CRT

Example Statements
PRINTER IS CRT
ENTER CRT;Array$(*)

2-60 Keyword Dictionary

CSIZE

CSIZE

CSIZE sets the height and aspect ratio (width:height) of the character cell used by LABEL.

Syntax
{ csize }+] reigm]
LO__ Width/ ieight J
ratic
Ttem Description Range
height numeric expression; default = 5 —
width /height ratio | numeric expression; default = 0.6 —

Example Statements
CSIZE 10
CSIZE 5,0.6
CSIZE Height,Width/Height

Details

At power-on, RESET, and GINIT, the height is 5 graphic-display-units (GDUs), and the
aspect ratio is 0.6 (width = 3 GDUs}. A negative number for either parameter inverts the
character along the associated dimension.

The drawing below shows the relation between the character cell and a character.

Character in a Character Cell

Keyword Dictionary 2-61

DATA

DATA statements contain in-line data that is read by READ statements.

Syntax
{ Ve

©£ -]

DATA y
MUMEric a
T} constant i
L titeral -
‘b@ lizeral @—‘

Item Description : Range

numeric constant | numeric quantity expressed using numerals, and | —
optionally a sign, decimal poini, or exponent
notation

literal string constant composed of characters from the |~
keyboard

Example Statements
DATA 1,1.414,1.732,2
DATA wordl,word2,word3

DATA"ex-point(1)","quote{""}" ,"comma{,)"

Details

A program or subprogram can contain any number of DATA statements at any location.
When a program runs, the first item in the lowest numbered DATA statement is read by

the first READ statement encountered. When a subprogram is called, the location of the
next item to be read in the calling context is remembered in anticipation of returning from
the subprogram. Within the subprogram, the first item read is the first item in the lowest
numbered DATA statement within the subprogram. When program execution returns to the
calling context, the REAI) operations pick up where they left off in the DATA items.

A numeric constant must be read into a variable that can store the value it represents. The
computer cannot determine the intent of the programmer; although attempting to read a
string value into a numeric variable will generate an error, numeric constants will be read into
string variables with no complaint. In fact, the computer considers the contents of all DATA
statements to be literals, and processes items to be read into numeric variables with a function
similar to VAL. Error 32 results if the numeric data is not of the proper form (see VAL).

Unquoted literals must not contain quote marks (which delimit strings}, commas (which
delimit data items}, or exclamation marks {which indicate the start of a comment). Leading

2-62 Keyword Dictionary

DATA

and trailing blanks are deleted from unquoted Hterals. Fnclosing a literal in double quotes
enables you to include any punctuation you wish, including embedded double quotes, which
are represented by a set of two adjacent double quotes.

DATA "Say ""Helle"" to him." ! Embedded quotes.

DATA "Danger, power ON!' ! Space, comma, and ! in the data.

Keyword Dictionary 2-63

DATE

DATE converts a formatted date string into a numeric value (in seconds).

Syntax

Tiem

o i forrnatted date —-@—H

literal form of formatted dote

'—>®—> day P delimiter[¥ rmonth I delimiter

P vear —@*—-b-

Description

Range

formatied date
day

month

year

delimiter

string expression
integer constant

literal (lettercase ignored}

integer constant

any non-numeric character except the
negative (minus) sign

Example Statements
PRINT DATE("30 MAY 1987%)
Days=(DATE(Day1$)-DATE(Day2$)) DIV 86400

Details

(see drawing and texi)
1 through end-of-month

JAN, FTEB, MAR, APR, MAY,
JUN, JUL, AUG, SEP, OCT,
NOV, DEC

1900 through 2079

Specifying an invalid date, such as the thirty-first of February, will result in an error.

Leading blanks or non-numeric characters are ignored. ASCII spaces are recommended as
delimiters between the day, month and year. However, any non-alphanumeric character,
except the negative sign {minus sign), may be used as the delimiter.

2.64 Keyword Dictionary

DATES

DATES

DATES formats a number of seconds into a string representing the formatted date {DD MMM
YYYY).

Syntax
- o =1 seconds —P@—P’
Item l Description I Range
seconds THIMEric expression ~4.623 683 256 E-413 through

4.603 426 335 039 9 E+13

Example Statements
PRINT DATE$(TIMEDATE)
Day1$=DATE$ (Event1)

Details

The date returned is in the form: DD MMM YYYY, where DD is the day of the month,
MMM is the month mnemonic, and YYYY is the year.

The day is blank filled to two character positions. Single ASCI spaces delimit the day,
meonth, and year.

The first letter of the month is capitalized and the rest are lowercase characters.

Years less than the year (0 are expressed as negative years.

Keyword Dictionary 2-65

DEALLOCATE
DEALLOCATE deallocates memory space reserved by the ALLOCATE statement.

Syntax
variabie
(oeaocate)L ariat
Item k Description ’ Range
variable name iname of an array or string variabie any valid name

Example Statements
DEALLOCATE A$,B$,C$
DEALLOCATE Text$(*)
DEALLOCATE Array(*)

Details

Memory for ALLOCATId variables is managed as a stack. As a result, the memory used
for a particular variable might not become available as soon as it is DEALLOCATEJ.

For example, suppose you ALLOCATE memory for A, B, and C {in that order} and then
DEALLOCATE B. The memory associated with B is not available until you DEALLOCATE
C.

Strings and arrays must be deallocated completely. Dealiocation of ar array is requested by
the (%) specifier.

Attempting to DEALLOCATE a variable that is not allocated in the current confext results
in an error. When DEALLOCATE is executed from the keyboard, deallocation occurs within
the current context.

2-66 Keyword Dictionary

DEF FN

DEF FN

DEF I'N indicates the beginning of a function subprogram. It also indicates whether the
function is string or numeric and defines the formal parameter list.

Syntax

N function
‘ DEF FN e *
pararteter
fist

program
seqiment

numienc
RETURN expression
string

axpression
Sragram
segment
 FNEND
subprogram

(s)

Note: A user—defined function
may contain ony nuember of
RETURN statéements.

PrOGram
seqmant

NAME l

-

parameter
,

fat:

parameter

|
list (:)

[

required
parcmet@rs< INTEGER

—-—

numieric
name

1

s
*
St
¥

string @

name

/0 path
@ name

Keyword Dictiopary 2-67

DEF FN

Item Description Range
funchion name name of the user-defined function any valid name
nUmeric name name of a numeric variable any valid name
string name name of a string variable any valid name
[/O path name name assigned to a device, devices, or mass any valld rame (see ASSIGN)

storage file

program segment | any number of contiguous program lines not —
containing the beginning or end of a main
program or subprogram

Example Statements

970 ! main program here.
980 END

990 !

1000 DEF FlNew${String$)
1010 ! Additional statements
1020 RETURN Result$

1030 FNEND

Details

User-defined functions must appear affer the main program. The first line of the function
must be a DEF FN statement. The last line must be an FNEND statement. Comments after
the FNEND are considered to he part of the function.

Variables in a function’s formal parameter list may not be declared in COM or other
declaratory statements within the function. A user-defined furction may not contain any
SUB statements or DEF FN statements. User-defined functions can be called recursively and
may contain local variables. A unique labeled COM must be used if the local variables are to
preserve their values betweern invocations of the user-defined function.

The RETURN statement is important in a user-defined function. If the program actually
encounters an FNEND during execution (which can only happen if the RETURN is missing or
misplaced), error 5 is generated. The expression in the RETURN statement must be numeric
for numeric functions, and string for string functions. A string function is indicated by the
doliar sign suffix on the function name. If RETURN specifies a numeric expression, the value
returned by the function is always a real number, never an integer.

The purpose of & user-defined function is to compute a single value. While it is possible
to alter variables passed by reference and variables in COM, this can produce undesirable
side effects, and should be avoided. If more than one value needs to be passed back to the
program, SUB subprograms should be used.

2.-68 Keyword Dictionary

DEG

DEG

DEG selects degrees as the current angle mode (unit of measure for angles).

Syntax
DEG _

Example Statements
DEG

Details

Unless you set the angle mode to degrees, it is radians. HP Instrument BASIC sets the angle
mode to radians when you do one of the following:

w start HP Instrument BASIC
m load or enter a new program

w execnie SCRATCH, SCRATCH A, or SCRATCH C

Executing DEG sets the current angle mode to degrees. All functions that return an angle will
return an angle in degrees. All operations with parameters representing angles will interpret
the angle in degrees.

To set the angle mode to radians, use RAD.

A subprogram “inherits” the angle mode of the calling context. If the angle mode is changed
in a subprogram, the mode of the calling context is restored when execution returns to the
calling context.

Keyword Dictionary 2-69

DEL

DEL deletes one or more program lines from memory.

Syntax
. i
(DEL vy o I{ne‘a Wa'lui’iber
begqinning
line number ondng
ine labet
beginning
line label
Item Description Range

beginning line integer constant identifying a program line 1 through 32 766
number
beginning line label | name of a program line any valid nams
ending line number |integer constant identifying a program line I through 32 766
ending line label name of a program line any valid name

Example Commands

DEL 18
DEL Start.Last
DEL Sort,32000

Details

DEL cannot be executed while a program is running. If DEL is executed while a program is
paused, HP Instrument BASIC changes to the stopped state.

When a line is specified by a line label, the computer uses the lowest numbered line that has
the label. If the label does not exist, error 3 is generated. An attempt to delete a non-existent
program line is ignored when the line is specified by a line number. An error results if the
ending line number is less than the beginning line number. If only one line is specified, only
that line is deleted.

When deleting SUB and FN subprograms, the range of lines specified must include the
statements delimiting the beginning and ending of the subprogram (DEF FN and FNEND
for user-defined function subprograms; SUB and SUBEND for SUB subprograms), as well as
all comments foliowing the delimiting statement for the end of the subprogram. Contignous
subprograms may be deleted in one operation.

2-70 Keyword Dictionary

DELSUB

DELSUB

DELSUB deletes one or more subprograms or user-defined functions from memory.

Syntax
(Y«
= |
- \ ¥ Turot -
DELSUB P r >
TO END
subprogram
iame | .
Item Description } Range
function name name of a user-defined function any valid name
subprogram name |name of a SUB or CSUB subprogram any valid name

Example Statements
DELSUB FNTrim$
DELSUB Mysub
DELSUEB Process TG END
DELSUB Speciail,Special3

Details

Subprograms being deleted do not need to be contiguous in memory. The order of the names
in the deletion list does not have to agree with the order of the subprograms in memory. If
there are subprograms with the same name, the one oceurring first {lowest line number} is
deleted,

The lines deleted begin with the line delimiting the beginning of the subprogram (SUB or
DEF FN) and include the comments following the line delimiting the end of the subprogram
(SUBEND or FNEND). If TO END is included, all subprograms following the specified
subprograin are aiso deleted.

You cannot delete the following:
® busy subprograms {ones being executed)
m subprograms that are referenced by active ON-event CALL statements

If an error occurs while attempting to delete a subprogram, the subprogram is not deleted,
and neither are any subprograms listed to the right of that subprogram in the DELSUB
statement.

Keyward Dictionary 2.71

DET

DET returns the determinant of a matrix.

Syntax

DET r
L,@_‘ makrix
rame

Ttem I Description ' Range

matrix name narse of a square, two-dimensional numeric

array; defauli = (see text)

any valid name

Example Statements
Last_det=DET
PRINT DET{Matrix)

Details

If you do not specify a matrix, DET returns the determinant of the most recently inverted
matrix. This value is not affected by context switching. If no matrix has been inverted since
power-on, pre-run, SCRATCH or SCRATCH A, 0 is returned.

The determinant provides an indication of whether an inverse is valid. If the determinant of
a mafrix equals 0, then the matrix has no inverse. If the determinant is very small compared
with the elements of its matrix, then the Inverse may be invalid and should be checked.

2-72 Keyword Dictionary

bDiM

DIM dimensions and reserves memory for
a REAL numeric arrays
m sirings

m siring arrays

Syntax

@ Aurnerns ({
array nome]

Q OO0

+

@f 3=
U ‘_l_,@ r r:

bound
lower
bound
string f;\ _@__’, string
name No/ " iength
Y
[~
(ot UPDET string ‘@_,
bound tength
L lawer _’@j
bound
Iiem Description Range
numeric array name of a numeric array any valid name
narne
string name name of a string variable any valid name
lower bound integer constant; default = OPTION BASE {-32 767 through -+ 32 767 (see
value {0 or 1) “array” in Glogsary)
upper bound irnteger constant —32 767 through +32 767 (see
“array” in Glossary)
string length integer constant 1 ¢hrough 32 767

Example Statements
DIM String$[100] ,Name$(12) {32]
DIM Param(48,8,8,2,2,2)
DIM Array(-128:127,18)

Keyword Dictionary 2-73

DI

Details

A program can have any number of DIM statements. The same variable cannot be declared
twice within a program (variables declared in a subprogram are distinct from those declared
in a main program, except those declared in COM). The DIM statementis can appear
anywhere within a program, as long as they do not precede an OPTION BASE statement.
Dimensioning occurs at pre-run or subprogram entry time. Dynamic ren-time allocation of
memory is provided by the ALLOCATE statement.

No array can have more than six dimengions. Each dimension can have a maximuem of 32,767
elements.

The total number of variables is limited by the fact that the maximum memory usage for
all variables—numeric and string—within any context is 16,777,215 bytes (or limited by the
amount of available memory, whichever is less}.

All numeric arrays declared in a DIM statement are REAL, and each element of type REAL
requires 8 bytes of storage. A string requires one byte of storage per character, plus two bytes
of overhead.

An undeclared array is given as many dimensions as it has subscripts in its lowest-numbered
occurrence. Fach dimension of an undeclared array has an upper bound of ten. Space for
these elements is reserved whether you use them or not. Any time a lower bound is not
specified, it defaults to the OPTION BASE value.

2-74 Keyword Dictionary

DISABLE

DISABLE

DISABLE disables all event-initiated branches currently defined, except for branches defined

by these statements:
s ON ERROR
» ON TIMECGUT

Syntax

Example Statements
DISABLE

Keyword Dictiocnary 2-75

DISABLE INTR

DISABLE INTR disables interrupts from an interface by turning off the interrupt-generating
mechanism on the interface.

Syntax

(DISABLE INTR).. TS

select code

Example Statements
DISABLE INTR 7
DISABLE INTR Isc

2-76 Keyword Dictionary

Disp

DISP

DISP prints the specified items on the display line. The display line is a single line near the
bottom of the alpha window.

Syntax

(oise)]
usa)-f T2 o

(oise) -
image line . j
USING nurmber
image line
wnage items tabied
image
specifier
(P
oS
»e 9tr"mgf ;:
expression h
display iterns < "
- string 4 =
array name
e numerfc > -)
expression frailing punctuation
not allowd with USING
Armeric
s o
array name 152
\ TAB 0 column —-)-@—‘ tab function not abowed with USING

lterai form of image specifier

inage .]._ 1]
specitier list -
repeat image
factor specifisr list

Keyword Dictionary 2-77

Disp

image specifier list

4

I

® 0O

v

3O

G

9
E
A

®

O

¢

0

N\

)

ol

WA
repﬂak
factor o

repedt _J ES7

factor

f
0089] ||]]]]]]

re;reot

fahtor (—

- repeat J ESZZZ

factor

Radix specifier cannot

be used without o
@‘ digit specifier

repeut
factor

®

repant
factor

factor

©

repeat
factar

repeat
factor

)
]
=]]
J
J

¢ L £ £ L]

3

literal " K " :

2-78 Keyword Dictionary

Ttem

Description

DISP

Bange

image line nurnber

image line labhel
image specifier
string array name

numeric array
aine

colamn
image spectfier list
repeat factor

Hteral

integer constant identifying an IMAGE
statemens

name identifying an IMAGE statement
string expression
name of a string array

name of a nameric array

numeric expression, rounded to an integer
literal
integer constant

string constant composed of characters entered
from the keyboard

Example Statements

DISP Prompt$;

DISP TAB(5),Firat,TAB(20),Second

DISP

DISP Name$,Id;Code

DISP USING Form3:Item(1),Item(2)
DISP USING "5Z.DD";Money

Details

Standard Numeric Format

1 through 32 766

any valid name

| (see diagram)

any valid name

any valid name

1 through screenwidth
(see diagram)
1 through 32 787

quote mark not allowed

The standard numeric format depends on the value of the number being displayed. If the
absolute value of the number is greater than or equal to 1F-4 and less than 1E+6, it is
rounded to 12 digits and displayed in floating point notation. If it is not within these limits,
it is displayed in scientific notation. The standard numeric format is used unless USING is
selected and may be specified by using K in an image specifier.

Automatic End-Of-Line Sequence

After the display list is exhausted, an End-Of-Line (EOL) sequence is sent to the display line,
unless it is suppressed by trailing punctuation or a pound-sign (#) image specifier.

Keyword Dictionary 2.79

DISP

Control Codes

Some ASCII control codes have a special effect in DISP statements:

Character Keysiroke Name Action

CHR3{T) CTRL-G bell Sound the beeper

CHRS${&) CTRIL-1II backspace Move the cursor back one
character.

CHR3(12) CTRL-L form-feed Clear the display line.

CHRI(13) CTRIL-M carriage-return | Move the cursor to column 1.
The next character sent to
the display clears the display
line, unless it is a
carriage-return.

Arrays

Entire arrays may be displayed using the asterisk gpecifier. Each element in an array is
treated as a separate item by the DISP statement, as if the items were listed separately,
separated by the punctuation following the array specifier. If no punctation follows the array
specifier, a comma is assumed. The array is output in row major order (rightmost subscript
varies fastest).

Display without USING

If DISP is used without USING, the punctuatior following an ifem determines the width

of the item’s display field; a semicolon selects the compact field, and a comma selects the
default display field. When the display item is an array with the asterisk array specifier, each
array element is considered a separate display item. Any trailing punctation will suppress the
automatic EQL sequence, in addition to selecting the display field to be used for the display
item preceding it.

The compact field is slightly different for nwmeric and string items. Numeric items are
displayed with one trailing blank. String items are displayed with no leading or trailing
blanks.

The defanlt display field displays items with trailing blanks to fill to the beginning of the next
10-character field.

Numeric data is displayed with one leading biank if the number is positive, or with a minus
sign if the number is negative, whether in compact or default field.

In the TAB function, a column parameter less than one is treated as one. A column
parameter greater than the screen width {in characters) is freated as equal to the screen
width.

2-80 Keyword Dictionary

DISP

Display with USING

When the computer executes a DISP USING statement, it reads the image specifier, acting
on each field specifier (field specifiers are separated from each other by commas} as it is
encountered. If nothing is required from the display items, the field specifier is acted upon
without accessing the display list. When the field specifier requires characters, it accesses the
next item in the display list, using the entire item. Each element in an array is considered a
separate item.

The processing of image specifiers stops when a specifier is encountered that has no matching
display item {and the specifier requires a display specifier). If the image specifiers are
exhausied before the display items, they are reused, starting at the beginning.

If & numeric item requires more decimal places to the left of the decimal point than aze
provided by the field specifier, an error is generated. A minus sign takes a digit place if M
or §is not used, and can generate unexpected overfiows of the image field. If the number
cortains more digits to the right of the decimal point than specified, it is rounded to fit the
specifier.

If a string is longer than the field specifier, it is truncated, and the rightmost characters are
lost. If it is shorter than the specifier, frailing blanks are used to fill out the fieid.

Keyword Dictionary 2.81

DISP

Effects of the image specifiers on the DISP statement are shown in the following table:

hnage Meaning
Specifier
K Compaci fleld. Displays a number or string in standard form with no leading or trailing
blanks.
-K Same as K.
H Similar to K, except the number is displayed using the European number format {comma
radix). (Requires I0.)
—H | Same as H. {Requires 10.)
S Displays the number’s sign {+ or —).
M Displays ¢he number’s sign if negative, a biank if positive.
b Displays one digit character. A leading rero is repiaced by a blank. If the number is
negative and no sign image 1s specified,; the minus sign will occupy a leading digit position.
If a sign is displayed, it will “Hoat” to the left of the left-most digit.
Z Same as D, except that leading rzeros are displayed.
* Same as Z, except that asterisks are displayed instead of leading zeros. {Requires 10.)
Iisplays a decimal-point radix indicator.
R Displays & comma radix indicator {European radix). (Requires 1G.)
E Displays an E, a sign, and a two-digit exponent.
ESZ | Displays an E, a sign, and a one-digit expcnent.
ESZ7Z | 5ame as E.
ESZZZ | Displays an E, & sign, and a three-digit exponent.
A Displays a string character. Trailing blanks are output if the number of characters specified

is greater than the number available in the corresponding string. If the image specifier is
exhausted before the corresponding string, the remaining characters are ignored.

2-82 Keyword Dictionary

DISP

Image Meaning
Specifier
X Displays & blank.
fiteral | Displays the characters contained in the literal.
B Displays the character represented by one byte of data. This is similar to the CHR$

W

%

function. The number is rounded to an INTEGER, and the least-significant byte is sent. If
the pumber is greater than 32 767, then 255 is used; if the number is less than —32 768,
then € is used.

Displays two characters represented by the two bytes of a 16-bit, two's-complement integer.
The corresponding numeric item is rounded to an INTEGER. If it is greater than 32 767,
then 32 767 1s used; if it is less than —32 768, then —32 768 is used. The most-significant
byte is sent first.

Sarne as W. (Requires 10.)

Suppresses the autematic output of an EOL (End-Of-Line) sequence following the last
display item.

Ignored in DISP images.

Changes the automatic EOL sequence that normally follows the last display item to a single
carriage-return. (Requires 10.)

Changes the EOL automatic sequence that normally follows the last display item to a single
line-feed. (Requires 10).)

Sends a carriage-return and a line-feed to the display line.

Same as /.

Sends a form-feed to the display line.

Keyword Dictianéry 2-83

DIV

DIV returns the integer portion of the guotient of the dividend and the divisor.

Syntax
i ciivicdand DIV diviser |
Item Description I Range
dividend numeric expression e -
divisor NUMeric eXpressicn not equal to 0

Example Statements
Quotient=Dividend DIV Divisor

PRINT "Hours =";Minutes DIV 80
Details

DIV returns a REAL value unless both arguments are INTEGER. In the latter example, the
returned value is INTEGER.

2.-84 Keyword Dictionary

DOT

DOT

DOT returns the inner (dot) product of two numeric vectors.

Syntax
@. o vector vector
narne fame
Item t Description | Range
vector name E name of a one-dimensional nameric array i any valid name

Example Statements
Res=DO0T{(Vecl,Vec?2)
PRINT DOT(4,B)

Details

The dot product is calculated by multiplying corresponding elements of the two vectors and
then summing the products. The two vectors must be the same current size. If both vectors
are INTEGER, the product will be an INTEGER. Otherwise, the product will be of type
REAL.

Keyword Dictionary 2-85

DRAW

DRAW draws a line from the pen’s current position to the specified X and Y coordinate
position using the current line type and pen number.

Syntax
DRAW % ecoordinats -PO—V y coordinate |-=|
Ttem l Deseription } Rauge
% coordinate numeric expression, in current uniss
y coordinate numeric expression, in current units

Example Statements
DRAW 10,90
DRAW Next_ x,Next_y

Details
The X and Y coordinate information is interpreted according to the current unit-of-measure.

A DRAW to the current position generates a point. DRAW updates the logical pen position
at the completion of the DRAW statement and leaves the pen down. The line is clipped at the
current clipping boundazy.

If wone of the line is inside the current clipping limits, the pen is not moved, but the logical
pen position is updated.

Graphics Transformations

The output of DRAW is affected by only these graphics transformations:
m scaling specified by WINDOW

w scaling specified by SHOW

m rotations specified by PIVOT

2-86 Keyword Dictionary

DROUND

DROUND

DROUND rounds a numeric expression to the specified number of digits. If the specified
number of digits is greater than 13, no rounding takes place. 1f the number of digits specified
is less than 1, zero is returned.

Syntax
. . - number
DROUND orgument—*O—D' of digits —>®—>
ltem I Description l Range
argument NGIMErIc eXPression o
number of digits numeric expression, rounded to an integer —

Example Statements
Test_real=DROUND{True_real,12)
PRINT "Approx. Volts =0 :DROUND{Volts,3)

Keyword Dictionary 2-87

DUMP

DUMP ALPHA copies the contents of the alphanumeric display to the default printer
specified in the Windows Control Panel.

DUMP GRAPHICS copies the contents of the graphics display to the default printer gpecified
in the Windows Control Panel. DUMP GRAPHICS will work with any printer that sapports
Windows graphics output.

Syntax

Ttem

(owe)

Description

Range

source device
selector

destination device
selector

rumeric expression, rounded to an integer;
default = last CRT plotting device

rumeric expression, rounded to an integer;

B TS

defauit = DUMP DEVICE IS device

Example Statementis

DUMP ALPHA

DUMP GRAPHICS

Details

{see Glossary)

external interfaces and
windows only (zee Glossary)

To set the size of the output produced by DUMP GRAPHICS, use GESCAPE 39.

2-88 Keyword Dictiocnary

DVAL

DVAL

DVAL converts a binary, octal, decimal, or hexadecimal character representation {0 a numeric
value.

Syntax
N e O I O
Item l Description ! Range
string argument string expression, containing digits valid for the | (see tables)
specified base
radix numeric expression, rounded to an integer 2,8, 10, 0r 16

Example Statements
Humber=DVAL(String$,Radix)
PRINT DVAL("FF5200",18)

Details

The radix is a numeric expression that will be rounded to an integer and must evaluaie to 2,
8, 10, or 16.

The string expression must contain only the characters allowed for the particular number base
indicated by the radix. ASCII spaces are not allowed.

Binary strings are presumed to be in two’s-complement form. If all 32 digits are specified and
the leading digit is a 1, the returned value is negative.

Octal strings are presumed $o be in the octal representation of two’s-compiement form. If all
11 digits are specified, and the leading digit is a 2 or & 3, the returned value is negative.

Decimal strings containing a leading minus sign will return & negative value.

Hex strings are presumed to be in the hex representation of the two's-complement binary
form. The letters A through F may be specified in either uppercase or lowercase letters. If all
8 digits are specified and the leading digit is 8 through I', the returned value is negative.

Radix Base String Range String Length
2 binary 0 through 11111118323 1E12E11221203110201118 1 to 32 characters
8 octal G through 37777777777 1 to 11 characters
10 decimal -2 147 483 648 through 2 147 483 647 1 to 11 characters
18 hexadecimal 0 through FFFFFFTF 1 to 8 characters

Keyword Dictionary 2-89

DVAL

Radix Legal Characters Comments

2 -+, 0,1 e

8 +,0,1,2,3,4,5.6,7 Range restricts the leading character.
Sign, if used, must be a leading
character.

10 o-00,1,2,3,4.5 6,789 Sign, if used, must be a leading
character.

16 +,0,1,2,3,4,5,6,7.8,9, A/la=10,B/b=11,C/c=12,D/d =

ABCDETF abcdef 13, Efe =14, F/f= 15

2.9¢ Keyword Dictionary

DVALS

DVALS

DVALS converts a numeric value to a string of binary, octal, decimal, or hexadecimal digits.

Syntax
O PO o PO
Item l Description t Range
“32-bit” argument | numeric expression, rounded to an integer —-231 ¢hrough 231 —1
radix nwmeric expression, rounded to an integer 2,8, 10,01 16

Example Statements
String$=DVAL$ (Number,Radix)
PRINT DVAL$(Count MOD 256,2)

Details
The rounded argument must be a value that can be expressed (in binary) using 32 bits or less,

The radix must evaluate to be 2, 8, 10, or 16—representing binary, octal, decimal, or
hexadecimal notation, respectively.

If the radix is 2, the returned string is in two’s-complement form and contains 32 characters.
If the numeric expression is negative, the leading digit will be 1. If the value is zero or
positive, there will be leading zeros.

If the radix is 8, the returned string is the octal representation of the two’s-complement binary
form and contains 11 digits. Negative values return a leading digit of 2 or 3.

If the radix is 10, the returned string contains 11 characters. Leading zeros are added fo the
string if necessary. Negative values have a leading minus sign.

If the radix is 16, the returned string is the hexadecimal representation of the two’s-
complement binary form and contains 8 characters. Negative values return with the leading
digit in the range 8 through F.

Keyword Dictionary 2-91

DVALS$

Radix Base Range of Returned String String Length

2 binary GGO000COG0000000006G0000G0G00G00 32 characters
through
EERERNRRRIRRRRNE RS REIRERET NI

8 octal (0000000000 through 3TTTITTTTIT 11 characters

10 decimal —2 147 483 648 through 11 characters
2 147 483 647

16 hexadecimai G0G00000 through FFIFFFEFF 8 characters

2-92 Keyword Dictionary

EDGE

EDGE

EDGE is a secondary keyword used to draw a border around the regions specified by these
graphics keywords:

s [PLOT

» PLOT

s POLYGON

« RECTANGLE
« RPLOT

Keyword Dictionary 2-93

EDIT

EDIT activates the edit window, allowing you to enter a new program or modify a program
already in memory.

Syntax
(EoiT J‘ 1
ling
nurmber —J I "
increfent =
iine
label
Ttem Description Range
lire number integer constant identifying program line; 1 through 32 766
default (see Details)
line label name of a program line any valid name
increment integer constant; default = 10 1 through 32 766

Example Statements

EDIT
EDIT Label2
EDIT 1000,5

Details

If the program was changed while paused, pressing will cause an error. Modifying a
program moves it fo the stopped state, making it impossible {o continue.

EDIT Without Parameters

If no program is currently in the computer, the edit mode is entered at line 10, and the line
numbers are incremented by 10 as each new line is stored. If a program is in the computer,
the line at which the editor enters the program is dependent upon recent history. If an error
has paused program execution, the editor enters the program at the line flagged by the error
message. Otherwise, the editor enters the program at the line most recently edited (or the
beginning of the program after a LOAD operation).

2-84 Keyword Dictionary

EDIT

EDIT With Parameters

If no pregram is in the computer, a line number (not a label) must be used to specify the
heginning line for the program. The increment will determine the interval between line
numbers. If a program is in the computer, any increment provided is not used until lines are
added to the program. If the line specified is between two existing lines, the lowest-numbered
line greater than the specified line is used. If & line label is used to specify a line, the
lowest-numbered line with that label is used. If the label cannot be found, an error is
generated.

Keyword Dictionary 2-95

ELSE
See IF ... THEN.

2-96 Keyword Dictionary

ENABLE

ENABLE
ENABLE reenables all event-initiated branches that were suspended by DISABLE.

Syntax

EMaBLE

Example Statements
ENABLE,

Keyword Dictionary 2-97

ENABLE INTR

ENABLE INTR enables the specified interface to generate an interrupt which can cause

event-initiated branches.

Syntax
) 2 interface |
(ENABLE INTR select code J -
bit
' mask
Ttem i Description Range
nterface select numeric expression, rounded to an integer 5, and 7 through 31
code
bit mask numeric expression, rounded to an integer —32 T68 through +32 767

Example Statments
ENABLE INTR 7
ENABLE INTR Isc;Mask

Details

If 2 bit mask is specified, its value is stored in the interface’s interrupt-enahble register.

H no bit mask is specified, the previous bit mask for the select code is restored. A bit mask of

all zeros is used when there is no previcus bit mask.

2-98 Keyword Dictionary

END

END

END marks the end of the main program. Subprograms (if any) follow the END statement.

Example Statements
END

Syntax

END

Details

END must be the last statement {other than comments) of a main program. Only one END
statement is allowed in a program. Program execution may also be terminated with a STOP
statement, and multiple STOP statements are allowed. ENID terminates program execution,
stops any eveni-initiated branches, and clears any unserviced event-initiated branches.
CONTINUE is not allowed after an END statement.

Subroutines used by the main program must be located before the END statement.
Subprograms and user-defined functions must be located after the END statement.

Keyword Dictionary 2-99

END IF
See IF ... THEN.

2-100 Keyword Dictionary

END LCOP

END LOOP
See LOOP.

Keyword Dictionary 2-101

END SELECT
See SELECT ... CASE.

2-102 Keyword Dictionary

END WHILE

END WHILE
See WHILE.

Keyword Dictionary 2-103

ENTER

ENTIR is used to input data from a specified source and assign the values entered to
variables.

Syntax

<ENTER }—l" SOUNCE T]
. image erter
USING Hems ! (:) itermns e

2-104 Keyword Dictionary

ENTER

o ; . . .
Exponded dicgram source image ftems

A
c N e

] /0 path "]
ENTER —»@ o po y ’l
record . image line
A ber USING rizrmber
o device - image line
selectar iahel
ey sSauree 4 t Y - image
string nome NES o specifier
J—
subsoript]

-)
S

;e
A S
] PHITTIETIC].’_1
name A ; WL
enter . subscript —I—D®—>
tams
4 \ J
())

\ siring q\ P
AT
L,@_’begmnind @_,
position
anding
posttion
substring
tength

literat forem of #nage specifier

image] W
spacifier dist -
repaat FAgE
factar specifier st

Keyword Dictionary 2-105

ENTER

imoge specifier list

»

|

®® 0O

¥

)

G

0

c

®OE

Y

b

®0

B

®

- repeat j

factar

°0

factor

2
repeat l
-
factor
g (BPEOE }

o

—‘_TEE

e
repeat J
facter

RBadix specifier cannot
be used without 4
digit specifier

l ' ‘ % X Y ¥ ¥ 9 9 A ¥ N

ESZ

repeat

h:

repaat
Tactor

v

2-1068 Keyword Dictionary

titeral

L factor J i

L ,
G :_\u

>/ -
G

Ly .
e

fo | .
=y °

ENTER

Item Description Range
I/0 path name name assigned to a device, devices, mass any valid name {see ASSIGN)
storage file, or buffer

record number numeric expression, rounded 10 an integer 1 through 2% —1

device selector numeric expression, rounded o an integer (see Glossary)

source string name | name of a siring variable any valid name

subscript numerie expression, rounded to an integer —32 767 through +32 767 (see
“array” in Glossary)

image line number |integer constant identifying an IMAGE i through 32 766

statement

image line labet name identifying an IMAGE statement any valid name

image specifier string expression (see drawing)

numeric name name of a numeric variable any vaild name

string name name of a string variable any valid name

beginning position |numeric expression, rounded to an integer I through 32 767 (see “substring”
in Glossary)

ending position numeric expression, rounded to an integer (0 through 32 767 (see “substring”
in Glossary)

substring length numeric expression, rounded to an integer 0 through 32 767 (see “substring”
in Glossary)

image specifier list | literal (see next drawing)

repeat factor integer consbant 1 through 32 767

literal string constant composed of characters from | quote mark not allowed

the keyboard, including those generated
using the ANY CHAR key

Example Statements
ENTER 705;Number,String$
ENTER Device;X;Y;Z
ENTER Command$:Parameter
ENTER @File;Array(*)
ENTER @Random,Record USING 20;Text$(Line)
EXTER @Source USING Fmt5;Item(1),Item(2),ltem(3)

Keyword Dictionary 2-107

ENTER

Details

The Number Builder

If the data being received is ASCII and the associated variable is numeric, a number builder i
used to create a numeric quantity from the ASCII representation. The number builder ignores
all leading non-nuwmeric characters, ignores all blanks, and terminates on the first non-numeric
character, or the first character received with EOI true. {Numeric characters are 0 through

9, +, -, decimal point, e, and E, in a meaningful numeric order.} If the number cannot be
converted to the type of the associated variable, an error is generated. If more digits are
received than can be stored in a variable of type REAL, the rightmost digits are lost, but any
exponent will be built correctly. Overfiow oceurs only if the exporent overflows.

Arrays

Entire arrays may be entered by using the asterisk specifier. Each element in an array is
treated as an item by the ENTER statement, as if the elements were Lsted separately. The
array is filled in row major order (rightmost subscript varies fastest).

Files as Source

If an 1/O path has been assigned to a file, the file may be read with ENTER statements. The
attributes specified in the ASSIGN statement are used only if the file is a BDAT or DOS file.
Data read from a LIF ASCIH file (a file created using CREATE ASCII} is always in ASCII
format (i.e., vou cannot use ENTER..USING); however, you can enter the data into a string
variable, and then use ENTER.. USING from the string variable. Data read from a BDAT

file is considered to be in internal representation with FORMAT OT'F, and is read as ASCII
characters with FORMAT ON.

Serial access is available for ASCII, BDAT, and DOS files. Random access is available for
BDAT files. The file pointer is important to both serial and random access. The file pointer is
set to the beginning of the file when the file is opened by an ASSIGN. The file pointer always
points to the next byte available for ENTER operations.

Random access uses the record rumber parameter to read items from a specific location in a
file. The record specified must be before the end-of-file pointer. The ENTER begins at the
beginning of the specified record.

It is recommended that random and serial access to the same file not be mixed. Also, data
should be entered into variables of the same type as those used to output it {e.g. string for
string, REAL for REAL, etc.)

2-108 Keyword Dictionary

ENTER

Devices as Source

An I/O path name or a device selector may be used to ENTER from a device. If a device
selector is used, the default system attributes are used (see ASSIGN). If an 1/O path name is
used, the ASSIGN statement determines the attributes used.

If FORMAT ON is the current attribute, the items are read as ASCIL If FORMAT OFT

is the current attribute, items are read from the device in the computer’s internal format.
Two bytes are read for each INTEGER and eight bytes are read for each REAL. Each string
entered consists of a four-byte header containing the length of the string, followed by the
actual string characters. The string must contain an even number of characters; if the length
is odd, an extra byte is entered to give alignment on the word boundary.

Strings as Source

If a string name is used as the source, the string is treated similarly to a file. However, there
is no file pointer; each ENTER begins at the beginning of the string, and reads serially within
the string.

ENTER with USING

When the computer executes an ENTER USING statement, it reads the image specifier,
acting on each field specifier (field specifiers are separated from each other by commas) as

it is encountered. If no variable is required for the field specifier, the field specifier is acted
upon without referencing the enfer items. When the field specifier references a variable, bytes
are entered and used to create a value for the next item in the eater list. Fach element in an
array is considered & separate item.

The processing of image specifiers stops when a specifier is encountered that has no matching
enter item. If the image specifiers are exhausted before the enter items, the specifiers are
reused, starting at the beginning of the specifier list.

Entry into a string variable always terminates when the dimensioned length of the string is
reached. If more variables remain in the enter list when this happens, the next character
received is associated with the next item in the list.

When USING is specified, all data is interpreted as ASCII characters. FORMAT ON is always
assumed with USING, regardless of any attempt to specifv FORMAT OFF.

ENTER with USING cannot be used to enter data from LIF ASCII files (files create by
CREATE ASCIL Instead, enter the item(s) into a string variable, and then use ENTER with
USING to enter the jtem{s) from the string variable. For instance, use ENTER @File;String$
then ENTER String$ USING "54,X,5DD"; Str2$,Number.

Keyword Dictionary 2-109

ENTER

Effects of the image specifiers on the ENTER statement are shown in the following table:

Image Meaning
Specifier
K Freefield Entry. Numeric Entered characters are sent to the number builder. Leading
nen-numeric characters are ignored. All blanks are ignored. ‘Trailing non-numeric
characters and characters sent with EOI true are delimiters. Numeric characters
include digits, decimal point, -+, -, ¢, and E when their order is meaningful.
String Entered characters are placed in the string. Carriage-reiurn not immediately
followed by line-feed is entered into the string. Entry to a string terminates on
CR/LF, LF, a character received with EOI true, or when the dimensioned length of
the string is reached.
~K Like K except that LF is entered into a string, and thus CR/LF and LF do not
terminate the entry.
H Like K, except that the European number format is used. Thus, a comma is the radix
indicator and a period is a terminator for a numeric item. (Requires 10.)
-H Same as —K for strings; same as II for numbers. {Requires 10}
5 Same action as D.
M Same action as D.
b Demands a character. Non-numerics are accepted to fill the character count. Blanks
are ignored, other non-numeries are delimiters.
Z Same action as D.
* Sarae action as D. {Requires 10.}
Sare action as D.
R Like D, i demands a character. When R is used in a numeric image, it direcis the
number builder to use the European number format. Thus, a comma is the radix
indicator and a period is a terminator for the numeric item. (Requires 10.)
E Same action as 4D,
ESZ Same action as 3D.

2-110 Keyword Dictionary

ENTER

Tinage
Specifier

Meaning

ES7Z7
ERZZZ
X
literal
B
W

Y

%

e

=

Same action as 41).

Same action as BID.

Skips a character.

Skips one character for each character in the literal.
Demands one byte. The byte becomes a numeric quantity,

Demands one 16-bit word, which is interpreted as a 16-bit, two's-complement integer.
If either an /O path name with the BYTE attribute or a device selector is used to
aceess an &bit interface, two bytes will be entered; the most-significant byte is entered
first. If an I/O path name with the BYTE atfribute is used to access a 16-bit
interface, the BYTE attribute is overridden and one word is entered in a single
operation. If an I/O path name with the WORD attribute is used to access a 16-bit
interface, one byte is entered and ignored when necessary to achieve alignment on a
word boundary. If the source is a file, string variable, or buffer, the WORD attribute is
ignored and all data are entered as bytes; however, one byte will be entered and
ignored when necessary to achieve alignment on a word boundary,

Like W, except that pad bytes are never entered to achieve word alignment. Il an 1/0O
path name with the BYTE is used to access a 16-bit interface, the BY'TE attribute is
not overridden (as with W specifier above). (Requires 10.}

Statement is terminated when the last ENTER item is terminated. FEOI and line-feed
are item terminators, and early termination is not allowed.

Like #, except that an END indication (such as EQI or end-of-file) is an immediate
statement terminator. Otherwise, no statement terminator is required. Early
termination is allowed if the current item is satisfied.

Specifies that an END indication is required with the last character of the last item to
terminate the ENTER statement. Line-feeds are not statement terminators. Line-feed
is an item ferminator unless that function is suppressed by —K or ~H. (Reguires 10.)

Specifies that a line-feed terminator is required as the last character of the last item to
terminate the statement. EOI is ignored, and other END indications, such as EOF or
end-of-data, cause an error if encountered before the line-feed. {Requires 10)

Demands a new field; skips all characters to the next line-feed. EOI is ignored.
Ignored for ENTER.
Ignored for ENTER.

ENTER Statement Termination

A simple ENTER statement (one without USING) expects to give values to all the variables
in the enter list and then receive a statement terminator. A statement terminator is an EOI, a
line-feed received at the end of the last variable (or within 256 characters after the end of the
last variable), an end-of-data indication, or an end-of-file. If & statement terminator is received
before all the variables are satisfied, or no terminator is received within 256 bytes after the
last variable is satisfied, an error occurs. The terminator requirements can be altered by using

images.

Keyword Dictionary 2-111

ENTER

An ENTER statement with USING, but without a % or # image specifier, is different from
a simple ENTER in one respect. EOI is not treated as a statement terminator upless it
occurs on or after the last variable. Thus, EQI is treated like a line-feed and can be used to
terminate entry into each variable,

An ENTER statement with USING that specifies a # image requires no statement terminator
other than a satisfied enter list. EOT and line feed end the entry into individual variables. The
ENTER statement terminates when the variable list has been satisfied.

An ENTER statement with USING that specifies a % image allows EOT as a statement
terminator. Like the # specifier, no special terminator is required. Unlike the # specifier, if
an EOI is received, it is treated as an immediate statement terminator. If the EQI occurs at a
normat boundary between items, the ENTER statement terminates without error and leaves
the value of any remaining variables unchanged.

When entering FORMAT ON text into string variables, care should be taken to avoid
unexpected interactions between terminating on dimensioned string length and termination on
ine feeds in the text. It is recommended that the string variable be dimensioned at least two
characters longer than the text if it will be terminated by a carriage return/line feed.

2-112 Keyword Dictionary

EOL

EOL
See ASSIGN and PRINTER IS statements.

Keyword Dictionary 2-113

ERRL

ERRL returns a value of 1 if the most recent error occurred in the specified line; otherwise, it
returns 0.

Syntax
: -
tire
number
tire
labet
Ttem Description Range

line number integer constant 1 through 32 766
line lahel name of a program line any valid name

Example Statements
IF ERRL(220) THEN Parse_error
IF ¥0T ERRL{Parameters) TEEN Other

Details

The specified line must be in the same context as the TRRL function, or an error will occur.

Data Communications

This function returns 0 for all data communications errors.

2-114 Keyword Dictionary

ERRLN

ERRLN

ERRLN retarns the number of the program line on which the most recent error occurred. If
no error has occurred, this function returns a value of 0.

Syntax

Example Statements
Bad_line=ERRLN
IF ERRLN¥=240 THEN GOSUB Fix_240

Details

ERRLN will return 0 if no error has occurred since one of these events:
® power-on

B prerun

s SCRATCH

w SCRATCH A

s LOAD

» GET

Keyword Dictionary 2-115

ERRMS

ERRMS$ returns the text of the error message associated with the most recent program
execition error.

Syntax

Example Statements
PRINT ERRM$
Em$=FRRM$
ENTER Em$;Error_num,Error.line

Details

The line number and error number refurned in the ERRMS string are the same as those used
by ERRN and ERRL.

ERRMS will return the null string if no error has occurred since one of these events:
R pOWer-on

m prerun

n SCRATCH

m SCRATCH A

» LOAD

s GET

2-116 Keyword Dictionary

ERRN

ERRN

ERRN returns the number of the most recent program execution error. If no error has
occurred, a value of 0 is refurned.

Syntax

Exampie Statements
IF ERRN=8C THEE Disc.out
DISP "Error Number = *;ERRN

Details
CLEAR ERROR resets ERRN to 0.

Keyword Dictionary 2-117

ERROR
See OFF ERROR and ON ERROR.

2-118 Keyword Dictionary

EXIT IF

. EXITF
See LOOP.

Keyword Dictionary 2-119

EXOR

EXOR zeturns a 1 or & 0 based on the logical exclusive OR of its arguments.

Syntax

nymeric numeric
i . EXOR O
expression EXOTBESION

Example Statements
Ok=First_pass EXOR 0ld_data
IF 4 EXOR Flag THEN Exit

Details

A non-zero value (positive or negative) is treated as a logical 1; only a zero is treated as a
logical 0.

The EXOR function is summarized in this table.

AlB AFXOR B
¢)
G |1 i
|0 H
[N 0

2-120 Keyword Dictionary

EXP

EXP
EXP raises e to the power of the argument. Internally, Napilerian e=2.718 281 828 459 05.
Syntax
. EXP 0 argument —*@—H
Itemn Description/Defanlt Range
Restrictions
argument numeric expression ~T08.396 418 532 264 through

Example Statements

Y=EXP{-X"2/2)

PRINT “e to the';Z;"=":EXP{(Z)

+709.782 712 893 383 8 for
INTEGER and REAL arguments

Keyword Dictionary 2-121

FILL

FILL is a secondary keyword used to create shading with these graphics keywords:
w [PLOT

w PLOT

n POLYGON

» RECTANGLE

m RPLOT

2-122 Keyword Dictionary

FN

FN

I'N transfers program execution to the specified user-defined funetion and may pass items to
the function. The value returned hy the function is used in place of the fanction call when
evaluating the statement containing the function call.

Syntax

N function
(FN A name

pass
pararmstars

Work

pass poraméters:
nY
l]
LNt N
@ P
TAEA name U

variable

Passed by ﬁefereﬂce?

Fossed by Volue 4,

variabig

v
(?

fame I F 3

string or nurneric
array element

substring L

|

literal @———-—

siring expresmions o

] nuMeric expressions

Keyword Dictionary 2-123

FN

Item Description Bange
function name name of a user-defined function any valid name
1/0 path name name assigned to a device, devices, or mass | any valid name (see ASSIGN)

storage file

variable name name of a numeric or string variable any vaild name

substring string expression containing substring (see Glossary)
rotation

literal string constant composed of characters from | —

the keyboard, including those generated
using the ANY CHAR key

Example Statements
PRINT X;FNChange(X)
Final$=FNStrip$(First§)
Parameter=FNProcess(Reference, {Value) ,@Path)

R=FNTrans (Item(Start+0ffset),Lookup(*))

Details

A user-defined function may be invoked as part of a stored program line or as part of a
statement executed from the keyboard. If you type the function name on the command

line and then press (ENTER) or (Return), the value returned by the function is displayed. The
dollar sign suffix indicates that the returned value will be a string. User-defined functions are
created with the DEF FN statement.

The pass parameters must be of the same type (numeric or string) as the corresponding
parameters in the DEF FN statement. Numeric values passed by value are converted to the
numeric type {REAL or INTEGER} of the corresponding formal parameter. Variables passed
by reference must match the type of the corresponding parameter in the DEF FN statement
exactly, An entire array may be passed by reference by using the asterisk specifier.

Invoking a user-defined functior changes the program context. The functions may be invoked
recursively.

If there is more than one user-defined function with the same name, the lowest numbered one
is invoked by FN.

2.124 Keyword Dictionary

FNEND

FNEND

FNEND is the last statement of a function subprogram. Control is actualiy transferred back
to calling context by a RETURN statement.

Example Statement
FNEND

Keyword Dictionary 2-125

FORMAT
See the ASSIGN statement.

2-126 Keyword Dictionary

FOR ... NEXT

FOR ... NEXT

FOR ... NEXT defines a loop that is repeated until the loop counter passes a specified value.

Syntax

step
size

foop initial firial
FOR counter -.®_> vatue _@.’ value J ot
STEP

Program
segrasnt

() » foop
NEXT counter _’l

Iiem Deseription Range
loop counter narme of a numeric variable any valid name
initial value BUINEric expression —
final value | numeric expression —
step size rumeric expression; Default = 1 —

program segment | any number of contiguous program lines not |-
containing the beginning or end of a main
program or subprogram, but which may
contain properly nested construct(s).

Example Statements

160 FOR I=4 TO O STEP =-.1
110 PRINT I;SQR(I)
120 NEXT I

122G INTEGER Point

1230 FOR Point=1 TO LEN(A$)

1240 CALL Convert(A$lPoint;1])
125G NEXT Point

Details

The loop counter is set equal to the initial value when the loop is entered. Each time the
corresponding NEXT statement is encountered, the step size (which defaults to 1} is added to
the loop counter, and the new value is tested against the final value. If the final value has not
been passed, the loop is executed again, beginning with the line immediately following the
FOR statement. 1f the final value has been passed, program execution continues at the line
following the NEXT statement. Note that the loop counter is not equal to the specified final
value when the loop is exited.

The loop counter is also tested against the final value as soon as the values are assigned when
the loop is first entered. If the loop counter has already passed the final value in the direction

Keyword Dictionary 2127

FOR ... NEXT

the step would be going, the loop is not executed at all. The loop may be exited arbitrarily
{such as with & GOTO}, in which case the loop counter has whatever value it had obtained at
the time the loop was exited.

The initial, final and step size values are calculated when the loop is entered and are used
while the loop is repeating. If you use a variable or expression for any of these values, you
may change its value after entering the loop without affecting how many times the loop is
repeated. However, changing the value of the loop counter itself can affect how many times
the loop is repeated.

The loop counter variable is allowed in expressions that determine the initial, final, or step
gize values. The previous value of the loop counter is not changed until after the initial, final,
and step size values are calculated.

Note Avoid using fractional values in a FOR ... NEXT statement. Remember
that some REAL fractional numbers cannot be represented exacily by the
computer. For example, if you use a step size of 0.1, the loop may execute a
different number of times than you expect. Also, if the step size evaluates to
0, the loop may repeat infinitely. In either case no error message is given.

Refer to the “Numeric Computation” chapter of the HP BASIC 6.2
Programming Guide for detailed information on the effects of the computer’s
internal numeric representation.

Nesting Constructs Properly

Fach FOR statement is allowed one and only one matching NEX'T statement. The NEXT
statement must be in the same context as the FOR statement. FOR ... NEXT loops may
be nested, and may be contained in other constructs, as long as the loops and constructs are
properly nested and do not improperly overlap,

2-128 Keyword Dictionary

FRACT

FRACT
FRACT returns the “fractional part” of its argument. For REAL X, X=INT(X}+FRACT(X).

Syntax

NUSric
FRACT o axpression (:) I

Example Statements
PRINT FRACT(17/3)
Right_part=FRACT (Both_parts)

Keyword Dictionary 2-129

FRAME

FRAME draws a frame around the current graphics clipping area using the current pen
number and line type. After drawing the frame, the current pen position coincides with the
lower left corner of the frame, and the pen is down.

Syntax

FRAME >

Example Statement
FRAME

2-130 Keyword Dictionary

GCLEAR

GCLEAR

GCLEAR clears the graphics display.

Syntax

Example Statements
GCLEAR

Keyword Dictionary 2-131

GESCAPE

GESCAPE is used for communicating device-dependent graphics information. The type, size,
and shape of the arrays must be appropriate for the requested operation,

Syntax

() N device ;() . operation
GESCAPE setector selector

Tiem

J

¥

pararmeter (%) N
array name

Description

Y . return
'O‘> Aray name {*)

4

Bange

device selector
cperation selector

parameter array
name

return array narie

numeric expression, rounded to an integer
nurmeric expression, rounded to an integer

name of array that has a specific rank and
size, containing parameters necessary for
executing request

name of array that has a specific rank and
size into which the returned parameters are
placed

Example Statements

GESCAPE Dev_select,operation

GESCAPE Dev_select,cperation,array._in(*)

GESCAPE Dev_select,operation;array_cut(*)

{see Glossary)
{device dependent, see Details)

any valid name

any valid name

GESCAPE Dev_select,operation,array_in(*);array_out(*)

GESCAPE CRT,35 ! Bring the graphics ocutput window to the top.

GESCAPE CRT,45 ! Bring the text output window to the top.

Details

2-132 Keyword Dictionary

GESCAPL

Color Map Information

The number of entries in the color map can be deiermined with a GESCAPE operation
selector of 1. The return array must be one-dimensional with at least one element.

The RGB values of the pens in the color map can be ohtained through GESCAPE operation
selector 2. The return array must be a two-dimensional three-column array with at least
one row. The values returned are in the range of 0 to 1 and are multiples of 1/255 (one
two-hundred fifty fifth) for color displays. The first row in the array always contains the
values for PEN 0; if you want PEN 12, you must have at least thirteen rows in the array.
Array filling occurs until either the array or the color map is exhausted.

Determining Hard Clip Limits and GSTORE Array Size

The hard clip limits of the current plotting device can be obtained by executing a GESCAPE
with operation selector 3. The return array must be a one-dimensional INTEGER array with
at least four elements. Values will be returned in the smallest resolvable units for that device.
For the graph window, the units are pixels.

Operation selector 3 also returns information useful for GSTORE and GLOAD files. The fifth
and sixth elements returned give the two array dimensions to use (in coniunction with the
ALLOCATE statement) to GSTORE the contents of the specified display. This allows you to
programmadtically determine the size of the integer array to allocate for storing an image and
thus avold hardware-dependent code.

Prawing Mode Dominance

The normal drawing mode and the alternate drawing mode can be entered by using
GESCAPE operation selectors 4 and 5, respectively.

For this discussion, the color of the area formed by the intersection of a newly plotted item
and an existing item is the color X. In the normal drawing mode, X is the same color as the
pen used to draw the newly plotted items. This is the color most recently set by PEN (for
lines) or AREA (for area filling). In the alternate drawing mode, HP Instrument BASIC
assigns the color X based on the color of the newly plotted item and the color of the existing
item. The color assigned to X is neither the color of the newly plotted item nor the existing
item; the color X ig vigible with either item as a background. Note that the exact color
assigned to X varies depending on the video drivers and hardware used by your computer.

Drawing mode dominance affects the entire display. Thus in a windowing environment, all
windows have the same drawing mode.

Keyword Dictionary 2-133

GESCAPE

Summary of GESCAPE Operations

Functions Availablie Through GESCAPE

Operation Retuwrn Array (R) or Parameter Array (P)
Selector
1 {R) A(0): Number of entries in the color map
2 (R} A(0,0): Pen 0 red color map value
A{0,1): Pen 0 green color map value
A{0,2): Pen 0 blue color map value
A(15,0): Pen 15 red color map value
A(15,1): Pen 15 green color map value
A(15,2): Pen 15 blae color map value
3 (R) A(0): X minimum hard clip value
A(1): Y minimum hard clip value
A(2): X maximum hard clip value
A(3): Y maximum hard clip value
A(4): Rows required for GSTORE integer array
A(B): Cokurnms required for GSTORE integer array
4 Set normal drawing mode,
5 Set alternate drawing mode.

2-134 Keyword Dictionary

GET

GET

GET reads the specified file that contains a program saved in text format. Typically, this file
is created using SAVE or RE-SAVE.

Syntax

GET

O

Ttem

file W]
spacifier ol
append >
fing number
run e
" line number
append
line label
run |
fine label
Hterat form of file speoifier
| fie anf
T name i
diractory Lif protect vojurng
path code specifier
\w..y&..J ' J
v
HFS or DOS files anly LF files anly
Description Range

file specifier

append line
number

append line label
run line number
run line label
directory path

file name

LIF protect code

volume specifier

string expression

integer constant identifying a program line

name of a program line

integer constant identifying a program line
name of a program line

literal

literal

literal; first two non-blank characters are
significant

Hiteral

(see drawing)

1 through 32 766

any valid name

i through 32 766

any valid name

{see MASS STORAGE 1S)

depends on volume’s formal {see
Glossary)

> nct allowed

(see MASS STORAGE IS)

Keyword Dictionary 2-135

GET

Example Statements
GET "George"
GET Progname$,Appndline,Runline
GET "C:\PROGS\MYPROG"

Details

In general, the file read by GET contains program lines written using SAVE. The file can

be of any origin (such as a generic text editor) as long as it is of the same form as a SAVEd
program. This means that the file contains ASCII characters representing program lines, each
consisting of a line number followed by blank space and a valid program statement.

When GET is executed, the first line in the specified file is read and checked for a valid line
number. If no valid line number is found, the current program stays in memory and error 68
is reported. If the GET was attempted from a running program, the program remains active
and the error 68 can be trapped with ON ERROR. If there is no ON ERROR in effect, the
program pauses.

If there is a valid line number at the start of the first line in the file, the GET operation
proceeds. Values for all variables except those in COM are lost and the current program is
deleted from the append line to the end. If no append line is specified, the entire current
program is deleted.

As the file is read, each line is checked for proper syntax. The syntax checking during GET is
the same as if the lines were being typed from the keyboard, and any errors that would ocenr
during keyboard entry will also occur during GET. Any lines that contain synfax errors are
listed on the PRINTER IS device. Those erroneous lines that have valid line numbers are
converted into comments aud syntax is checked again. If the GET encounters a line longer
than 256 characters, the operation is terminated and error 128 is reported. If any line caused
any other syntax error, an error 68 is reported at the completion of the GET operation. This
error is not trappable because the old program was deleted and the new one is not renning
yet.

Any Hne in the main program or any stbprogram may be used for the append location. If an
append line number is specified, the lines from the file are renumbered by adding an offset

to their line numbers. This offset is the difference between the append line number and the
first ne number in the file. This operation preserves the Hne-number intervals that exist in
the file. When a line containing an error (or an invalid line number caused by renumbering)
is printed on the PRINTER IS device, the line number shown is the one the line had in the
file. Any programmed references to line numbers that would be renumbered by REN are also
renumbered by GET. If no append line is specified, the lines from the file are entered without
renumbering.

If a successful GET is executed from a program, execution resumes automatically after a
prerun initialization. If no run line is specified, execution resumes at the lowest-numbered line
in the program. If a run line is specified, execution resumes at the specified line. The specified
run line must be a line in the main program segment.

I a successful GET is executed from the keyboard and a run Hne is specified, a prerun is
performed and program execution begins automatically at the specified line. If GET is
executed from the keyboard with no run line specified, RUN must be executed to start the
program. GET is not allowed from the keyboard while a program is running.

2-136 Keyword Dictionary

GET
If you are using a version of HP Instrument BASIC that supports wildcards, you can use them
in file specifiers with GET. You must first enable wildcard recognition using WILDCARDS.
Refer to the keyword entry for WILDCARDS for details. Wildcard file specifiers used with
GET must match one, and only one, file name.

Keyword Dictionary 2-137

GINIT

GINIT establishes a set of default values for svatern variables affecting graphics operations.

Syntax

Example Statements
GINIT

Details
The following operations are performed when GINIT is executed:

AREA PEN 1

CLIP OFF

CSIZE 5,0.6

LDIR O

LINE TYPE 1.5

LORG 1

MOVE 0,0

PRIR O

PEN 1

PIVOT O

GESCAPE CRY,4 PEN MODE NORMAL
VIEWFPORT 0,RATI0=100,0,100
WINDGW O,RATIO*100,0,100

2-138 Keyword Dictionary

GLOAD

GLOAD

GLOAD loads the contents of an INTEGER array into the graphics window. The integer
array is filled with the contenrts of a BMP format bitmap file or previous graphics window
contents stored using GSTORE.

Syntax
integer
D o N 8
Ttem F Description l Range

name of an INTEGER array. ' i any valid name

integer array name

Example Statements
GLOAD Picture{s)
IF Flag THEN GLOAD Array(x)

Details

The integer array used to store the graphics window contents must be at least large enough
to hold the entire contents, but larger arrays are acceptable. The minimum size for the array
can be determined using GESCAPE. The following program segment illustrates the typical
procedure for storing and loading the graphics window.

10 ! Insert statements here that draw in the graphics window.
20 ! Determine the size of the array regquired by GSTCRE.

30 INTEGER Limits(0:8)

40 GESCAPE CRT,3;Limits(*)

50 ! ALLOCATE an integer array of the size required by GSTCRE.
60 ALLOCATE INTEGER Array(Limits(4),Limits(8))

70 ! Store the contents of the graphics window.

80 GSTORE Array(*)

G0 !' Insert statements here that alter the graphics window.
100 ! Load the previously stored image.

110 GLOAD Array(*)

120 ! Free the memory used to store the image.

13C DEALLOCATE Array(*)

Note that the format of the data in the integer array is the same as a .BMP bitmap file.
You can write the integer array to a file so that the GSTOREd image can be used by other
programs. The following program segment illustrates the procedure for saving the graphics
image in a file.

Keyword Dictionary 2-139

GLOAD

10
20
30
40
56
80
Y
80
20¢
90
100
110
120
130
140
150
160

! Insert statements here that draw in the graphics window.
! Determine the size of the array reguired by GSTCRE.
INTEGER Limits(0:5)

GESCAPE CRT,3;Limits(*)

! ALLOCATE an integer array of the size required by GSTORE.
ALLOCATE INTEGER Array(Limits(4),Limits(5})

! Store the contents of the graphics window.

GSTORE Array(*)

! Create a file to hold the image.

CREATE "MYBMP.BMPY,1

ASSIGN @File TO "MYBMP.BMP"

! Write the array to the file,

QUTPUT QFile;Array(*)

! Close the file.

ASSIGN @File TO =*

! Free the memory used to store the image.

DEALLOCATE Array(*)

2-140 Keyword Dictionary

GOsSuB

GOSUB

GOSUB transfers program execution to the subroutine at the specified line. The specified line
must be in the current context. The current program line is remembered in anticipation of
returning.

Syntax

line

SOSUB auraber
tine
label
Ttem Description Range

line number integer constant identifying a program line |1 through 32 766
line label name of a program line any valid name

Example Statements
GOSUB 120
IF Numbers THEN GOSUB Process

Keyword Dictionary 2-141

GOTO

GOTO transfers program execution to the specified line. The specified line must be in the
current context.

Syntax

(Y fine .

GOTO o !'EL!;’:IEI)&I’ A >
line
-t label P
Ttem Description Range

line nurber integer constant 1dentifying a program line 1 through 32 766
line label name of a program line any valid name

Example Statements
GOTO 550
GOTO Loop.start
IF Full THEN GOTC Exit

2-142 Keyword Dictionary

GRAPHICS

GRAPHICS
GRAPHICS shows or hides the graphics window,

(oraprics ON
{ oFf)

I¥ Flag THEN GRAPHICS OFF

Syntax

Example Statements
GRAPHICS ON

Keyword Dictionary 2-143

GRID

GRID draws a full grid pattern. The pen is left at the intersection of the X and Y axes.

Syniax
((oriD) ™
L % tick
spacing
v tek >
spacing o
v ooaxis -
location o
X axis -
location J -
x major -
count -
Yy major .
caunt i
mior J
tick size
Item Description Range
x tick spacing numeric expression in cerrent units; default | (see text)
= (), no ticks
v tick spacing nimeric expression in current units; default | (see text)
= (), no ticks
y axis location numeric expression specifying the location of | —
the y axis in x-axis units; default = 0
% axis location numeric expression specifying the location of | —
the x axis in y-axis units; default = 0
X major count numeric expression, rounded to an integer, 1 through 32 767
specifying the number of tick intervals
between major tick marks; default = 1
{every tick is major)
y major count nutneric expression, rounded to an integer, 1 through 32 787
specifying the number of tick intervals
between major tick marks; default = |
(every tick is major)
major tick size numeric expression in graphic display units;
defanlt = 2

2-144 Keyword Dictionary

GRID

Example Statements
GRID 10,10

GRID Xspace,Yspace,Xlccy,Ylocx,Xcount,Ycount,Major _size

Details

Grids are drawn with the current line type and pen number. Major tick marks are drawn as
lines across the entire soft clipping area. A cross tick is drawn at the intersection of minor tick
marks.

The X and Y tick spacing must not generate more than 32 768 grid marks in the clip area, or
error 20 will be generated. Only the grid marks within the current clip area are drawn.

Applicable Graphics Transformations

GRID output is affected by only these graphics transformations:
m scaling specified by WINDOW

m scaling specified by SHOW plot scaling

Keyword Dictionary 2-145

GSTORE

GSTORE stores the current contenis of the graphics window in an integer array. The integer
array can be subsequently loaded into the graphics window using GLOAD.

Syntax

(esTore T @ =

Ttem ‘ Description ' Range

integer array name] name of an INTEGER array

any valid name

Example Statements
GSTORE Picture ()
IF Final THEN GSTORE A(x)

b iion
LAy

The integer array used to store the graphics window contents must be at least large enough
to hold the entire contents, but larger arrays are acceptable. The minimum size for the array
can be determined using GESCAPE. The following program segment iliustrates the typical
procedure for store and loading the graphics window.

10
20
30
40
50
&0
70
80
80
100
110
120
130

! Insert statements here that draw in the graphics window.
! Determine the size of the array required by GSTORE.
INTEGER Limits(0:5)

GESCAPE CRT,3;Limits(*)

! ALLOCATE an integer array of the size required by GSTORE.
ALLOCATE INTEGER Array(Limits(4),Limits(5})

! Store the contents of the graphics window.

GSTORE Array(*)

! Insert statements here that alter the graphics window.

! Load the previously stored image.

GLOAD Array(*)

! Free the memory used to store the image.

DEALLOCATE Array(*)

Note that the format of the data in the infeger array is the same as a .BMP bitmap file.
You can write the integer array to a file so that the GSTOREd image can be used by other

progras.

2-146 Keyword Dictionary

GSTORE

‘The following program segment illustrates the procedure for saving the graphics image in a

file.

10
20
30
40
50
60
70
80
90
90
100
110
120
130
140
150
160

! Insert statements here that draw in the graphics window.
! Determine the size of the array required by GSTORE.
INTEGER Limits(0:5)

GESCAPE CRT,3;Limits(*)

! ALLOCATE an integer array of the size required by GSTORE.
ALLOCATE INTEGER Array(Limits(4),Limits(5))

! Store the contents of the graphics window.

GSTORE Array(*)

! Create a file to hold the image.

CREATE "MYBMP.BMP",{

ASSIGN @File TO "MYBMP.BMP"

! Yrite the array to the file.

OUTPUT @File;Array(*)

! Close the file,

ASSIGN @File TO *

! Free the memory used to gtore the image.

DEALLOCATE Array(*)

Keyword Dictionary 2-147

IDN
See MAT,

2-148 Keyword Dictionary

IDRAW

IDRAW

IDRAW draws a line from the current pen position to a position calculated by adding the X
and Y displacements to the current pen position.

Syntax
IDRAW X displacement ‘PO—h v displacement f»f
Item i Description ’ Range
% displacement numeric expression in current units |
y displacement NWIEric eXpression in current units —

Example Statements
IDRAW X+50,0
IDRAW Delta_x,Delta_y

Details

The X and Y displacement information is interpreted according to the current
unit-of-measure.

The line drawn by IDRAW is clipped at the current clipping boundary.

IDRAW updates the logical pen position at the completion of the IDRAW statement and
leaves the pen down.

If none of the line is inside the current clipping limits, the pen is not moved, but the logical
pen position is updated.

Graphics Transformations

The output of IDRAW is affected by only these graphics transformations:
m scaling specified by WINDOW

m scaling specified by SHOW

m rotations specified by PIVOT

Keyword Dictionary 2-149

IF ... THEN

IF ... THEN provides conditional branching.

Syntax

Item

Cannoi be a statemend
used during prerun

E

booiean | | (N ;
N sk
expression THEN atement

ine

3

k4

tabed

number

e

IF booieqn THEN

EXPression

G

program
segment

END

bomieqn THEN

ERPrésson

IF

)

pragram
segment

£LSE

[0

PrOgran
segment

END F

Description

Range

Boolean expression

statement
line label
line number

program segment

numeric or string expression; evaluated as
true if non-zero and false if zero

a programinable statement
name of a program line

integer constant identifying a program line

any number of contiguous program lines not | -

containing the beginning or end of a main
program or subprogram.

2-150 Keyword Dictionary

(see Tollowing hist)
any valid name

1 through 32 766

IF ... THEN

Example Statements

150 IF Flag THEN Next.file
160 IF Pcinter<l THEN Pointer=1

580 IF First_pass THEN

590 Flag=0

600 INPUT "Command?",Cmd$

610 IF LEN(Cmd$) THEN GOSUR Parse
62C END IF

1000 IF X<0 THEN

1010 BEEP
1020 DISP "Improper Argument?
1030 ELSE
1040 Root=5QR(X)
1650 END IF
Details

If the Boolean expression evaluates to 0, it is considered false; if the evaluation is non-zero, it
is considered true. Note that a Boolean expression can be constructed with numeric or string
expressions separated by relational operators, as well as with a numeric expression.

Single Line IF ... THEN

If the conditional statement is a GOTO, execution is transferred to the specified line.

The specified line must exist in the current context. A line number or line label by itself
is considered an implied GOTO. For any other statement, the statement is executed,

then program execution resumes at the line following the IF ... THEN statement. If the
tested condition is false, program execution resumes at the line following the IF ... THEN
statement, and the conditional statement is not executed.

Prohibited Statements

The following statements must be identified at prerun time or are not executed during normal

program flow, Therefore, they are not allowed as the statement in a single line IF ... THEN
construct.

CASE END iF REM

CASE ELSE END IF IMAGE REPEAT

COM END LOOP INTEGER SELECT

COMPLEX END SELECT LOOP SUB

DATA END WHILE NEXT SUBEND

DEF EN EXIT IF OPTION BASE UNTIL

DIM FNEND REAL WHILE

ELSE FOR

Keyword Dictionary 2-151

IF ... THEN

When ELSE is specified, only one of the program segments will be executed. When the
condition is true, the segment between IF ... THEN and ELSE is executed. When the
condition is false, the segment between ELSE and END IF is executed. In either case, when
the consiruct is exited, program execution continues with the statement after the END IF.

Branching into an IF ... THEN construct (such as with a GOTO]} results in a branch to the
program line following the END IF when the ELSE statement is executed.

The prohibited statements listed above are allowed in multiple-line IF ... THEN constructs.
However, these statements are not executed conditionally. The exceptions are other IF _ .
THEN statements or constracts such as FOR ... NEXT, REPEAT ... UNTIL, etc. These
are executed conditionally, but need to be properly nested. To be properly nested, the entire
construct must be contained in one program segment.

2-152 Keyword Dictionary

IMAGE

IMAGE

IMAGE statements specify special codes (image specifiers) for formatting data for use with
various 1/O statements. These image specifiers can also be included after the secondary

keyword USING within the I/0 statements.

Syntax

(IMAGE }

&

- IMAGE :
71 stotement items
\ o repeat L (:) ’ {MAGE
foctor statement items

Keyword Dictionary 2-153

IMAGE

iage specifier st

1

A

50,

A
b

D6

)

L4
i
=

olf

®

)NO)

3

®C

g

()

®

repaat j

oo

9,

factar

factor rm
.
:
_brepeat ’
factor
e repaat!]

l ‘ i % + L ¥ Y 3 ¥ ¥ y ¥ A

v
repeat] _J
factor

!

Radix specifier cannot
be used without a
digit spacifier

0|00

repeat
factor

y
X
¥

repeat
facter

repaat
factor

repeat
factor

¢ &]] o]

repeat
factor

WG [VN [UG) U W

2-154 Keyword Dictionary

0

fiteral

3 olo]ol¢]

Tiem Description

IMAGE

Range

IMAGE statement |literal

ftems
repeat factor integer constant
Hteral string composed of characters from the

keyboard, imcluding those generated using
the ANY CHAR key.

Example Statements
IMAGE 4Z.DD,3X,K,/
IMAGE "Result = ",SDDDE,3(XX,ZZ)
IMAGE #,B

(see drawing)

1 through 32 767

quote mark not allowed

Keyword Dictionary 2-155

IMOVE

IMOVE moves the graphics pen an incremental distance from the current position without
drawing a line.

Syntax
{MOVE « displacemant —-I-O-r vy displacement
Ttem i Description 1 Range
x displacement numeric expression 1n current units ——
y displacement nuImeric expression in current units —

Example Statements
IMOVE X+50,0
IMOVE Delta x,Delta.y

Details

IMOVE updates the logical position of the graphics pen, by adding the X and Y
displacements to the current logical pen position. The pen is raised before it moves and
remains up after the move. The X and Y displacements are interpreted according to the
current unit-of-measure.

If both current physical pen position and specified pen position are outside current clip
limits, no physical pen movement is made; however, the logical pen is moved the specified
displacement,

Graphics Transformations

The output of IMOVE is affected by only these graphics transformations:
m scaling specified by WINDOW

m scaling specified by SHOW

w rotations specified by PIVOT

2-156 Keyword Dictionary

INDENT

INDENT

INDENT indents program lines in the edit window to reflect the program’s structure and
nesting.

Syntax
(wDENT) -+
L starting "
<olumn
L’P@ﬁ increment b=
Item Description l Range
starting cohumn integer constant; default = 7 0 throngh Screen Width—8
mcrement integer constant; default = 2 {0 through Screen Widih—8

Example Commands

INDENT
INDENT 8,4

Details

The starting column specifies the column in which the first character of the first statement of
each context appears. The increment specifies the number of spaces that the beginning of the
lines move to the left or right when the nesting level of the program changes. Note that a line
label may override the indentation computed for a particular line. The INDENT command
does not move comments which start with an exclamation point, but it does move comments
starting with REM. However, if a program line is moved to the right a comment after it may
have to be moved to make room for it. In both of these cases (line labels and comments), the
text moves only as far as is necessary; no extra blanks are generated.

Indenting a program may cause the length of some of its lines to become longer than the
machine can list. This condition is indicated by the presence of an asterisk after the line
numbers of the lines which are overlength. If this occurs, the program will run properly,
STORE properly and LOAD properly. If the total length of a line exceeds 256 characters, you
cannot do a SAVE, then a GET. Doing an INDENT with smaller values will alleviate this
problem.

Keyword Dictionary 2-157

INDENT

Indentation occurs after the foliowing statements:

FOR REPEAT
LOOP WHILE

5UB SELECT
IF ... THEN! DEF FN

1This is only true for IF. THEN statements where the THEN is followed by an end-of-line or
an exclamation point.

The following statements cause a one-line indentation reversal; that is, indentation is reversed
for these statements but reindented immediately after them:

CASE EXIT 1Y
CASE ELSE FNEND
ELSE SUBEND

Indentation is reversed before the following statements:

END IF END WHILE
END LOQOP NEXT
END SELECT UNTIL

Indentation remains the same from line to line for all other statements.

Improperly matched nesting will cause improper indentation. Deeply nested constructs may
cause indentation to exceed the width of the edit window.

2-158 Keyword Dictionary

INtTIALIZE

INITIALIZE

This statement prepares (“formats”) mass storage media and places a LIF (Logical
Interchange Format) directory on the media. When INITTALIZE is executed, any existing files

on the media are desiroyed.,

Syntax
volurae - {
INFRALIZE specifier . ot
interigave
factor
R s‘armat -
option
RAasd volume
spacifier -
2 unft
size

fiteral forrm of volume specifier:

O i
=) e o0 —

unit |
nurshar
“>< MEMORY ; Yy
LO-® -
unit g
rramber

device -
sefector
- unit
el d;g? nurnier g
velume |
nurnber

Keyword Dictionary 2-159

INITIALIZE

Item

Deseription

Range

volume specifier

interleave factor

format option

RAM volume
specifier

unit size

volume type

unit number

device type

device selector

string expression

numeric expression, rounded to an integer;
default = device dependent (see table}

numeric expression default = §

string expression

numeric expression, rounded to an integer;
specifies number of 256-byte sectors;

selects media format; defauit = LIF

integer constant; default = 0

Hteral

integer constant

Example Statements

INITIALIZE ":INTERNAL"
INITIALIZE Disc$,2

INITIALIZE ®:,

700",0,4

INITIALIZE " :MEMORY,0Q",Sectors

Details

(see MASS STORAGE 18)
§ thru 15

device dependent

(see drawing)

4 thru 32 767
memory~dependent
DOS or LIF

{ through 255
(device-dependent)

See ingtrument-specific HP
Instruoment BASIC for the
device type supported in this
instrument.

(see Glossary)

Any media used by the computer must be initialized before its first nse. Initialization creates
a new LIF directory, eliminating any access to old data. The media is partitioned into
physical records. The quality of the media is checked during initialization. Defective tracks
are “spared” (marked so that they will not be used subsequently).

Interleave Factor

The interleave factor establishes the distance (in physical sectors) between consecutively
numbered sectors. The interleave factor is ignored if the mass storage device is not a disc. If
vou specily 0 for the interleave factor, the default for the device is used.

Note

being used.

For best performance, use the recommended interleave factor for the disc

2-160 Keyword Dictionary

INITIALIZE

Format Option

Some mass storage devices allow vou to select the sector or volume size with which the disc
is initialized. Omitiing this parameter or specifying 0 initializes the disc to the default sizes.
Refer to the disc drive manual for options available with your disc drive,

INITIALIZE and HFS Volumes

Since INITIALIZE creates a LIF directory, it cannot alone be used to format an HF'S disc; it
wiil still, however, scan the volume for bad sectors.

To format an HI'S volume on an HP BASIC Workstation, use the System Disc Utility
(DISC_UTIL, which calls the “Mkhfs” compiled subprogram to place an HI'S-format directory
on the disc volume). See the “BASIC Utilities Library” chapter of Installing, and Maintaining
the BASIC System for instructions on using this utiity.

On HP-UX, use the command newfs command. See the HP-UX Reference, newfs(im) entry.

Recovering MEMORY Volume Space

BASIC RAM disc memory can be reclaimed after initializing the memory volume. To recover
this memory, you would execute a line similar to the following:

INITIALIZE v:,0, unit number " ,0
Initializing the volume to 0 sectors removes it from memory.

Memory volumes are allocated in a mark and release stack. What this means is, you get the
memoty back only when other sehsequently created memory volumes have been reclaimed.
You can re-initialize a removed memory volume in its original space provided the newly
allocated gpace is no larger than the original space that was allocated. Otherwise, new space
will be allocated for it.

Keyword Dictionary 2-161

INPUT

INPUT is used to assign keyboard input to program variables.

Syntax
Y
(wPut) {] >
Expanded diagram:
(e
I { | o
INPUT
= o= O-0-
4 '
we string ? .:_;
L_@_’baqinninq G)___1
position
end_éz_‘:g
it postlion
iterns
) seastring
teryggth
\ »{ (%) } -
NS
"3 numenc J
. namse
subseript
())

2-162 Keyword Dictionary

INPUT

Item Description/Default Range
Restrictions

prompt a literal composed of characters from the —
keyboard, including those generated using
the ANY CHAR key;default = question mark

string name name of a string variable any valid name

- subscript namerie expression, rounded to an integer —32 768 through 432 767 (see
“array” mn Glossary)
beginning position | numeric expression, rounded to an integer 1 through +32 767 (see
“substring” in Glossary)

ending position numeric expression, rounded to an integer 0 through +32 767 (see
“substring” in Glossary)

substring length numerie expression, rounded to an integer 0 through +32 767 (see
“substring” in Glossary)

numeric name name of a numeric variable any valid name

Example Statements
INPUT "Name?",N$,"ID Number?",Id
INPUT "Enter 3 numbers',V{(1),V(2),V(3)
INPUT "",String$[1;10]
INPUT Array(*)

Details

Values can be assigned through the keyboard for any numeric or string variable, substring,
array, or array element,

A prompt, which is allowed for each item in the input list, appears on the display line. If the
last DISP or DISP USING statement suppressed its EOL sequence, the prompt is appended to
the current display line contents. If the last DISP or DISP USING did not suppress the EOL
sequence, the prompt replaces the current display line contents.

Not specifying & prompt results in a question mark being used as the prompt. Specifying the
null string for the prompt suppresses the question mark.

To respond to the prompt, the operator enters a number or a string. Leading and trailing
blank characters are deleted. Unquoted strings may not contain commas or guotation
marks. Placing quotes around an input string allows any character(s) to be used as input.
If * is intended to be a character in a quoted string, use "". Multiple values can be entered
individually or separated by commas. Press the (CONTINUE), {Return), (EXECUTE), [ENTER) or
after typing the final data item. Two copsecutive commas cause the corresponding
variable to retain its original value. Terminating an input line with a comma retains the old
values for all remaining variables in the list,

Keyword Dictionary 2-163

INPUT

The assignment of a value to a variable in the INPUT list is done as soon as the terminator
{(comma or key) is encountered. Entering no data items and pressing (CONTINUE), (ENTER),
(EXECUTE}, (Return], or (STEP] retains the old values for all remaining variables in the list.

If you click on in the control pad or press (ENTER} or (Retum) t0 end the data input,
program execution continues at the next program line. If you click on [STEP] in the control
pad, the program execution continues at the next program line in single step mode. (If the
INPUT was stepped into, it is stepped out of, even if you click on in the control pad or
press (ENTER] or (Return).)

If too many values are supplied for an INPUT list, the extra values are ignored.

An entire array may be specified by the asterisk specifier. Inputs for the array are accepted in
row major order (right-most subscript varies most rapidly).

Live keyboard operations are not allowed while an INPUT is awaiting data entry.

Keyboard-initiated events are deactivated during an INPUT statement. Errors do not cause
an ON ERROR branch. If an input response results in an error, reentry begins with the
variable which wounld have received the erroneous response,

2-164 Keyword Dictionary

INT

INT

INT returns the greatest integer which is less than or equal to its argument. The result will be
of the same numeric type (REAL or INTEGER) as the argument.

Syntax

INT p o argument —>®——|

Example Statements
Whole=INT(Number)
PRINT "Integer portion =';INT(X)

Keyword Dictionary 24165

INTEGER

INTEGER declares integer variables, dimensions integer arrays, and allocates memory for the
variables and arrays.

Syntax
{
INTEGER numere +1
A
'[S
(g (o9
L fower _@J
bound
Item Description Range
numeric name name of a numeric variable any valid name
lower bound integer constant; default = OPTION BASE | 32 767 through 32 767 (see
vatue (0 or 1) “array” in Glossary)
tpper bound mteger constant —32 767 through -+32 767 (see
“array” in Glossary)

Example Statements
INTEGER I,J.K
INTEGER Array(-128:255,4)

Details

An INTEGER variable (or an element of an INTEGER array)} uses two bytes of storage space.
An INTEGER array can have a maximum of six dimensions. No single dimension can have
more than 32 767 total elements.

The total number of INTEGER elements is limited by the fact that the maximum memory
usage for all variables—numeric and string—within any context is 16 777 215 bytes (or
limited by the amount of available memory, whichever is less).

2-166 Keyword Dictionary

INTR

INTR
See the OFF INTR and ON INTR statements.

Keyword Dictichary 2167

IPLOT

IPLOT moves the graphics pen an incremental distance from the current position. Plotting
action is determined by the current line type and the optional pen control parameter.

Syntax
E _.,.()__, ¥ ol
IPLOT displacement displacermnent A1
pen .
control '
array Y .
naime ((%) J o
FILL l >
OG-
Ttem Deseription Range
x digplacement nurneric expression, in curtent unite e
y displacement numeric expression, i current units —
pen conirol numeric expression, rounded to an integer; -32 768 through +32 767
defauit=1 {down after move)
array name name of two-dimensional, two-column or any valid name
three-column numeric array. Requires
GRAPHX.

Example Statements
IPLAT ©,5
IPLOT Delta_x,Delta_y,Pen_control
IPLOT Array(#)
IPLOT Shape(*),FILL,EDGE

Details

Non-Array Parameters

The specified X and Y displacement information is interpreted according to the current
unit-of-measure. Lines are drawn using the carrent pen color and line type.

The line is clipped at the current clipping boundary. If none of the line is inside the current
clip limits, the pen is not moved, but the logical pen position is updated.

2-168 Keyword Dictionary

IPLOT

Graphics Transformations

The output of IPLOT is affected by only these graphics transformasions:

a scaling specified by WINDOW

w scaling specifiad by SHOW

w rotations specified by PIVOT

a rotations specified by PDIR

The optional pen control parameter specifies the following plotting actions; the default value is

+1 (down after move).

Pen Confrol Parameter

Pen Control Resultant Action
—Even Per up before move
—0dd Pen down hefore move
+Even Per up after move
-+0dd Pen down after move

Zero is considered positive.

Summary of Array Parameter Effects

When using an IPLOT statement with an array, the following table of operation selectors
applies. An operation selector is the value in the third column of a row of the array to be
plotted. The array must be a two-dimensional, two-column or three-column array. If the third
column exists, it will contain operation selectors which instruct the computer to carry out
certain operations. Polygons may be defired, edged (using the current pen), filled (using the
current fill color), pen and line type may be selected, and so forth.

Keyword Dictionary 2-169

IPLOT

IPLOT Array Parameter Effects

Column 1 | Columm 2 | Operation Meaning
Selector
X Y -2 Pen up before moving
X Y ~1 Pen down belore moving
X Y 0 Pen up after moving {Same as +2)
X Y 1 Pen down after moving
X Y 2 Pen up after moving
pen number | ignored 3 Select pen
line type |[repeat value 4 Select line type
color ignored 5 Color value
ignored ignored 6 Start polygen meode with FILL
ignored ignored 7 End polygon mode
ignored ignored 8 End of data for array
ignored ignored g NOP (no operation)
ignored ignored 10 Start polyzgon mode with EDGE
ignored ignored 11 Start polygon mode with FILL and EDGE
ignored ignored 12 Draw a FRAME
pen number|{ ignored 13 Area pen value
red value | green value 14 Color
blue value ignored 15 Value
ignored ignored >15 Ignored

FILL and EDPGE

When FILL or EDGE is specified, each sequence of two or more lines forms a polygon. The
polygon begins at the first point on the sequence, includes each successive point, and the final
point ig connected or closed back to the first point. A polygon is closed when the end of the
array is reached, or when the value in the third column is an even number less than three, or
in the range 5 to 8 or 10 to 15.

If FILL and/or EDGE are specified on the IPLOT statement itself, it causes the polygons
defined within it to be filled with the current fill color and/or edged with the current pen
color. If polygon mode is entered from within the array, and the FILL/EDGE directive for
that series of polygons differs from the FILL/EDGE directive on the TPLOT statement itself,
the directive in the array replaces the directive on the statement. In other words, if a “start
polygon mode™ operation selector (a 6, 10, or 11) is encountered, any current FILL/EDGE
directive (whether specified by a keyword or an operation selector) is replaced by the new
FILL/EDGE directive.

I FILL and EDGE are both declared on the IPLOT statement, FILL must occur first. If
neither one is specified, simple line drawing mode is assumed; that is, polygor closure does not
take place.

2-170 Keyword Dictionary

IPLOT

Moving and Drawing

If the operation selector is less than or equal to two, it is interpreted in exacily the same
manner as the third parameter in a non-array IPLOT statement. As mentiored above, even
means lift the pen up, odd means put the pen down, positive means act after pen motion,
negative means act before pen motion. Zero is considered positive.

Selecting Pens

‘The operation selector of 3 is used to select pens. The value in column one is the pen number
desired. The value in column two is ignored.

Selecting Line Types

The operation selector of 4 is used to select line types. The line type {column one) selects the
pattern, and the repeat value {(column two) is the length in GDUs that the line extends before
a single occurrence of the pattern is finished and it starts over. On the CRT, the repeat value
is evaluated and rounded down to the next multiple of 5, with 5 as the minimum.

Selecting a Fili Color

Operation selector 13 selects a pen from the color map with which to do area fills, This works
identically to the AREA PEN statement. Column one containg the pea number,

Defining a Fill Color

Operation Selector 14 is used in conjunction with Operation Selector 15. Red and green are
specified in columns one and two, respectively, and column three has the value 14. Following
this row in the array {not necessarily immediately), is a row whose operation selector in
column three has the value of 15. The first column in that row contains the blue value, These
numbers range from 0 to 32 767, where 0 is no color and 32 767 is full intensity. Operation
selectors 14 and 15 together comprise the equivalent of an AREA INTENSITY statement.,

Operation Selector 15 actually puts the area intensity into effect, but only if an operation
gelector 14 has already been received.

Operation selector 5 s another way to select a fill color. The color selection is through 2
Red-Green-Blue (RGB) color model. The first column is encoded in the following manner.
There are three groups of five bits right-justified in the word; that is, the most significant

bit in the word is ignored. Each group of five bits contains a number which determines the
intensity of the corresponding color component, which ranges from zere to sixteen. The value
in each field will be sixteen minus the intensity of the color component. For example, if the
value in the first column of the array is zero, then all three five-bit values would be zero.
Sixteen minus zero in all three cases would turn on all three color components to full intensity,
and the resultant color would be a bright white.

Assuming you have the desired intensities for red, green, and blue ranging from zero to one
in the variables R, G, and B, respectively, the value for the firgt column ir the array could be
defined thus:

Array(Row, 1)=SHIFT(16%(1~B) ,~10}+SHIFT(16%(1-G),-5)+18*%(1-R)

If there is a pen color in the color map identical to that which you request here, that
non-dithered color will be used. If there is not a similar color, you will get a dithered pattern.

Keyword Dictionary 2-171

IPLOT

If you are using a gray scale display, Operation selector 5 uses the five bit values of the RGB
color specified to calculate luminosity. The resulting gray luminosity is then nsed as the area
fill. For detailed information on gray scale caleulations, see the chapter “More About Color
Displays” in the HP BASIC 6.2 Advanced Programming Technigues manual.

Polygons

A six, ten, or eleven in the third column of the array begins a “polygon mode.” If the
operation selector is 6, the polygon will be filled with the current fill color. If the operation
selector is 10, the polygon will be edged with the current pen number and line type. If the
operation selector is 11, the polygon will be both filled and edged. Many individual polygons
(series of draws separated by moves) can be filled without terminating the mode with an
operation selector 7. The first and second columns are ignored and, consequently, should not
contain the X and Y values of the first point of a polygon.

Operation selector 7 in the third column of a plotted array terminates definition of a polygon
to be edged and/or filled and also terminates the polygon mode {entered by operation
selectors 6, 10, or 11). The values in the first and second columns are ignored, and the X
and Y values of the last data point should not be in them. Edging and/or filling will begin
immediately upon encountering this operation selector.

Drawing a FRAME

Operation selector 12 does a FRAME around the current soft-clip limits. Soft clip Hmits
cannot be changed from within the IPLOT statement, so one probably would not have more
than one operation selector 12 in an array to IPLO'T, since the last FRAME will overwrite ail
the previous ones.

Premature Termination

Operation selector 8 causes the IPLOT statement to be terminated. The IPLOT statement
will successfully terminate if the actual end of the array has been reached, so the nse of
operation selector 8 is optional.

Ignoring Selected Rows in the Array

Operation selector 9 causes the row of the array it is in to be ignored. Any operation selector
greater than fifteen is also ignored, but operation selector 9 is retained for compatibility
reasons. (peration selectors less than -2 are not ignored. If the valee in the third column is
less than zero, only evenness/oddness is considered.

2-172 Keyword Dictionary

IVAL

IVAL

IVAL converts a binary, octal, decimal, or hexadecimal character representation into an
INTEGER.

Syntax
' tri .
Item % Description l Range
string argument string expression, containing digits valid for | (see table)
the specified base
radix numerle expression, rounded {o an integer. 2.8, 10 or 18

Example Statements
Number=IVAL(String$,Radix)
PRINT IVAL("FES8",16)

Details

The radix is a numeric expression that will be rounded to an integer and must evaluate to 2,
8,10, or 16,

The string expression must contain only the characters allowed for the particular number base
indicated by the radix. ASCII spaces are not allowed.

Binary strings are presumed to be in two’s-complement form. If all 16 digits are spacified and
the leading digit is & 1, the returned value is negative.

Octal strings are presumed fo be in the octal representation of two’s-complement form. If all 6
digits are specified, and the leading digit is a 1, the returned value is negative.
Decimal strings containing a leading minus sign will return a negative value.

Hex strings are presumed to be in the hex representation of the two's-complement binary
form. The letters A through F may be specified in either upper or lower case. If all 4 digits
are specified and the leading digit is 8 through F, the returned value is negative,

Radix Base String Range String Length
2 | binary g through 1111131111811111 {1 to 16 characters
8 |octal { through 177777 1 to 6 characters
10 | decimal —32 768 through +32 768 1 to 6 characters
18 {hexadecimal | 0 through FFFF 1 to 4 characters

Keyword Dictionary 2-173

IVAL

Radix Legal Characters Comments
2 -+01 —
8 +,0,1,2,3,4,5,6,7 Range restricts the leading character. Sign
must be a leading character.
10 | 4,-012345 67889 Sign must be a leading character.
15 1+.0,1,23456,789 ABUCDEFabeodefl |Afa=10, B/b=11, C/e=12, D/d=13
E/e=14, F/i=15

2-174 Keyword Dictionary

IVALS

IVALS

IVALS converts an integer value into a binary, octal, decimal, or hexadecimal string
representation.

Syntax
OO O
Item i Description l Range
“16-bit” argument |numeric expression, rounded fo an integer {see table)
radix numeric expression, rounded to an integer 2,8, 10, 0r 18

Example Statements
String$=IVAL$ (Number,Radix)
PRINT IVAL$(Count MOD 256,2)

Details
The rounded argument must be a value that can be expressed (in binary) using 16 bits or less.

The radix must evaluate to be 2, 8, 10, or 16 (representing binary, octal, decimal, or
hexadecimal notation).

If the radix is 2, the returned string is in two's-complement form and contains 16 characters.
If the numeric expression is negative, the leading digit will be 1. If the valae is zero or
positive, there will be leading zeros.

If the radix is 8, the returned string is the octal representation of the two’s-complement binary
form and contains 6 digits. Negative values return a leading digit of 1.

If the radix is 10, the returned string contains 6 characters. Leading zeros are added to the
string if necessary. Negative values have a leading minus siga.

If the radix is 16, the returned string is the hexadecimal representation of the two’s-
complement binary form and contains 4 characters. Negative values return a leading digit in
the range 8 through F.

Radix Base Range of Returned String String Length
2 binary 00096000G0009090 thru 16 characters
1111811138 131111
8 octal 000900 through 177777 6 characters
10 decimal —32 768 through +32 768 6§ characters
16 | hexadecimal 000¢ through FFFF 4 characters

Keyword Dictionary 2-175

IVAL.$

KBD

KBD returns 2, the device selector of the keyboard.

Syntax

KBD

2-176 Keyword Dictionary

LABEL

LABEL

LABEL draws text labels with the graphics pen at the pen’s current position.

Syntax

-4

(Lamer) »
image . label
USING itermns OL iterns

Expanded diagram:

{ABEL

Y

v]

USING rmalgzellme
. image line
image
iterms rumiber
image

specifier

* (;)“—”‘

-~
» WY
e strinq_ 1 >
expression A
string :) ’(' :) 3
labet < > Qrray name U
iterns
|] umeric » N -
expression rating punctuation
not affowed with USING
numeric . (™
e »-
arroy nams (*)
. . . y -
L o colurnm _,@_, tab function not allowsd with USING

tteral farm of image specifier

iage] 0
specifier list
repeat image
factor specifier list

Keyword Dictionary 2-177

LABEL

image specifier list

| frepeat
factor

%

repeat
factor

TN
I Y

-®
a %P, T
,_@ »
{ i } P
® .

20,
) N
o/ o
r._“ o l, >

-

factor

|_yirepaat _T

] repeat _J
foctor

Radix specifier cannot

be used without o
“’@" digit specifier
£ % t

¥ £52Z2

—

repact
factor

)

¥

~

repeat
factor

v

5

A 4

1

—

remeat
factor

)

3

—

rapeat
factor

—

repeat
factor

UG S U I U U

@ﬂc

¢

2-178 Keyword Dictionary

&2
o

literat

L 4

LABEL

Ttem Description Range
image line label naine identifying an IMAGE statement any valid name
image line number |integer constant identifying an IMAGE 1 through 32 766

statement
image specifier string expression (see drawing)
string array name |name of a string array any valid name
numeric array name of a numeric array any valid narne
name
image specifier list | literal (see diagram)
repeat factor integer constant 1 through 32 767
literal string composed of characters entered from | quote mark not allowed
the keyboard

Example Statements
LABEL Number,String$
LABEL Array(*)
LABEL USING 160;X,Y,Z
LABEL USING “BZ.DD";Money

Details

The label begins at the current logical pen position, with the current pen. Labels are clipped
at the current clip boundary. The current pen position is updated at the end of the label
operation.

The color and line type used for the label are determined by PEN and LINE TYPE
respectively. The size (width and height} of the label is set by CSIZE.

Graphics Transformations

The output of LABEL is affected by only these graphics transformations:
= origins specified by LORG

= rotations specified by LDIR

Standard Numeric Format

The standard numeric format depends on the value of the number being output. If the
absolute value of the number is greater than, or equal to, 1E-4 and less than 1E46, it is
rounded to 12 digits and displayed in floating-point notation. If it is not within these limits,
it is displayed in scientific notation. The standard numeric format is used unless USING is
selected, and may be specified by using K in an image specifier.

Keyword Dictionary 2-179

LABEL

Automatic End-Of-Line Sequence

After the label list is exhausted, an End-of-Line (EOL) sequence is sent to the logical pen,
uniess it is suppressed by frailing punctuation or a pound-sign image specifier. The EOL
sequence is also sent after every 256 characters. This “plot buffer exceeded” EOL is not
suppressed by trailing punctuation, but is suppressed by the pound-sign specifier.

Control Codes

Character Keystroke Name Action
CHRS3(8) backspace Back up the width of one character cell.
CHRS3(10) (CTRLHD) line-feed Move down the height of one character
cell.
CHRS(13) carriage-return Move back the length of the label just
completed.

Any conirol character that the LABEL statement does not recognize is treated as an ASCII
blank [CHR$(32)].

Arrays

Entire arrays may be output by using the asterisk specifier. LEach element in an array is
treated as an item by the LABFEL statement, as if the items were listed separately, separated
by the punctuation following the array specifier. If no punctation follows the array specifier,
a comma is assumed. The array is output in row major order (rightmost subscript varies
fastest).

LABEL without USING

If LABEL is used without USING, the punctuation following an item determines the width
of the item’s label field; & semicolon selects the compact field, and a comma selects the
default label field. When the label item is an array with the asterisk array specifier, each
array element is considered a separate label item. Any trailing punctation will suppress the
automatic EOL sequence, in addition to selecting the label field to be used for the label item
preceding it.

The compact field is slightly different for numeric and string items. Numeric items are oufput
with one trailing blank. String items are output with no leading or trailing blanks.

The default label field labels items with trailing blanks to fill to the beginning of the next
10-character field.

Numeric data is output with one leading blank if the number is positive, or with a minus sign
if the number is negative, whether in compact or default field.

2-180 Keyword Dictionary

LABEL

LABEL with USING

When the computer executes a LABEL USING statement, it reads the image specifier, acting
on each field specifier (field specifiers are separated from each other by commas) as it is
encountered. If nothing is required from the label items, the field specifier is acted upon
without accessing the label list. When the field specifier requires characters, it accesses the
next item in the label list, using the entire item. Fach element in an array is considered a
separate item,

The processing of image specifiers stops when there is no matching display item (and the
specifier requires a display item). If the image specifiers are exhausted before the display
items, they are reused, starting at the beginning,

If a numeric item requires more decimal places to the left of the decimal point than provided
by the field specifier, an error is generated. A minus sign takes a digit place if M or § is not
used, and can generate unexpected overflows of the image field. If the number contains more
digits to the right of the decimal point than are specified, it is rounded to fit the specifier.

If a string is longer than the field specifier, it is truncated, and the right-most characters are
lost. If it is shorter than the specifier, trailing blanks are used to fill out the field.

Effects of the image specifiers on the LABEL statement are shown in the following table:

Image [Meaning
Specifier

K Compact field. Outputs a number or string as a label in standard form with no leading or
trailing blanks.

-K Same as K.

H Similar to K, except the number is output using the European number format {comma
radix). (Requires I0))

—H 1Same as H. (Requires 10)

S Outputs the number’s sign (+ or —} as a lahel,
M Outputs the number’s sign as a label if negative, a blank if positive.
D Outputs one-digit character as a label. A leading zero is replaced by a blank. If the number

is negative and no sign image is specified, the minus sign will occupy a leading digit
position. If & sign is output, it wili “Hoat” to the left of the left-most digit.

Z Same as D, except that leading zeros are output.
* Same as Z, except that asterisks are output instead of leading zeros. (Requires 10.)
Qutputs a decimal-point radix indicator as a label.
R Outputs a comma radix indicator as a label (European radix). {Requires 10.)
E Outputs as a label: an E, a sign, and a two-digit exponent.
ESZ |Outputs as a label: an E, a sign, and a one-digit exponent.

ESZZ | Same as E.

ESZZZ | Outputs as a label: an E, a sign, and a three-digit exponent.

Keyword Dictionary 2-181

LABEL

Image | Meaning
Specifier

A Qutputs a string character as a label. Trailing blanks are output if the number of characters
gpecified s greater than the nunber available in the corresponding string. If the image
specifier is exhausted before the corresponding string, the remaining characters are ignored.

X Outputs a blank as a label.

Hteral | Cuipuis as a label the characters contained in the lteral.

B Outputs as a label the character represented by one byte of data. This is similar to the
CHRS function. The number is rounded to an INTEGER, and the least-significant byte is
sent. If the number is greater than 32 767, then 255 is used; if the number is less than —32
768, then 0 15 used.

W Cutputs as a label two characters represented by the two bytes of a 16-bit,
two’s-complement integer. The corresponding numeric item is rounded to an INTEGER. If
it is greater than 32 767, then 32 767 is used; if it is less than —32 768, then —32 768 is
used. The most-significant byte is sent first.

Y Same as W. (Requires 10.)

Suppresses the automatic output of the EOL (Ead-Of-Line) sequence following the last
label item.

% lgnored in LABEL images.

+ Changes the antomatic EOL sequence that normally follows the last label item to a single
carriage-return. {Requires 10.)

- Changes the antomatic EOL sequence that normally follows follows the last label item to &
single line-feed. (Requires 10.)

/ Sends a carriage-return and a line-feed to the PLOTTER IS device.

L Same as /.

@ Sends a form-feed to the PLOTTER IS device; produces a blank.

2-182 Keyword Dictionary

LDIR

LDIR

LDIR defines the angle at which labels are drawn. The angle is measured counter-clockwise
from the X axis using the current angle mode.

Syntax
LDIR angle]
Liem l Description | Range
angle numeric expression in current units of angle; | (same as COS)

default = 0

Example Statements
LDIR 90
LDIR ACS(Side)

Details

LDIR affects the appearance of LABEL output only; it does not affect the output of other
graphics commands.

The rotation angle specified with LDIR is measured counterclockwise from the positive X axis.
Thus, the positive X axis is at zero degrees, the positive Y axis is at 90 degrees, and so on.
‘The unit of measure for angles can be set using DEG and RAD.

The angle is interpreted as shown in the following figure.

Keyword Dictionary 2-183

LDIiR

LDIR EXAMPLES (in Degrees)

S
o, N ©
%) = \§§~
081 a7 LDIR ©
&1&6\ <%

o
SN

0/7 I
¢,

2-184 Keyword Dictionary

LEN

LEN

LEN returns the current number of characters in the specified string.

Syntax

LEN

Example Statements
Last=LEN(String$)
IF NOT LEN(A$) THEN Empty

Details

The length of the null string (") is 0.

string
SHOEESTHIN

uO

Keyword Dictionary 2-185

LET

LET assigns values to variables. The keyword LET is optional.

Syntax

Item

N furneric
> = :
EXPresSion A

X

nurneric
e
subseript
siring ¥ $ \
nams
subgoript)

beginnin
position !
?

anding
2/ pasition
aubistring
langth
Description

ol = string LJ
Oj - expression

Range

numeric name
string name

subscript

beginning position

ending position

substring length

name of a numeric variable

name of a string variable

numeric expression, rounded fo an imteger
numeric expression, rounded to an integer
numeric expression, rounded to an integer

rumeric expression, rounded to an integer

2-186 Keyword Dictionary

any valid name
any valid name

—32 767 through 432 767 (see
“array” in Glossary)

1 through 32 767 {see “substring”
in Glossary}

0 through 32 767 (ses “substring”
in Glossary)

0 through 32 767 (see “substring”
in Glossary)

LET

Example Statemenis
LET Number=33
Array(I+1)=Array(l}/2
String$="Hellc Scott"
A$(T)L1;21=CHR$ (27 "2

Details

The assignment is done to the variable that is to the left of the equals sign. Ounly one
assignment may be performed in a LET statement; any other equal signs are considered
relational operators, and must be enclosed in a parenthetical expression, as in this statement:

A=A+ (B=1)+5

A variable can occur on both sides of the assignment operator, as in these statements:
I=I+1
Source$=01d$

A real expression will be rounded when assigned to an INTEGER, variable, if it is within the
INTEGER range. Out-of-range assignments to an INTEGER give an error.

The length of the string expression must be less than or equal to the dimensioned length

of the string it is being assigned to. Assignments may be made into substrings, using the
normal rules for substring definition. The string expression will be truncated or blank-filled
on the right (if necessary) to fit the destination substring when the substring has an explicitly
stated length. If only the beginning position of the substring is specified, the substring will
be replaced by the string expression and the length of the recipient string variable will be
adjusted accordingly; however, error 18 is reported if the expression overflows the recipient
string variable.

If the name of the variable to the left of the equal sign begins with AND, DIV, EXOR, MOD
or OR (the name of an operator} and the keyword LET is omitted, the prefix must have at
least one uppercase letter and one lowercase letter in it. Otherwise, a live keyboard execution
is attempied and fails, even though the line number is present.

Keyword Dictionary 2-187

LGT

LGT returns the common logarithm (base 10) of its argument.

Syntax
Ttem Description/Default Range
Restrictions
argument numeric expression t > § for INTEGER and REAL arguments

Example Statements
Decibel=20*LGT(Voits)
PRINT "Log of";X;"=";LGT(X)

2-188 Keyword Dictionary

LINE TYPE

LINE TYPE
LINE TYPE selects a line type (solid or dashed) for all subsequent lines drawn with the

graphics pen.

Syntax

Ttem

type
LINE TYPE selector
Description

ol

1
repeat j

iength

Range

gul

type selector

repeat length

default = 1

defauilt = 5

Example Statements

LINE TYPE 1

LINE TYPE Style

Details

numeric expression, rounded to an integer:

numeric expression, rounded to an integer;

At power-up the default line type is a solid line (type 1).

The available CRT line types are shown here,

LINE
L INE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE

TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE

N W -~ U O N O W e
&

Faewy

1 through 10

greater than 0

Keyword Dictionary 2-189

LINE TYPE

Note that the solid and dashed line patterns are different in versions of HP BASIC other than
HP Instrument BASIC. However, in all versions of HP BASIC, line types 3-8 are always
dashed and line type 1 is always solid.

2-190 Keyword Dictionary

LIST

LIST

LIST lists the program currently in memory.

Syntax
uST F E s ;=
device O_)
-- selector '
beginning
] line number‘-J -
ending
— line number I
baginning
fine lahel
ending
line lahet
Ttem Description Range
device selector nurmeric expression; is rounded to an integer. | {see Glossary)
Default is PRINTER IS device.

beginaing line integer constant identifying program line I through 32 766
number
beginning line label | name of a program line any valid name
ending line number | integer constant identifying program line I through 32 766
ending line label name of a program line any valid name

Example Statements
LIST
LIST 110,250

Details

When a label is used as a line identifier, the lowest-numbered line in memory having that
label is used. When & number is used as a line identifier, the lowest-numbered line in memory
having a number equal to or greater than the specified line is used. An error occurs if the
ending line identifier occurs before the beginning line identifier or if a specified line labe] does
not exist in the program.

Executing a LIST from the keyboard while a program is running causes the program to pause
at the-end of the current line. The listing is sent to the selected device and program execution
resumes, Note that the default width of the PRINTER IS device is 80 characters, which
means that a carriage-return (CR) and line-feed (LF) character will be sent after 80 characters
are printed on any one line.

Keyword Dictionary 2-191

LOAD
LOAD loads STOREd programs into memory.

Syntax
LOAD e >
specifier ot
rus fine
numiber
runt hne
labet
fiterat form of fie specifier:
-0 O
Ldirectc‘.ryj e L¢®_> LIF protact _,@_j L. VGarmne j
2ath code spacifier
A S
hd
HFS or DOS files only LIF files only
Item Description Range
file specifier string expression (see drawing)
run line iabel name of a program line any valid name
run line number integer constant identifying program lne 1 through 32 765
directory path literal (see MASS STORAGE 1IS)
file name literal depends on volume’s format {see
Glossary)
LIF protect code literal; first two non-blank characters are > not allowed
significant
volume specifier literal (see MASS STORAGE 18)

Example Statements
LOAD Filename$
LCAD "UTILY,Run_line

2-192 Keyword Dictionary

LOAD

Details

The HP Instrument BASIC program currently in memory and all variables not in COM are
lost when & LOAD is executed. Every COM block in the newly-loaded program is compared
with the COM blocks of the program in memory. If a COM area of the newly-loaded program
does not match an existent COM area, the values in the old COM area are lost. Thus, some
COM areas may be retained while others are lost.

LOAD is allowed from the keyboard if a program is not running. If no run line is specified,
you must press in the control pad to initiate program execution, and execution will begin
on the first line in the program. If a run line is specified, prerun initialization (see RUN) is
performed, and program execution begins at the line specified. The line on which execution
begins must exist in the main program context of the newly-loaded program. If you specify

a line number and it doesn’t exist, execution begins with the next higher-numbered line,
provided that line is in the main program context.

Executing LOAD from a program causes the new program file to be loaded, prerun, and
program execution to resume. Fxecution begins at the line specified, or the lowest-numbered
program line if a run line is not specified.

You can use wildcards to match a file specifiers with LOAD. You must first enable wildcard
recognition using WILDCARDS. Refer to the keyword entry for WILDCARDS for details.
Wildcard file specifiers used with LOAD must match one and only one file name.

Keyword Dictionary 2-193

LOADSUB

LOADSUB loads HP Instrument BASIC subprograms from a STOREd file into memory.

Syntax

file » i
specifier

(Lorosus) #{ ALL -3 FROM
I I
POEY b o] 1
- subpragram
fare o

N function o
(FN A name g

literal forrn of file specifier

.1 file

_.@

“{name
directory W protect velure
path cade spacifier

v

A A ¥

HFS or DOS files only LF files onty

Ttem

Description

Range

file specifier
subprogram name
function name
directory path

file name

LIF protect code

volume specifier

string expression

name of a SUB or CSUB subprogram
name of a user-defined function
literal

literal

literal; first two non-blank characters are
significant

literal

Example Statements
LOADSUB FNReplace$ FROM "Subs_file"

LOADSUB ALL
LOADSUB ALL

FROM Subfile$
FROM "/Dir1/Dir2/Prog23"

2-194 Keyword Dictionary -

(see drawing)

any valid name

any valid name

{see MASS STORAGE IS)

depends on volume’s format {see
Glossary)

> not allowed

{see MASS STORAGE IS)

LOADSUB

LOADSUB with ALL or Subprogram Name

When LOADSUB is used with a subprogram name or ALL, BOADSUB loads the matching
subprogram(s) from the specified file. This form of LOADSUB is programmable. If either the
file name or the subprogram name specified is not found, or the file name is not a PROG file,
an error will occur. As the subprogram is loaded, it will be renumbered to fit at the end of the
program. LOADSUB does not cause the program or any data carrently in memory to be lost.

Keyword Dictionary 2-195

LOCAL

LOCAL returns all specified devices to their local state.

Syntax
L/ path
=, G I l
1 device
selector
Item Description | Range

1/0 path name name assigned to a device or devices any valid name (see ASSIGN)
device selector nrmeric expression, rounded to an integer {see GLOSSARY)

Example Statements
LOCAL @Dvm
LOCAL 728
LOCAL Isc

Details

If only an interface select code is specified by the 1/0O path name or device selector, all devices
on the bus are returned to their local state by setting REN false. Any existing LOCAL
LOCKOUT is cancelied.

If a primary address is included, the GTL message (Go To Local) is sent to all listeners.
LOCAL LOCKOUT is not cancelled,

2-196 Keyword Dictionary

Bus Actions

Summary of Bus Actions

LOCAL.

System Controller Not System Controlier
Interface Select Primary Address | Interface Seleci Primary Address
Code Only Specified Code Only Specified
Active REN ATN ATN ATN
Controller MTA GTL MTA
UNL UNL
LAG LAG
GTL GTL
| Not Active REN Error Error Error
Controller

Keyword Dictionary 2-197

LOCAL LOCKOUT

LOCAL LOCKOUT sends the LLO {local lockout) message, which prevents local (front panel)
control of devices in the remote state.

Syntax

ntert

LOCAL LOCKOUT solant i‘;‘j‘jeT
/0 path
name
liem Description l Range

interface select numeric expression, rounded to an integer 7 through 31
code
1/0 path name name assigned to an interface select code any valid name (see ASSIGN)

Example Statements
LOCAL LOCKOUT 7
LOCAL LOCKQUT Isc
LOCAL LOCKOUT @Hpib

Details

The following conditions must be met to use LOCAL LOCKOUT without error:

m The computer sending LOCAL LOCKOUT must be Active Controller

m Only an interface select code may be specified, not a primary address

Either System Controllers or Non-system Controllers m.é,y send LOCAL LOCKQUT.

If & device is in the LOCAL state when this message is sent, it does not take effect on that
device until the device receives a REMOTE message and becomes addressed to listen.

LOCAL LOCKOUT does not cause bus reconfiguration, but issues a universal bus command
received by all devices on the interface whether addressed or not, The command sequence is
ATN and LLO.

2-198 Keyword Dictionary

Bus Actions

Summary of LOCAL LOCKOUT Bus Actions

LOCAL LOCKOUT

Systemn Controller

Not System Controller

Interface Select

Primary Address

Interface Select

Primary Address

Code Only Specified Code Only Specified
Active ATN Error ATN Frror
Controller LLO LL.O
Not Active Erzor Error Error Error
Controller

Keyword Dictionary 2-1989

LOG

LOG returns the natural logarithm (base e} of the argument

Syntax
. LO | “ argument ‘-l-@—bl
Item Description/Defanlt Range
Restrictions
argument I numeric expression 1 > () for INTEGER and REAL arguments

Example Statements
Time=-1i*Rc*L0G(Volts/Emf)
PRINT “Natural log of";¥;"=";LOG(Y)

2-200 Keyword Dictionary

LOOP

LOCOP

LOOP defines a loop that is repeated until the expression in an EXIT IF statement is
evaluated as true (non-zero).

Example Program Segment

100 ! Reading to the end of a file

110 ASSIGH QFile TG "MYFILE"

110 0N EOF GOSUB Done

120 LOGP

130 ENTER @File;Text$

140 END LOOP

150 Done: !

166 ! Process control loop

116 LOOP

120 Level=FNGet _level

130 EXIT IF Level>High level

140 Pressure=FliSet _press{Dacrease)

150 EXIT IF Pressure<Low_press

160 END LOOP

Syntax
program
segment
(EXIT IF) ef:ro:::i:n “’{
program
segment
Ttem Description Range

program segment | any number of contiguous program lines not | -

containing the beginning or end of a main
program or subprogram, but which may
contaln properly nested construct(s).

Boolean expression | numeric expression; evaluated as true if —

nonzero and false H 0

Keyword Dictionary 2-201

LOOP

Details

The LOOP ... END LOOP construct allows continuous looping with conditional exits. These
exits depend on the outcome of refational tests placed within the program segments. The
program segments to be repeated start with the LOOP statement and end with END LOOP.
Reaching the END LOOP statement will result in a branch to the first program line after the
LOOYP statement.

Any number of EXIT IF statements may be placed within the construct to escape from the
loop. The only restriction upon the placement of the EXIT IF statements is that they must
not be part of any other construct that is nested within the LOOP ... END LOOP construct.

If the specified conditional test is true, & branch to the first program line foliowing the END
LOOP statement is performed. If the test is false, execution continues with the next program
line within the constract.

Branching into a LOOP ... END LOOP construct (via a GOTO) results in normal execution
from the point of entry. Any EXIT IF statement encountered will be executed. If execution
reaches END LOOP, a branch is made back to the LOOP statement, and execution continues
as if the construct had been entered normally.

Nesting Constructs Properly

LOOP ... END LOOP may be placed within other constructs, provided it begins and ends
before the outer construct can end.

2-202 Keyword Dictionary

LORG

LORG

LORG specifies the relative origin of labels with respect to the curreni pen position.

Syntax
() o[1abel_orig:
LORG Oposit?or?n _Pi
Item ' Description l Range

numeric expression, rounded to an infeger; i through 8

default = 1

label origin
position

Example Statements
LORG New_lorg
IF Y>Limit THEN LORG 3

Detaiis

The following drawings show the relationship between a label and the logical pen position.
The pen position before the label is drawn is represented by a cross marked with the
appropriate LORG number,

Keyword Dictionary 2-203

LORG

3 6
2 5
! 4

3 6

2-204 Keyword Dictionary

LWCS

LWCS

LWCS returns a string formed by replacing any uppercase characters with their corresponding
lower-case character,

Syntax

’ _ string ,(:) '1
LWCE 0 axpregsion

Example Statements
Lower$=LWC$ (Mixeds$)
IF LUC$(Answer$)="y" THEN True_test

Details

The IWCS function converts only uppercase alphabetic characters to their corresponding
lowercase characters and will not alter numerals or special characters.

The corresponding characters for the Roman Extension alphabetic characters are determined
by the current lexical order. When the lexical order is a user-defined table, the correspondence
is determined by the STANDARD lexical order.

Keyword Dictionary 2-205

MASS STORAGE IS

MASS STORAGE IS specifies the system mass storage device, which is the path name for
a specific disk drive and directory. The MASS STORAGE 1S device is used as the implied
source or destination for all file-related related operations that do not specify an explicit
gource or destination.

MASS STORAGE IS may be abbreviated as MSI when executed from directly from the
keyboard.

Syntax

(MAss sToRAGE IS

directory
spacifiar
vaturie

specifier

literal form of directory specifier (HFS and DOS volumes only):

“*’@ L. T e L» JA’O"“

directory valume
path spacifier

directory poth:

I directary
s o
E * 1 name + , @’

oo
k

A

i — |

BOS only

005 anly ...'O_’ i

2.206 Keyword Dictionary

Hteral form of volume apecifien

MASS STORAGE IS

-0

Ttem

L@-@%

urit
aumber

O~

0O

umt

L/
amber

device .

sefector "

3 device urut .

type ruminer

vafume
numiber

¥

BOS drive -
designatar
"l'{ uF } -
L,o_, LF drive »
designator
HFS
Deseription Range

directory specifier
volume specifier
directory path

directory name

unit number

device type

device selector
volume number

DOS drive
designator

string expression
string expression
literal

literal

integer constant; default = 0

literal

integer constant
integer constant; default = (

literal

(see drawing)
{see drawing)
{see drawing)

depends on volume’s format (8
characters for DOS (short file
name}; (see Glossary)

0 through 255 (device-dependent)

See instrument-specific HP
Instrument BASIC for the device
type supported in this instrument.

(see Glossary)
{device-dependent)

any vaiid DOS drive designator in
the range A through 7 (or a
through 7}

Keyword Dictionary 2-207

MASS STORAGE IS

Example Statements
MASS STORAGE IS Vol.specifier$
MASS STORAGE IS Dir_path$&Vol_specifier$
MASS STORAGE IS "A:"
MASS STORAGE IS "C:\TEST1\MONDAY"
MASS STORAGE IS “MYDIRY

Details

All mass storage operations which do not specify a source or destination by either an I/O path
name or volume specifier in the file specifier use the current system mass storage device.

MASS STORAGE IS can be abbreviated as MSI when entering a program line, but a program
listing always shows the unabbreviated keywords.

If you are using a version of HP Instrument BASIC that supports wildcards, you can use
them in volume specifiers with MSI. You must first enable wildcard recognition using

WILDCARDS. Refer to the keyword entry for WILDCARDS for details. Wildcard file
specifiers used with MSI must match one and only one volume name.

External disk drives must be on-line.

2-208 Keyword Dictionary

MAT

MAT

MAT performs a variety of operations on matrices and other numeric and string arrays.

Example Statements
MAT Array= Ax(Ref+1/3)
MAT String$= (RPT$(" ",80))
MAT Clone= Parent
MAT A= ArrayiArray2
MAT Vector= CSUM(Matrix)
MAT Vectors RSUM{Matrix)
MAT Transpositions TRN (Matrix)
MAT Identity= IDN
MAT Inverse= INV(Matrix)
MAT Des_array(-1:0,2:4)= Sor_array
MAT Array_i= Array_2(-4:1)

MAT Destination(3,*,*)= Source(*,2, %)

Details
The MAT statement allows you to

® copy a string expression into a string array or copy the contents of one string array into
ancther string array

& COPY a numeric expression into an array
m copy the contents of one array or suharray into another array or subarray
» add an array and a numeric expression, or two arrays’

m subtract a numeric expression from an array, an array from a numeric expression, or an
array from an array

w multiply an array by a numeric expression or another array

» divide a numeric expression by an array, an array by a numeric expression, or an array by
an array

® compare an array to a numeric expression or to another array
® calculate the Identity, Inverse, Transpose, Sum of rows, and Sum of columans of a matrix

w calculate the absolute value of a numeric array

Note If an error occurs during the calculations involved in a MAT assignment the
result array will contain only a partial result. Since you will have no idea
which entries are valid, the contents of the array should be considered invalid.

Keyword Dictionary 2-209

MAT

Numeric Operations

In the case of operators, the specified operation is generally performed on everyv array element,
and the results are placed in corresponding locations of the result array {(the exception is the *
operator, which is discussed under Matrix Multiplication, below.} This means that the result
array must have the same “size” and “shape” (though not necessarily the same subscript
ranges) as the operand array(s). Note that “size” refers to the number of elements in the
array and “shape” refers to the same number of dimensions and elements in each dimension,
respectively (e.g. both of these subscript specifiers have the same shape: (-2:1,-1:10) and
(1:4,9:20)). If necessary, the system will redimension the result array to make it the proper
size. The redimensioning can only take place, however, if the dimensioned size of the result
array has at least as many elements as the current size of the operand array(s).

When two arrays are operated on, they must be exactly the same size and shape. If not, the
computer returns an error. The specified operation is performed on corresponding elements
in each operand array and the result is placed in the corresponding location of the result
array. Multiplication of the elements of two arrays is performed with a period rather than an
asterisk. The asterisk is reserved for matrix multiplication deseribed below.

Relational Operators

Relational operations are performed on each element of the operand array(s). If the relation
is TRUE, a 1 is placed in the corresponding location of the result array. If the relation is
FALSE, a 0 is recorded. The result array, therefore, consists of all (’s and 1's.

Matrix Multiplication

The asterisk is used for two operations. If it is between an array and a numeric expression,
each element in the array is multiplied by the numeric expression. If it is between two
matrices, it results in matrix multiplication. If A and B are the two operand matrices, and C
is the result matrix, the matrix multiplication is defined by:

Cy; = Z A By;
k=t

where n is the number of elements in a column in the matrix A. {This formula assumes that
the array subscripts run from 1 through N: in actuality, the computer only requires that the
two arrays be the correct size and shape, the actual values of the subscripts are unimportant.)

Note that the subscript values of the result array correspond to the rows of the first operand
matrix and the columns of the second operand matrix. Note also that the column subscript

of the first operand array is equal to the row subscript of the second operand array. We can

summarize these observations in two general rules:

m The regult matrix will have the same number of rows as the first operand matrix and the
same number of colunns as the second operand matrix.

m Matrix multiplication is legal if, and only if, the column size of the first operand matrix is
equal to the row size of the second operand matrix.

A third rule of matrix multiplication is:

m The regult matrix cannot be the same as either operand matrix.

2-210 Keyword Dictionary

MAT

If one or both operands is REAL, the calculation is done in REAL math. If both operands
are INTEGER, the computation is also INTEGER.. If the result matrix and the operand
matrixes are different types {i.e., one is REAL and the others are INTEGER), the computer
makes the conversion necessary for the assignment. However, the conversion is made after
the multiplication is calculated, so even if the matrix receiving the result is REAL, the
multiplication can generate an INTEGER overfiow whenr the operands are INTEGER.
matrixes,

The computer allows you to do matrix multiplication on vectors by treating the vectors as if
they were matrices. If the first operand is a vector, it is treated as a 1-by-N matrix. If the
second operand is a vector, it is treated as an N-by-1 matrix.

Copying Subarrays

A subarray is a subset of an array (an array within an array). A subarray is indicated by a
specifier after the array name as follows:

Array_name (subarray_specifier)
Array_name$ (subarray_specifier)

For example, to specify the entire second column of a two-dimensional array, use the following
subarray:
Array_name(*,2)
Copying subarrays is useful in these situations:
= copying a subarray into an array
® copying an array into a subarray
® copying a subarray into a subarray
= copying a portion of an array into itself

Before discussing the rules for subarrays the concept of range needs to be understood as it
appears in thig text. The two ranges related to subarrays are the subscript range and default
range. The subscript range specifies a set of elements starting with a beginning element
position and ending with a final element position. For example, 5:8 specifies a range of four
elements starting with element 5 and ending at element 8. The default range is denoted by an
asterisk (*) and it represents all of the elements in a dimension. Tor example, suppose you
wanted to copy the entire first column of a two dimensional array, you would use the following
subarray specifier: (*,1), where * represents all the rows in the array and 1 represents only the
first columan.

Keyword Dictionary 2-211

MAT

Follow these rules when copying subarrays:

m Subarray specifiers must not contain all subscript expressions (Le., (1.2,3} is not allowed, it
will produce a syntax error}. This rule applies to all subarray specifiers.

m Subarray specifiers must not contain all asterisks (*) or default ranges (i.e. (*,*%,%) is not
allowed, it will produce a syntax error). This rule applies to all subarray specifiers.

w If two subarrays are given in a MAT statement, there must be the same number of ranges in
each subarray specifier. For example,

MAT Des_arrayi(1:10,2:3)= Sor_array(5:14,%,3)

is the correct way of copying & subarray into another subarray provided the default range
given in the source array (Sor_array) has only two elements in it. Note that the source
array is a three-dimensional array. However, it still meets the criteria of having the same
number of ranges as the destination array because two of its entries are ranges and orne is an
expression.

m If two subarrays are given in a MAT statement, the subscript ranges in the source subarray
must be the same shape as the subscript ranges in the destination subarray. For example,
the following is legal:

MAT Des_array{(1:5,0:1)= Sor_array(3,1:5,6:7)
however, the one below is not legal:
MAT Des_array(0:1,1:5)= Sor_array(1:5,0:1)

hecause both of its subarray specifiers do not have the same shape (i.e. the rows and
columns in the destination subarray do not match the rows and celumns in the source
subarray).

CSUM

The secondary keyword C5UM computes the sum of each column in a matrix and places the
results in a vector. The result vector must have at least as many elements as the matrix

has columns. If the vector is too large or its current size is too small (and there are enough
elements in its original declaration to allow redimersioning}, the computer redimensions it.

If the result vector and the argument array are different types (i.e., one is REAL and the
other is INTEGER), the computer makes the necessary conversion. However, the conversion is
made after the column sums are caleulated, so even if the vector receiving the result is REAL,
CSUM can generate an INTEGER overflow when the argument is an INTEGER array.

2-212 Keyword Dictionary

MAT

IDN

‘T'he secondary keyword IDN turns a square matrix into an identity matrix. An identity
matrix has 1Is along the main diagonal and Os everywhere else. The matrix must be square.

INV

The secondary keyword INV finds the inverse of a square matrix. A matrix multiplied by its

“inverse produces an identity matrix. The inverse is found by using the pivot-point method. If
the value of the determinant (see DET) is 0 after an INV, ther the matrix has no inverse—
whatever inverse the computer came up with is invalid. If the value of the determinant is very
small compared with the elements in the argument matrix, then the inverse may be invalid
and should be checked.

If the result matrix is not the same size and shape as the argument matrix, the computer
will attempt to redimension it. If it is too large, or its current size is too small (and there
are enough elements in its original declaration to allow redimensioning) the computer

redimensions it. An error is returned if the computer cannot redimension the result array.

RSUM

The secondary keyword RSUM computes the sum of each row in a matrix and places the
values in a vector. The result vector must be large enough to hold the sums of each row. If

it is too large, or its current size is too small (and there are enough elements in its original
declaration to allow redimensioning) the computer redimensions it. If the result vector and
the argument array are different types (i.e., one is REAL and the other is INTEGER), the
computer makes the necessary conversion. However, the conversion is made affer the row
sums are calculated, so even if the vector receiving the result is REAL, RSUM can generate an
INTEGER overflow when the argument is an INTEGER. array.

TRN

The secondary keyword TRN produces the transpose of a matrix. The transpose is
produced by exchanging rows for columns and columns for rows. The result matrix must

be dimensioned to be at least as large as the current size of the argument matrix. If it’s the
wrong shape, the computer redimensions it. The result and argument matrices cannot be the
same.

The transpose of an N-by-M matrix is an M-by-N matrix, and each element is defined by
switching the subscripts. That is, A{m,n) iz the argument matrix equals B{n,m) in the result
matrix. (This description assumes that the array subscripts run from 1 through M and 1
through N; in actuality, the computer only requires that the array be the correct size and
shape, the actual values of the subscripts are unimportant.)

Keyword Dictionary 2-213

MAT REORDER

MAT REORDER reorders elements in an array according to the subseript list in a vector,

Syntax

array vastor |
(MAT REORDER)_, narne ‘@-{B_Y_)—’ name l j ot
dirnensian

Itemn Deseription Range
array name name of an array any valid name
vector namme name of a one-dimensional numeric array any valid name
dimension numeric expression, rounded to an integer; 1 through 6: < the RANK of the
default=1 array

Example Statements
MAT REORDER Array BY 'Vector,Dimez}sion
MAT REORDER Lines$ BY Hew_order

Details

The dimension parameter is used to specify which dimension in a multidimensional array is to
be reordered. If no dimension is specified, the computer defaults to dimension 1. The vector
must be the same size as the specified dimension and it should contain integers corresponding
to the subscript range ol that dimension (no duplicate numbers, or numbers out of range).

2-214 Keyword Dictionary

MAX

MAX

MAX returns a value equal to the greatest value in the ligt of argnments. Each element of an
array is considered a separate value,

Syntax
{ +)=
S
1| numaric
SXPressin
areay
narne
Item E Description I Range
array name . name of & numeric array E any valid name

Example Statements
Biggest=MAX (Elements (¥})
PRINT MAX{Iteml,17,Total/3)
Result=MAX(Floor MIN(Ceiling,Argument))

Keyword Dictionary 2-215

MAXREAL
MAXREAL returns the largest positive REAL number available in the range of the computer.
Its value is approximately 1.797 693 134 862 32124308,

Syntax

Example Statements
IF X<=LGT(MAXREAL) THEN Y=10"X
Half _max=MAXREAL/2

2-216 Keyword Dictionary

MERGE ALPHA

MERGE ALPHA

MERGE ALPHA is included for compatibility with RMB-UX. It has no effect except in RMB
Workstation,

Syntax

(MERGE ALPHA) >}
L{ WITH GRAPH%CS)—J

Example Statements

MERGE ALPHA
IF Done THEN MERGE ALPHA WITH GRAPHICS

Keyword Dictionary 2-217

MIN

MIN returns a value equal to the least value in the list of arguments. Each element of an
array is considered a separate value.

Syntax
M)
./
numeric

EXpression

ok GOy

name
Ttem I Deseription | Range

name of & numeric array l any valid name

array name
Example Statements

Smallest=MIN{Elements{*))

PRINT MIN(Item1,17,Total/3)

2.218 Keyword Dictionary

MINREAL

MINREAL
MINREAL returns the smallest positive REAL number available in the range of the computer.

Its value is approximately 2.225 073 858 507 24-308,

Syntax

MINREAL

Example Statements
IF %>=LOG{MINREAL) THE¥ Y=EXP(X}

Keyword Dictionary 2-219

MOD

MOD returns the remainder of a divigion.

Syntax
=1 dividand MOD divisor i
Item Description l Range
dividend numeric expression —
divisor numeric expression not equal to 0

Example Statements
Remainder=Dividend MOD Diviser

PRINT "Beconds =";Time MOD 80
Details

MOD returns an INTEGER value if both arguments are INTEGER. Otherwise the returned
value is REAL.

2-220 Keyword Dictionary

MODULO

MODUL.O

MODULO returns the remainder of a division just like MOD, only with one additional
constraini—the result satisfies: '

0<={X MODULD Y)Y if V>0
¥<(X MODULO Y)<=C if ¥<0

Syntax
o] dividend —@_@—» madulies f—
Ttem Description ! Range
dividend Imeric expression range of REAL
modulus mimeric expression range of REAL, #0

Example Statements
Remainder=Dividend MODULG Divisor

PRINT "Seconds =";Time MODULD &0

Details
X MODULO Y is equivalent to XY xINT(X/Y).
The result satisfies:

0 <= (X MODULO ¥) < Y if ¥>0
¥ < (X MCDULO Y) <= 0 if Y&<0

The type of the result is the higher of the types of the two operands. If the modulus is zero,
then error 31 occurs.

MODULO returns the remainder of a division.

Keyword Dictionary 2-221

MOVE

MOVE moves the physical and logical position of tiie graphics pen to specified X and Y
coordinates without drawing a line.

Syntax
MOVE % coordinote —FQ—D v coardinate pea]
Tiem ' Description l Range
X coordinate numeric expression in current units —
y coordinate numeric expression in current units 000 - -

Example Statements
MOVE 10,75
MOVE Next._ x,Next_ y

Details

The pen is raised before the move and remains up after the move. The X and Y coordinates
are interpreted according to the eurrent unit-of-measure.

If both current physical pen position and specified pen position are outside current clip limits,
no physical pen movement is made; however, the logical pen position is moved to the specified
coordinates.

Graphics Transformations

The output of MOVE is affected by only these graphics transformations:
w scaling specified by WINDOW

m scaling specified by SHOW

w rotations specified by PIVOT

2-222 Keyword Dictionary

MOVELINES

MOVELINES

MOVELINES moves contiguous program lines from one location to another. If only one line
identifier is specified, only that line is moved.

Syntax

r

baginning

lirte number

ending target
(MOVEUNESJ l' fine number 10 line nurmber I '

anding target
iine label e label
beginning
e labet
Item Description Range
beginning line integer constant identifying program line 1 to 32 7686
number
beginning line label | name of a program line any valid name
ending line number | integer constant identifying program line 1 to 32 766
ending line label name of a program line any valid name
target line number |integer constant identifying program line 1 to 32 768
target line label name of a program line any valid name

Example Commands

MOVELINES 1200 70 3250
MOVELINES 10,440 TO 540
MOVELINES Labell,Label2 TC Label3

Details
If the ending line idenfifier is not specified, only one line is moved.

The target line identifier will be the line number of the first line of the moved program
segment. Moved lines are renumbered if necessary. The code (if any) that is “pushed down”
to make room for the moved code is renumbered if necessary.

Line number references to the moved code are updated as they would be by a REN command
(except external references to non-existent lines are renumbered).

If there are any DEF FN or SUB statements in the moved code, the target line number must
be greater than any existing line number.

If you try to move a program segment to a line number contained in the segment, an error will
result and no moving will occur.

Keyword Dictionary 2-223

MOVELINES

If the starting line number does not exist, the next line is used. If the ending line number
does not exist, the previous line is used. If a line label doesn™ exist, an error occurs and no

moving takes place,

If an error occurs during a MOVELINES (for example, a memory overflow), the move is
terminated and the program is left partially modified.

2-224 Keyword Dictionary

mMsi

MSI
MSI is identical to MASS STORAGE 1IS.

Keyword Dictionary 2-225

NEXT
See FOR ... NEXT.

2-226 Keyword Dictionary

NOT

NOT
NOT returns 1 if its argument equals 0. Otherwise, 0 is returned.
Syntax

NOT I Corestion [

Example Statements
Invert_flag=NOT Std.device
IF NOT My_job THEN Sleep

Details

When evaluating the argument, a non-zero value (positive or negative) is treated as a logical
1; only zero is treated as a logical 0.

The logical complement is shown below:

A | NOT A
1
1 0

Keyword Dictionary 2-227

NUM

NUM returns the decimal value of the ASCII code of the first character in the specified string.
The range of returned values is 0 through 255.

Syntax
UM : 0 argument —D@—P
Ttem l Description] Range
argument l string expression not a null string

Example Statements
Ascii_val=NUM(String$)
A$[1;1]=CHR$ (NUM(A$[I])+32)

2.228 Keyword Dictionary

OFF CYCLE

OFF CYCLE

OFF CYCLE cancels event-initiated branches previcusly defined and enabled by an ON
CYCLE statement.

Syntax

Example Statements
OFF CYCLE
IF Stop.timer THEN OFF CYCLE

Details

OFF CYCLE destroys the log of any CYCLE event that has already occurred but that has
not been serviced.

If OFF CYCLE is executed in a subprogram such that it cancels an ON CYCLE in the calling
context, the ON CYCLE definition is restored upon returning to the calling context.

Keyword Dictionary 2-229

OFF ERROR

OFF ERROR cancels event-initiated branches previously defined and enabled by an ON
ERROR statement. Subsequent errors are reported to the user in the usual fashion.

Syntax

(off errorR)

Example Statement
OFF ERROR

2-230 Keyword Dictionary

OFF INTR

OFF INTR

OFT INTR cancels event-initiated branches previously defined by an ON INTR statement.

Syntax

(oFF INTR) *
L interface _j

select code

Example Statements
OFF INTR
OFF INTR 12
OFF INTR Hpib

Details

Not specifying an interface select code disables the event-initiated branches for all interfaces.
Specifying an interface select code canses the OFF INTR to apply to the event-initiated log
entry for the specified interface only.

Any pending ON INTR branches for the affected interfaces are lost and further interrupts are
ignored.

Keyword Dictionary 2-231

OFF KEY

This statement cancels event-initiated branches previously defined and enabled by an ON
KFEY statement.

Syntax
(oFF Kev)} >
j I
L key J
sejector
Item ‘ Deseription ‘ Range

key selector numeric expression, rounded to an integer; 0 thru 19%

default = all keys

*See your instrument-specific HP Instrument BASIC manual for valid key selectors.

Example Statements

UFF KEY
OFF XEY 4

Details

Not specifying a softkey number disables the event-initiated branches for all softkeys.
Specifying a softkey number causes the OFF KEY to apply to the specified softkey only. If
OFF KEY is executed in a subprogram and cancels an ON KEY in the context that called the
subprogram, the ON KEY definitions are restored when the calling context is restored.

Any pending ON KEY branches for the affected softkeys are lost.

2-232 Keyword Dictionary

OFF TIMEOUT

OFF TIMEOUT

OFF TIMEOUT cancels event-initiated branches previously defined and enabled by an ON
TIMEOUT statement.

Syntax

Y

(OFF TIMEQUT }
L interfacs _j
select code

Example Statements
OFF TIMEOUT
OFF TIMEOUT 12
OFF TIMEQOUT Hpib

Details

Not gpecifying an interface select code disables the event-initiated branches for all interfaces.
Specifying an interface select code causes the OFF TIMEOUT {0 apply to the event-initiated
branches for the specified interface only. When OFF TIMEOUT is executed, no more
timeouts can occur on the affected interfaces.

Keyword Dictionary 2-233

‘ON

ON transfers program execution to one of several destinations selected by the value of the

pointer.
Syntax
‘ ON)""" pointer
Ttem Deseription
pointer numeric expression, rounded to an integer 1 through 74

line number

line label

integer contstant identifying a program line

name of program line

Example Statements
ON X1 GOTO 100,150,170

I¥ Point THEE 0¥ Peint GOSUB First,Second,Third,lLast

Details

If the pointer evaluates to 1, the first line number or label is used. If the pointer evaluates to
2, the second line number or label is used, and se on. If GOSUB is used, the RETURN is to

the line following the ON ... GOSUB statement.

If the pointer evaluates to less than 1 or greater than the number of lines listed, error
19 results. The specified line numbers or labels must be in the same context as the ON

statement.

2-234 Keyword Dictionary

i through 32 766

any valid name

ON CYCLE

ON CYCLE

ON CYCLE defines and enables an event-initiated branch to be taken each time the specified
number of seconds has elapsed.

Syntax
{oN CYCLE }fscconas _j »{GOSUR) L [e,
"')'{ ' }"l' priority
. { ting
number
RECOVER)
Bubprogram
fitlagi
Ttem Deseription Range
seconds numeric expression, rounded to the nearest (.01 through 167 772.16
0.02 second
priority numeric expression, rounded to an integer; 1 through 15
default=1
line label name of a program line any valid name
line number integer constant 1dentifying a program line |1 through 32 766
subprogram name | name of a SUB or CSUB subprogram any valid name

Example Statements
0¥ CYCLE Seconds,Priority CALL Sub_name
ON CYCLE Max_time RECOVER Backup
0N CYCLE 3600,3 GOTO £200

Details

The most recent ON CYCLE (or OFF CYCLE) definition overrides any previous ON CYCLE
definition. If the overriding ON CYCLE definition occurs in a context different from the one
in which the overridden ON CYCLE occars, the overridden ON CYCLE is restored when

the calling context is restored, but the time value of the more recent ON CYCLE remains in
effect.

The priority can be specified, with the highest priority represented by 15. The highest
user-defined priority (15) is less than the priority for ON ERROR, ON END, and ON
TIMEQUT {whose priorities are not user-definable), ON CYCLE can interrupt service
routines of other event-initiated branches with user-definable priorities, if the ON CYCLE
priority is higher than the priority of the service routine (the current system priority). CALL
and GOSUB service routines get the priority specified in the ON ... statement that set up the
branch that invoked them. The system priority is not changed when a GOTO branch is taken.

Keyword Dictionary 2-235

ON CYCLE

Any specified line label or line number must be in the same context as the ON CYCLE
statement. CALL and GOSUB will return to the next line that would have been executed if
the CYCLE event had not been serviced, and the system priority is restored to that which
existed before the ON CYCLE branch was taken. RECOVER forces the program to go
directly to the specified line in the context containing that ON CYCLE statement. When
RECOVER forces a change of context, the system priority is restored to that which existed in
the original {defining) context at the time that context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless the

change in context is caused by a keyboard-originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

ON CYCLE is disabled by DISABLE and deactivated by OFF CYCLE. If the cycle value is
short enough that the computer cannot service it, the interrupt will be lost.

2-236 Keyword Dictionary

ON ERROR

ON ERROR

ON ERROR defines and enables an event-initiated branch, which results from a trappable
error. This allows you to write your own error-handling routines.

Syntax
- line
ON ERROR }1->{GOSUB) 'y [oo

—F.—‘”'P line

@ auber ™
RECOVER
subprogram

CALL e JE—

Ttem Deseription Range
line label name of a program line any valid name
line number mteger constant identifying a program line 1 through 32 766
subprogram name | name of a SUB or CSUB subprogram any valid name

Example Statements
ON ERRCR GOTO 1200
ON ERRCR RECOVER Crash
ON ERRCR CALL Report

Details

The ON ERROR statement has the highest priority of any event-initiated branch. ON
ERROR. can interrupt any event-initiated service routine.

Any specified line label or line number must be in the same context as the ON ERROR
statement. RECOVER forces the program to go directly to the specified line in the context
containing the ON ERROR statement.

Returns via RETURN, SUBEXIT, or SUBEND from ON ERROR GOSUB or ON ERROR
CALL routines are different from regular GOSUB or CALL returns. When ON ERROR is in
effect, the program resumes at the beginning of the line where the error occurred. If the ON
ERROR routine did not correct the cause of the error, the error is repeated. This causes an
infinite loop between the line in error and the error handling routine. To avoid a retry of the
line that caunsed the error, use ERROR RETURN instead of RETURN or ERROR SUBEXIT
instead of SUBEXIT. When execution returns from the ON DRROR. routine, system priority
is restored to that which existed before the ON ERROR branch was taken.

Keyword Dictionary 2-237

ON ERROR

CALL and RECOVER remain active when the context changes to a subprograni, unless the
change in context is caused by a keyboard-originated call. In this case, the error is reported to
the user, as if ON ERROR had not heen executed.

GOSUB and GOTO do not remain active when the context changes fo a subprogram. If an
error occurs, the error is reported to the user, as if ON ERROR had not been executed.

If an execution error occurs while servicing an ON ERROR CALL or ON ERROR GOSUB,
program execution stops. If an execution error occurs while servicing an ON ERROR GOTO
or ON ERROR RECOVER routine, an infinite loop can occur between the line in error and
the GOTO or RECOVER routine.

If an ON ERROR routine cannot be serviced because inadequate memory is available for the
computer, the original error is reported and program execution pauses at that point.

ON ERROR is deactivated by OFF ERROR. DISABLE does not affect ON ERROR.

2-238 Keyword Dictionary

ON INTR

ON INTR

ON INTR defines an event-initiated branch to be taken when an interface card generates an
interrupt. The interrupts must be explicitly enabled using ENABLE INTR.

Syntax

interface of Y\
(ON_INTR) seiect code l J '\GOSUB} 3

ariority

f 3

nuinbher

(resoner)

subprogram
name

Ttem Deseription Range
interface select numeric expression, rounded to an integer b, 7 through 31
code
prioricy numeric expression, rounded £o an integer; 1 through 15

defauli=1
line label name of a program line aity valid name
line number integer constant identifying a program line 1 through 32 766
subprogram name | name of a SUB or CSUB subprogram any valid name

Example Statements
ON INTR 7 GOTOD 500
O8N INTR Hpib,4 GOSUB Service
0¥ INTR Isc,Priority CALL Sub_name

Details

The occurrence of an interrupt performs an implicit DISABLE INTR for the interface. An
ENABLE INTR must be performed to reenable the interface for subsequent event-initiated
branches. Another ON INTR is not required, nor must the mask for ENABLE INTR he
redefined.

The priority can be specified, with highest priority represented by 15. The highest priority

is less than the priority for ON ERROR, ON END, and ON TIMEQUT. ON INTR. can
interrupt service routines of other event-initiated branches that have user-definable priorities,
if the ON INTR priority is higher than the priority of the service routine {the current system
priority). CALL and GOSUB service routines get the priority specified in the ON ...
statement that set up the branch that invoked them. The system priority is not changed when
a GOTO branch is taken.

Keyword Dictionary 2-239

ON INTR

Any specified line label or line number must be in the same context as the ON INTR
statement. CALL and GOSUB will return to the next line that would have been executed

i the INTR event had not been serviced, and the system priority is restored o that which
existed before the ON INTR branch was taken. RECOVER forces the program to go directly
to the specified line in the context containing that ON INTR statement. When RECOVER
forces a change of context, the system priority is restored to that which existed in the original
(defining) context at the time that context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless the

change in context is caused by a keyboard-originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

ON INTR is disabled by DISABLE INTR or DISABLE and deactivated by OFF INTR.

ON INTR and OFF INTR statements may be executed for any I/O card in the machine. It is
not necessary to have a driver for the card.

2-240 Keyword Dictionary

ON KEY

ON KEY

This statement defines and enables an event-initiated branch to be taken when a softkey is
pressed.

Syntax
() » ke
ON_KEY aeEec};or j A
LABEL promgpt pricrity
o .
~»{GosuB) 1™ e
BOTO L fine | o
number
RECOVER
subprogram
e | e
Item Description Range
key selector numeric expression, reunded to an integer § thru 23*
prompt string expression; default = no label —
priority numeric expression, rounded to an integer; 1 thru 15
default=1
line label name of a program line any valid name
line number integer constant identifying a program line 1 thru 32 768
subprogram name | name of a SUB subprogram any valid name

*See your instrument-specific HP Instrument BASIC manual for valid key selectors.

Example Statements

CN KEY 0 GOTD 150
GN KEY 5 LABEL "Print",3 GOSUB Report

Detaiis

The most recently executed ON KEY (or OFF KEY) definition for a particular softkey
overrides any previous key defirition. If the overriding ON KEY definition occurs in & context
different from the one in which the overridden ON KEY occurs, the overridden ON KEY is
restored when the calling context is restored.

Labels appear on the CRT. The label of any key is bound to the current ON KEY definition.
Therefore, when a definition is changed or restored, the label changes accordingly.

Keyword Dictionary 2-241

ON KEY

The priority car be specified, with the highest priority represented by 15. The highest
user-defined priority (15) is less than the priority for ON ERROR, ON END, and ON
TIMEOUT (whose priorities are not user-definable). On KEY can interrupt service routines
of other event-initiated branches with user-definable priorities, if the ON KEY priority is
higher than the priority of the service routine {the current system priority). CALL and
GOSUB service routines get the priority specified in the ON ... statement that set up the
branch that invoked them. The system priority is not changed when a GOTO branch is taken.

. Any specified line label or line number must be in the same context as the ON KEY
statement. CALL and GOSUB will return to the next line that would have been executed

if the KEY event had not been serviced, and the system priority is restored to that which
existed before the ON KEY branch was taken. RECOVER forces the program to go directly
to the specified line in the context containing that ON KEY statement. When RECOVER
forces a change of context, the system priority is restored to that which existed in the original
(defining) context at the time that context was exited.

CALL and RECOVER remain active when the context changes to a subprogram.

GOSUB and GOTO remain active when the context changes to a sabprogram, but the branch
cannot be taken until the calling context is restored.

ON KLY is disabled by DISABLE, deactivated by OFF KEY, and temporarily deactivated
when the program is paused or executing INPUT, or ENTER KBD.

2-242 Keyword Dictionary

ON TIMEOUT

ON TIMEOUT

ON TIMEOUT defines and erables an event-initiated branch to be taken when an I/O
timeout ocours on the specified interface.

Example Statements
ON TIMEOUT 7,4 GOTO 770
ON TIMEOUT Printer,Time GUSUB Message

Syntax
riteriacs N
(on TiMeOUT }f | TETI b seconds \ L
number
subprogrom
ndine
Hem Deseription Range
interface select numeric expression rounded to an integer 7 through 31
code
seconds numeric expression, rounded to the nearest
0.001 second for BASIC/WS and 0.020 second
for BASIC/UX
line label name of program line any valid name
line number integer contstant identifying a program line 1 through 32 766
subprogram name | name of a SUB or CSUB subprogram any valid name
Details

There is no default systemn timeout. If ON TIMEOQUT i& not in effect for an interface, a device
can cause the program to wait forever,

The specified branch occurs if an input or output is active on the interface and the interface
has not responded within the number of seconds specified. The computer waits at least the
specified time before generating an interrupt; however, it may wait up to an additional 25% of
the specified time.

Timeouts apply to ENTER and OUTPUT statements, and operations involving the
PRINTER IS5, PRINTALL IS, and PLOTTER IS devices when they are external. Timeouts
do not apply to CONTROL, STATUS, READIO, WRITEIO, CRT alpha or graphics 1/0, real
time clock 1/0, keyboard I/0, or mass storage operations.

Keyword Dictionary 2-243

ON TIMEQUT

The priority associated with ON TIMEOUT is higher than priority 15. ON END and ON
ERROR have the same priority as ON TIMEOUT, and car interrupt an ON TIMECUT
service routine,

Any specified line label or line number must be in the same context as the ON TIMEOUT
statement. CALL and GOSUB will return to the line immediately following the one during
which the timeout occurred, and the system priority is restored to that which existed before
the ON TIMEOUT branch was taken. RECOVER forces the program to go directly to the
specified line in the context containing that ON TIMEOUT statement. When RECOVER
forces a change of context, the system priority is restored to that which existed in the original
(defining) context at the time that context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. GOSUB and GOTO do not remain
active when the context changes to a subprogram. The TIMEOUT event does remain active.
Unlike other ON events, TIMEQUTs are never logged, they always cause an immediate
action. If a TIMEOUT occurs when the ON TIMEQUT branch cannot be taken, an error 168
is generated. This can be trapped with ON ERROR. The functions ERRN and ERRDs are
set only when the error is generated. They are not set when the ON TIMEOUT branch can
be taken.

ON TIMEQOUT is deactivated by OFF TIMEOUT. DISABLE does not affect ON TIMEOUT.

2-244 Keyword Dictionary

OPTION BASE

OPTION BASE

OPTION BASE specifies the default lower bound of arrays. Zero is the default lower bound
unless OPTION BASE 1 statement is executed.

Syntax

(oprion BasE)

Example Statements
OPTION BASE 0
OPTION BASE 1

Details

OPTION BASE determines the default lower bound for arrays that you declare without
specifying a lower bound. If you specify an explicit upper and lower bound, it takes
precedence over the OPTION BASE specification. The following code segment illngtraies this
hehavior:

100 OPTION BASE 1
110 DIM Var(5:10) ! The lower bound of Var is 5.

OPTION BASE can occur only once in each context. If used, OPTION BASE must precede
any explicit variable declarations in a context. Since arrays are passed to subprograms by
reference, they maintain their original lower bound, even il the new context has a different
OPTION BASE. Any context that does not contain an OPTION BASE statement assumes
default lower bounds of zero.

The OPTION BASE value is determined at prerun, and is used with all arrays declared
without explicit lower bounds in COM, DIM, INTEGER, and REAL statements as well as
with all implicitly dimensioned arrays. OPTION BASE is also used at run time for any arrays
declared without lower bounds in ALLOCATE.

Keyword Dictionary 2-245

OR

OR returns a 1 or a 0 based on the logical inclusive OR of the arguments.

Syntax

3 numeﬂ'c OR ﬂuﬁaeric 3
SUrEsEIon SRPresSIon

Example Statements
X=Y OR Z
IF File_type UR Device THEM Process

Details

An expression that evalnates to a non-zero value is treated as a logical 1. An expression must
evaluate fo zero to be treated as a logical 0.

The truth table is

A| B AORB
0 0 0
0 1 1
i 0 1
i 1 1

2-246 Keyword Dictionary

OUTPUT

OUTPUT

OUTPUT outputs items to the specified destination.

Syntax

(ourPuT ’—-»des'tination
mage j tabel
USING specifier L’@" itarms

-

Expanded divgram: destination image items
A A
7 N e Y
170 patk: o]
name 3 o
record Image fine
nuraber - USING fabel
device ‘ . "
cofoctor S inage ling
number
destination [$ \ image
string o i
string name N2/ specifier
subscript

©

o/
[o string] .
axpression 4 v
strin
—»{ g
fiteral array name 3 (*)
items
] TUMISIIC » traifing punctugtion
exprassion not aflowed with USING
AUMerie
e array name <*>
-8 —< END)““

iiteral form of image specifier

NS
mage >

]; i
specifier Hat
repeat image
factor specifier Hst

Keyword Dictionary 2-247

ouTPUT

image specifier lst m‘
{ Ay
() l

(6

O

g

»(D)
L} rEPEDY J
factor

;

repeaat
factor

factor

*
repeat J

J
000| || |]]1]]]]

- repeat J
factor

Radix specifier cannot

be used without o
@ digit specifier

repadt
factor

h 4

repegt
factor

) 4

repeat
factar

2 4

repaat
factor

|]] £

repeat
facter

2-248 Keyword Dictionary

OC

{itaral b l " :

Ttem

Description

OUTPUT

Range

1/O path name

record number
device selector

destination string
name

image line number

sthseript

image line label
image specifier
string array narne

BUIMeric array
name

image specifier list
repeat factor

literal

name assigned to a device, devices, mass
storage file, buffer, or pipe

ntmeric expression, rounded to an integer
aumeric expression, rounded to an integer

name of a string variable

integer constant identifying an IMAGE
statement

numeric expression, rounded to an integer

name identifying an IMAGE statement
string expression
name of a string array

name of a numeric array

literal
integer constant

string constant composed of characters from
the keyboard

Example Statements

OUTPUT 701;Number,String$;

OUTPUT @File;Array(*),EED

QUTPUT @Random,Record USIEG Fmtl;Item(5)

QUTPUT 12 USING "#,6A":B$[2:6]
DUTPUT Dest$ USING 110:;4/1000,VAL$(Res)
OUTPUT @Printer;:Rank;Id;Name$

any valid name

1 through 25! -1
(see Glossary)

any vahd name
1 through 32 766

—32 767 through -+32 767 (see
“array” in Glossary)

any vaiid name
(see drawing)
any valid name

any valid name

{see next drawing)
1 through 32 767

quote mark not allowed

Keyword Dictionary 2-249

OuUTPUT

Details

Standard Numeric Format

The standard numeric format depends on the value of the number being displayed. If the
absolute value of the number is greater than or equal to 1E-4 and less than 1E+6, it is
rounded to 12 digits and displayed in floating point notation. If it is not within these limits,
it is displayed in scientific notation. The standard numeric format is used unless USING is
selected, and may be specified by using K in an image specifier.

Arrays

Entire arrays may be output by using the asterisk specifier. Fach element in an array

is treated as an item by the OUTPUT statement, as if the items were listed separately,
separated by the punctuation following the array specifier. If no punctation follows the array
specifier, a comma is assumed. The array is output in row major order (rightmost subscript
varies fastest).

Files as Destination

If an I/O path has been assigned to a file, the file may be writter with OUTPUT statements.
The file must be an ASCIL, BDAT, or DOS file. The attributes specified in the ASSIGN
statement are used if the file is a BDAT or DOS file. LIF ASCII files (files created by
CREATE ASCII are always assigned a special case of the FORMAT ON attribute.

Serial access is available for ASCII, BDAT, and DOS files. Random access is available for
BDAT and DOS files. The end-of-file marker {EOF} and the file pointer are important to
both serial and random access. The file pointer is set to the beginning of the file when the file
is opened by an ASSIGN. It is updated by OUTPUT operations so that it always points to
the next byte to be written.

The EOF pointer is read from the media when the file is opened by an ASSIGN. On a newly
created file, EOF is set to the beginning of the file. After each OUTPUT operation, the EOT
pointer in the I/O path table is updated to the maximum of the file pointer or the previous
EOF value. The EOF pointer on the volume is updated at the following times:

m When the current end-of-file changes.
a When END is specified in an OUTPUT statement directed to the file,

w When a CONTROL statement directed to the I/O path name changes the position of the
EOF.

Random access uses the record number parameter to write items to a specific location in a
file. The OUTPUT begins at the start of the specified record and must fit into one record.
The record specified cannot be beyond the record containing the EOF, if EOF is at the first
bvte of a record. The record specified can be one record beyond the record containing the
EOF, if EOF is not at the first byte of a record. Random access is always allowed to records
preceding the EOF record. If you wish to write randomly to a newly created file, either yse a
CONTROL statement to position the EOQF in the last record, or write some “dummy” data
into every record.

2-250 Keyword Dictionary

OUTPUT

When data is written to a LIF ASCII file (a file created with CREATE ASCII), each item is
sent as an ASCII representation with a 2-hyte length header. You cannot use OUTPUT with
USING to LIF ASCII files; see the following section, “OUTPUT with USING” for details.

Data sent to a BDAT, DFS, or HP-UX file is sent in internal format if FORMAT OFF is
currently assigned to the I/O path (this is the default FORMAT attribute for these file types),
and is sent as ASCH characters if FORMAT ON has been explicitly assigned. {See “Devices
as Destination” for a description of these formats.}

Devices as Destination

An I/0 path or a device selector may be used to direct OUTPUT to a device. If a device
selector is used, the default system attributes are used (see ASSIGN). If an I/O path is used,
the ASSIGN statement used to associate the I/O path with the device also determines the
attributes used. If FORMAT ON is the current attribute, the items are sent in ASCIL. Items
followed by a semicolon are sent with nothing following them. Numeric items followed by a
comma are sent with a comma following them. String items followed by a comma are sent
with a CR/LF following them. If the last item in the OUTPUT statement has no punctuation
following it, the current end-of-line (EOL) sequence is sent after it. Trailing punctuation
eliminates the automatic EOL.

If FORMAT OFF is the current attribute, items are sent to the device in internal format.
Punctuation following items has no effect on the QUTPUT. Two bytes are sent for each
INTEGER and eight bytes are sent for each REAL. Each string output consists of a four
byte header containing the length of the string, followed by the actual string characters. If
the number of characters is odd, an additional byte containing a blank is sent after the last
character.

CRT as Destination

If the device selector is 1, the OUTPUT is directed to the CRT. OQOUTPUT 1 arnd PRINT
differ in their treatment of separators and print fields. The QUTPUT format is described
under “Devices as Destination.” See the PRINT keyword for a discussion of that format.
OUTPUT 1 USING and PRINT USING to the CRT produce similar actions.

Using END with Devices

The secondary keyword END may be specified following the last item in an QUTPUT
statement. The result, when USING is not specified, is to suppress the EOL (End-of-Line)
sequence that wounld otherwise be output after the last byte of the last item. If a comma is
used to separate the last item from the END keyword, the corresponding item terminator is
output (CR/LF for string items or comma for numeric items).

With HP-IB interfaces, END specifies an EOI signal to be sent with the last data byte of the
last item. However, if no data is sent from the last output item, EOI is not sent. With Data
Communications interfaces, END specifies an end-of-data indication to be sent with the last
byte of the last output item.

Keyword Dictionary 2-251

QUTPUT

OQUTPUT with USING

When the computer executes an QOUTPUT USING statement, it reads the image specifier,
acting on each field specifier (field specifiers are separated by cominas) as it is encountered. If
nothing is required from the output items, the field specifier is acted upon without accessing
the output list. When the field specifier requires characters, it accesses the next item in the
output list, using the entire item. ach element in an array is considered a separate item.

The processing of image specifiers stops when there is no matching display item (and the
specifier requires a display item). If the image specifiers are exhansted before the display
items, they are reused, starting at the beginning.

If a numerie item requires more decimal places to the left of the decimal point than are
provided by the field specifier, an error is generated. A minus sign takes a digit place if M
or S is not used, and can generate unexpected overflows of the image field. If the number
contains more digits to the right of the decimal point than specified, it is rounded to fit the
specifier.

If a string is longer than the field specifier, it is truncated, and the right-most characters are
lost. If it is shorter than the specifier, trailing blanks are used to fill out the field.

OUTPUT with USING cannot be used with output to LII" ASCII files (files created by
CREATE ASCII). Instead, direct the OUTPUT with USING to a string variable, and then
QUTPUT this variable to the file.

100 QUTPUT String$ USING "BA&,X,8D.D";Chars$,Number
110 OUTPUT @File;String$

Effects of the image specifiers on the OUTPUT statement are shown in the following table:

Image Meaning
Specifier
K Compact field. Qutputs a number or string in standard form with no leading or trailing
blanks.
-K Same as K.
H Stmitar to K, except the number is output using the Furopean number format (comma

radix). (Requires 10.)
~H Same as H. (Requires 10.)

5 Outputs the number’s sign {+ or —).

M Outputs the number’s sign if negative, a blank if positive.

D Outputs one digit character. A leading zerc is replaced by a blank. If the number is
negative and no sign image is specified, the minus sign will cccupy a leading digit
position. If a sign is output, 1t will “float” to the left of the left-most digit.
Seme as D, except that leading zeros are output,
Like D, except that asterisks are output instead of leading zeros. (Requires 103.)
Qutputs a decimal-point radix indicasor,

R Outputs a comma radix indicator (European radix). (Requires 10)

E Qutputs an E, a sign, and a two-digit exponent.

ESZ Qutputs an K, a sign, and a one-digit exponent.
ESZ7 Same as E.
ESZZZ i Outputs an E, a sign, and a three-digit exponent.

2-252 Keyword Dictiohary

ouUTPUT

Image
Specifier

Meaning

A

literal

%

Outputs a string character. Trailing blanks are cutput if the number of characters
specified is greater than the number available in the corresponding string. If the image
specifier is exhausted before the corresponding string, the remaining characters are
ignored. Use a4 or 24 for two-byte globalization characters.

Outputs a blank.
Outputs the characters contained in the literal.

Outputs the character represented by one byte of data. This is similar to the CHRS
function. 'The number is rounded to an INTEGER and the least-significant byte is sent.
If the number 18 greater than 32 767, then 255 is used; if the number is less than —32 768,
then G is used.

Outputs a 16-bit word as a two’s-complement integer. The corresponding numeric item is
rounded to an INTEGER. H it is greater than 32 767, then 32 767 is sent; if it is less than
—~32 768, then 32 768 is sent. If either an I/0 path name with the BY'TE atiribute or a
device selector is used to access an 8-bit interface, two bytes will be ontput; the
most-significant byte is sent first. If an I/0O path name with the BYTE attribute is used
to access a 16-bit interface, the BYTE attribute is overridden, and one word is cutput in
a single operation. If an 1/O path name with the WORD attribute is used to access a
16-bit interface, a null pad byte is cutput whenever necessary to achieve alignment on a
word boundary. If the destination is a BDAT file, string variable, or buffer, the BYTE or
WORD attribute is ignored and all data are sent as bytes; however, pad byte(s) will be
output when necessary to achieve alignment on a word boundary. The pad character may
be changed by using the CONVERT attribute; see the ASSIGN statement for further
information.

Like W, except that no pad bytes are output to achieve word alignment. If an 1/O path
with the BYTE atiribute is used to access a 16-bit interface, the BYTE astribute is not
overridden (as with the W specifier above). (Requires 10.)

Suppresses the automatic output of the EOL (End-Of-Line) sequence following the Tast
outpui item.

Ignored in QUTPUT images.

Changes the automatic EOL sequence thai normally follows the last output item to a
single carriage-return. (Requires [0.)

Changes the automatic EOL sequence that normally follows the last cutput item to a
single line-feed. (Requires 10).)

Cutputs a carriage-return and a line-feed.

Outputs the current end-of-line (EOL) sequence. The default EOL characters are CR, and
LF; see ASSIGN for information on redefining the EOQL sequence. If the destination is an
I/O path name with the WORD attribute, a pad byte may be sent after the EQOL
characters to achieve word alignment.

Qutputs a form-feed.

Note

Some localized versions of HP Instrument BASIC, such as Japanese localized
HP Instrument BASIC, support tweo-byte characters. When using this
localized language remember that the IMAGE, ENTER USING, OUTPUT
USING, and PRINT USING statements define a one-byte ASCII character
image with &. Use the image A4 to designate a two-byte character.

Keyword Dictionary 2-253

OUTPUT

END with OUTPUT ... USING

Using the optional secondary keyword END in an OUTPUT ... USING statement produces
results that differ from those in an OUTPUT statement without USING. Instead of always
suppressing the EOL sequence, the END keyword only suppresses the EOL sequence when no
data is output from the last output item. Thus, the # image specifier generally controls the
suppression of the otherwise automatic EQL sequence,

- With HP-IB interfaces, END gpecifies-an EOIT signal to be sent with the Iast byte output.
However, no EOT is sent if no data is sent from the last ouiput item or the EOL sequence is
suppressed. With Data Communications interfaces, END specifies an end-of-data indication to
be sent at the same times an EOI would be sent on HP-IB interfaces.

2-254 Keyword Dictionary

PASS CONTROL

PASS CONTROL
PASS CONTROL passes Active Controller capability to a specified HP-IB device.

Syntax

Ttem

((pass conTroL

|

@ /0 path
name
device

selector

Description

Range

1/0 path name

device selector

name assigned to an HP-IB device

numeric expression, rounded to an integer

Example Statements
PASS CONTROL 719

PASS CONTROL @Device

Details

any valid name

must contain primary address (see
Glossary)

PASS CONTROL first addresses the specified device to talk and then sends the Take Control
message (TCT), after which Attention is placed in the False state. The computer then
assumes the role of a bus device (a non-active controller).

The computer must currently be the active controller to execute this statement, and primary
addressing (but not multiple listeners) must be specified. The controller may be either a
System or Non-system controller.

Summary of Bus Actions

System Controller Not System Controller
Interface Select Primary Address Interface Select Primary Address
Code Only Specified Code Only Specified
Active Error ATN Error ATN
Ceontroller UNL UNL
TAD TAD
TCT TCT
ATN ATN
Not Active Error Error Error Error
Controller

Keyword Dictionary 2-255

PAUSE

PAUSE temporarily suspends program execution; execution can be continued by pressing
CONTINUE.

Syntax

Example Statement
PAUSE

Details

PAUSE suspends program execution until you click on i the control pad or execute
CONT from the command line. If the program is modified while paused, RUN must be used
{0 restart program execution.

When program execution resumes, the computer atfempts to service any ON INTR events
that occurred while the program was paused. ON ERROR and ON TIMEOQUT events
generate errors if they occur while the program is paused.

Clicking on in the control pad or executing PAUSE from the command line suspends
program execution at the end of the line currently being executed.

2-256 Keyword Dictionary

PDIR

PDIR

PDIR specifies the rotation angle at which the output from IPLOT, RPLOT, POLYGON,
POLYLINE, and RECTANGLE is drawn. The angle is measured counterclockwise from the X
axis using the current angle mode (DEG or RAD).

Syntax
(.P_D‘I_Fi)—) angle e
Ttemn l Deseription [Range
angle numeric expression in current units of angle; | —

default = 0

Example Statements
PDIR 30
I¥ Done THEE PDIR 0ld_angle

Details

The rotation is about the local origin of the RPLOT, POLYGON, POLYLINE or
RECTANGLE. The local origins are defined as follows:

w RPLOT - pen position before execution of RPLOT
POLYGON - center

® POLYLINE - center

u RECTANGLEYE - bottom-left corner

The rotation angle specified with PDIR is measured counterclockwise from the positive X axis.
Thus, the positive X axis is at zero degrees, the positive Y axis is at 90 degrees, and so on.

Keyword Dictionary 2-257

PEN

PEN specifies the color of the graphics pen used for drawing lines and labels.

Syntax

PEN o

selactor

Ttem 1 Description E Range

pen selector numeric expression, rounded to an integer ~32 768 through +32 767 {device

dependent)

Example Statements
PEN 2
PEN -1
PEN Pen

Details

This statement specifies the line color or physical pen to be used for all subsequent lines and
labels until one of the following executes:

» another PEN statement

a a PLOT, IPLOT, or RPLOT statement with an array argument whick changes the pen
color (see Operation Selector 3 of these statements)

m a GINIT statement

The PEN statement can be used to specify that the current drawing mode is to erase lines on
all devices which support such an operation. This is specified with a negative pen number.
An alternate mode of operation which allows non-dominant and complementing drawing may
be accessed through the GESCAPE statement. “Complement” means to change the state

of pixels; that is, to draw lines where there are none, and to erase where lines already exist.
When the PEN statement is executed, the pen used is mapped into the appropriate range,
retaining the sign. The formulae used are as follows:

For color displays not in COLOR MAP mode:

If pen selector > 0 then use PEN (pen selector — 1) MOD 7 + 1
If pen selector = 0 then use PEN 0 (complement)
If pen selector < 0 then use PEN ~ ((ABS(pen selector} — 1) MOD 7 + 1)

For displays in COLOR MAP mode:

If pen selector>0 then use PEN (pen selector-1) MOD MaxPen + 1
If pen selector=0 then use PEN 0
If pen selector<@ then use PEN — ((ABS(pen selector) - minus; 1) MOD MaxPen + 1)

2-258 Keyword Dictionary

PEN

Where MaxPen is the highest pen number (the lowest is 0). Four planes: MaxPen=15; six
planes: MaxPen=63; eight planes: MaxPen=255.

For an HPGL Plotter:
Use PEN pen selector

Where MaxPen is the highest available pen number (the lowest is 0). MaxPen is 15 or 31,
depending on the video hardware and driver used by your computer.

Non-Color Map Mode

The value written into the frame huffer depends not only on what pen is being used, but
whether or not the computer is in color map mode. The colors or gray levels for the default
(non-color map) mode are given because the color map cannot be changed in this mode.

The meanings of the different pen values are shown in the table below. The pen value can
cause either a 1 (draw), a 0 (erase), no change, or invert the value of each location in the
frame buffer.

Non-Color Map Mode

Pen Colox Plane 1 Plane 2 Plane 3

(Red) (Green) {Blue)
1 | White 1 1 1
2 | Red 1 0 0
3 | Yellow 1 1 0
4 | Green 0 1 0
5 | Cyan 0 1 1
6 | Blue 0 0 1
7 | Magenta 1 0 1

Drawing with the pen numbers indicated in the above table results in the frame buffer planes
heing set to the indicated values. Drawing with the negatives of the pen numbers while in
normal pen mode canses the bits to be cleared where there are 1s in the table. Drawing with
the negatives of the pen numbers while in alternate pen mode causes the bits to be inverted
where there arve 1s in the table. In either case, no change will take place where there are Os in
the table. Although complementing lines can be drawn, complementing area fills cannot be
executed.

Positive pen numbers in alternate drawing mede allows non-dominant drawing.
(Non-dominant drawing causes the values in the frame buffer to be inclusively ORed with
the value of the pen.) Pen 0 in normal mode complements. Pen 0 in alternate mode draws in
the background color. Since the table represents the computer in non-color map mode, table
entries for any additional frame buffer planes are all zeros,

Keyword Dictionary 2-259

PEN

Default Colors

The defanlt pen colors while in color map mode are shown in the following tables. These can
he changed by the SET PEN statement.

Pen Color Red | Green | Blue
0 Black 0 0 0
1 White 1 1 1
2 Red 1 0 0
3 Yellow 1 1 0
4 Green 0 1 0
5 Cyan G 1 1
6 Blue {] 1
7 Magenta H 0 1
8 Black & 0 0
9 Olive Green 80 73 20
0 TAgua .20 B7 A7
i1 Roval Blue .hd 40 67
12 | Maroon 80 27 40
13 | Brick Red 1.00 A0 20
14 1 Qrange 1.00 A7 .00
15 | Brown 87 B3 27

2-260 Keyword Dictionary

PENUP

PENUP

PENUP lifis the pen on the current plotting device.

Syntax

Example Statement
PENUP

Keyword Dictionary 2-26'1

Pl

PI returns 3.14159265358979, which is an approximate value for pi.

Syntax

Example Statements
Area=PI*Radius”2

PRINT X,X#2%PF

2262 Keyword Dictionary

PiVOT

PIVOT

PIVOT specifies a rotation of coordinates which is applied to all drawn lines, but not to labels
or axes.

Syntax
Ttem l Description I Range
angle Inumeric: expression in current units of angle I {same as COS)

Example Statements
PIVOT 30
IF¥ Special THEN PIVOT Radians

Details
The specified angle is interpreted according to the current angle mode (RAD or DEG).

The specified angular rotation is performed about the logical pen’s position at the time the
PIVOT is executed. This rotation is applied only to lines drawn subsequent to the PIVOT;
logical pen movement is not affected by PIVOT. Consequently, PIVOT generally causes the
logical and physical pens to be left at different positions.

Keyword Dictionary 2-263

PLOT

PLOT moves the graphics pen from the current pen position to the specified X and Y
coordinates.

Syntax
b ¥ |
PLOT coardingte () coordingte . 1
part .
controf i
GITay N .
narme ((%) J l o
FiLL >
GRAPHY : ° EDGE
Item Description Range
x coordinate nuneric expression, in current units —
y coordinate numeric expression, in current units —
pen control numeric expression, rounded o an integer; —32 768 through +32 767
defanlt = 1 (down after move}
array name name of twe-dimensional, two-column or any valid name
three-column numeric array. (Requires
GRAPHX)

Example Statements
PLOT 20,90

PLOT MNext_x,VWext_y.Pen_control
Details

Non-Array Parameters

The specified X and Y position information is interpreted according to the current
unit-of-measure. Lines are drawn using the current pen color and line type.

PLOT is affected by the PIVOT transformation.

The line is clipped at the current clipping boundary. If none of the line is inside the current
clip limits, the pen is not moved, bui the logical pen position is updated.

The optional pen control parameter specifies the foliowing plotting actions; the default value is
+1 {down after move).

2-264 Keyword Dictionary

PLOT

Pen Control ‘ Resultant Action
—Fven Pen up belore move
—-(dd Pen down before move
+Even Pen up after move
+0dd Pen down afier move

Graphics Transformations

The output of PLOT is affected by only these graphics transformations:
u scaling specified by WINDOW

m scaling specified hy SHOW

m rotations specified by PIVOT

Array Parameters

When using the PLOT statement with an array, either a two-column or a three-column array
may be used. If a two-column array is used, the third parameter is assumed to be +1; pen
down after move.

FILL and EDGE

When FILL or EDGE is specified, each sequence of two or more lines forms a polygon. The
polygon begins at the first point on the sequence, includes each successive point, and the final
point is connected or closed back to the first point. A polygon is closed when the end of the
array is reached, or when the value in the third column is an even number less than three, or
in the range 5 to 8 or 10 to 15.

If FILL and/or EDGE are specified on the PLOT statement itself, it causes the polygons
defined within it to be filled with the current fill color andjor edged with the current pen
color. If polygon mode is entered from within the array, and the FILL/EDGE directive for
that series of polygons differs from the FILL/EDGE directive on the PLOT statement itself,
the directive in the array replaces the directive on the statement. In other words, if a “start
polygon mode” operation selector (a 6, 10, or 11) is encountered, any current FILL/EDGE
directive (whether specified by a keyword or an operation selector) is replaced by the new
FILL/EDGE directive.

If FILL and EDGE are hoth declared on the PLOT statement, FILL oceurs first. If neither
one is specified, simple line drawing mode is assumed; that is, polygon closure does not take
place.

When using a PLOT statement with an array, the following table of eperation selectors
applies. An operation selector is the value in the third column of a row of the array to be
plotted. The array must be a two-dimensional, two-column or three-column array. If the third
column exists, it will contain operation selectors which instruct the computer to carry out
certain operations. Polygons may be defined, edged (using the current pen), filled (using the
current fill color), pen and line type may be selected, and so forth,

Keyword Dictionary 2.265

PLOT

Cohuxan 1 Colurmm 2 Operaticn Meaning
Selector
X Y -2 Pen up before moving
X Y -1 Pen down before moving
X Y 0 Pen up after moving {Same as -+2)
X Y 1 Pen down after moving
X Y 2 Pen up after moving
pen number ignored 3 Select pen
hne type repeat value 4 Select line type
color ignored 5 Color value
ignored ignored 6 Start polygon mede with FILL
ignored ignored 7 End polygon mode
ignored ignored 8 End of data for array
ignored ignored 9 NOP (po operation)
ignored ignored 16 Start polygon mode with EDGE
ignored ignored 11 Start polygorn mode with FILL and EDGE
ignored ignored 12 Draw a FRAME
pen number ignored 13 Area pen value
red vaiue green value 14 Color
blue value ignored 15 Value
ignored ignored >15 Ignared

Moving and Drawing

If the operation selector is less than or equal to two, it is interpreted in exactly the same
manner as the third parameter in a non-array PLOT statement. Even is up, odd is down,
positive is after pen motion, negative is before pen motion. Zero is considered positive.

Selecting Pens

An operation selector of 3 selects a pen. The value in column one is the pen number desired.
The value in column two is ignored.

Selecting Line Types

An operation selector of 4 selects a line type. The line type (column one) selects the pattern,
and the repeat value (column two) is the length in GDUs that the line extends before a single
occurrence of the pattern is finished and it starts over. On the CRT, the repeat value is
evaluated and rounded down to the next multiple of 5, with 5 as the minimum.

2.266 Keyword Dictionary

PLOT

Selecting a Fill Color

Operation selector 13 selects a pen from the color map with which to deo area fills. This works
identically to the AREA PEN statement. Column one contains the pen number.

Defining a Fili Color

Operation selector 14 is used in conjunction with operation selector 15. Red and green are
specified in columns one and two, respectively, and column three has the value 14. Following
this row in the array (not necessarily immediately), is a row whose operation selector in
column three has the value of 15. The first column in that row contains the blue value, These
rumbers range from 0 to 32 767, where 0 is no color and 32 767 is full intensity. Operation
selectors 14 and 15 together comprise the equivalent of an AREA INTENSITY statement,

Operation selector 15 actually puts the area intensity into effect, but only if an operation
selector 14 has already been received.

Operation selector 5 is another way to select a fill color. The color selection is through a
Red-Green-Blue (RGB} color model. The first colemn is encoded in the following manner.
There are three groups of five bits right-justified in the word; that is, the most significant

bit in the word is ignored. FEach group of five bits contains a number which determines the
intensity of the corresponding color component, which ranges from zero to sixteen. The value
in each field will be sixteen minus the intensity of the color component. For example, if the
value in the first column of the array is zero, all three five-bit values would thus be zero.
Sixteen minus zero in all three cases would turn on all three color components to full intensity,
and the resultant color would be a bright white.

Assuming you have the desired intensities (which range from 0 thru 1) for red, green, and blue
in the variables R, G, and B, respectively, the value for the first column in the array could be
defined thus:

Array(Row,1)=SHIFT(16*(1-B),-10)+SHIFT{16%(1-G),-5)+16%x(1-R)

If there is a pen color in the color map similar to that which you request here, that
non-dithered color will be used. If there is not a similar color, you will get a dithered pattern.

If you are using a gray scale display, Operation selector 5 uses the five bit values of the RGB
color specified fo caleulate luminasity. The resulting gray luminosity is then used as the area

fill.

Polygons

A six, ten, or eleven in the third column of the array begins a “polygon mode.” If the
operation selector is 6, the polygon will be filled with the current fll color. If the operation
selector is 10, the polygen will be edged with the current pen number and line type. If the
operation selector is 11, the polygon will be both filled and edged. Many individual polygons
can be filled without terminating the mode with an operation selector 7. This can be done
by specifying several series of draws separated by moves. The first and second columns are
ignored and should not contain the X and Y values of the first point of a polygon.

Operation selector 7 in the third column of a plotted array terminates definition of a polygon
to be edged and/or filled and also terminates the polygon mode {(entered by operation
selectors 6, 10, or 11). The values in the first and second columns are ignored, and the X
and Y values of the last data point should not be in them. Edging and/or filling of the most
recent polygon wili begin immediately upon encountering this operation selector.

Keyword Dictionary 2-267

PLOT

Doing a FRAME

Operation selector 12 does a FRAME around the current soft-clip limits. Soft clip limits
cannot be changed from within the PLOT statement, so one probably would not have more
than one operation selector 12 in an array to PLOT, since the last FRAME will overwrite all
the previous ones.

Premature Termination

Operation selector 8 causes the PLOT statement to be terminated. The PLOT statement will
successfully terminate if the actual end of the array has been reached, so the use of operation
selector 8 is optional.

Ignoring Selected Rows in the Array

Operation selector 9 causes the row of the array it is in to be ignored. Any operation selector
greater that fifteen is also ignored, but operation selector 9 is retained for compatibility
reasons. Operation selectors less than -2 are not ignored. Tf the value in the third column is
less than zero, only evenness/oddness is considered.

2-268 Keyword Dictionary

PLOTTER I8

PLOTTER IS

PLOTTER IS determines whether graphics colors operate in the color mapped or non-color
mapped mode. This behavior is determined by the use of the secondary keywords COLOR
MAP; the default mode of operation is color-mapped.

Syntax
devics display/plotter ol
(PLOTTER]S) sel«:clztor 4O—E i specifier -
cotar map _
dispiay slpecliféer o COLOR MAP
fitaral form of disploy/piotter specifier:
O
Ttem Description Range
device selector numeric expression, rounded to an integer {sec Glossary)
display /plotter string expression {see drawing)
specifier
color map display | string expression INTERNAL or WINDOW
specifier

Example Statements
PLOTTER IS CRT,"INTERNAL" ! Use display in non-color mapped mode.

PLOTTER IS CRT,"INTERNAL";COLOR MAP ! Use display
in color mapped mode.

Details

In HP Instrument BASIC, PLOTTER IS does not allow graphics output to be sent to any
device selector other than 1 (the graph window). Graphics output is always sent to the
graph window, The only use for PLOTTER IS is to switch between color-mapped and
non-color-mapped mode using the secondary keywords COLOR MAPD.

In non-color-mapped mode, you can use only the default colors for pens described in
dictionary entry for PEN. In color-mapped mode, you can define your own pen colors using
SET PEN.

Keyword Dictionary 2-269

PLOTTER IS
Displays

Non-Color Map Mode

Executing & PLOTTER IS statement without the COLOR MAP keyword causes the color
map to be defined as follows, where § is zero intensity and 1 is full intensity.

Pen Color Red | Green | Blue
0 | Complement 0]]
1 White 1 1 1
2 | Red 1] 0
3 | Yellow 1 1 0
4 Green 0 1 0
5 | Cyan] 1 1
6 | Blue] 0 1
7 | Magenta 1 0 1

Default Pen Colors

The PLOTTER IS statement defines the color map to defaclt values. These values are
different depending on whether or not the COLOR MAP option was selected.

Note that the color assignments for pens 16-31 depend on the video hardware and drivers
used by your computer. If vour video hardware and drivers support 256 colors or more,

HP Instrument BASIC will assign the colors listed in the following table to pens 16-31. If
your video hardware and drivers do not support at least 256 colors, x HP Instrument BASIC
will assign the same colors to pens 16-31 that are used for pens 1-15. Thus, on a video display
that supports fewer than 256 colors (such as VGA), pens 1 and 16 are the same color, pens 2
and 17 are the same color, and so on.

2-270 Keyword Dictionary

PLOTTER IS

Color Map Defauit Color Definitions (RGB)

Pen Color Red | Green | Blue
g Black] 0 0
1 White 1 1 1
2 Red 1 0 0
3 Yellow 1 1 0
4 Green 0 1 0
5 Cyan 0 1 1
8 Blue 0] 1
7 Magenta 1 0 1
8 Black]] 0
g Olive Green 80 73 20
10 | Aqua 20 67 47
11 | Royal Blue 53 A0 67
12 | Maroon 80 27 40
13 | Brick Red 1.00 A0 20
14 | Orange 1.60 A7 0.00
15 | Brown BT 53 27

Keyword Dictionary 2-271

POLYGON

POLYGON draws all or part of a closed regular polygon.

Syntax
{ POLYGON }-+]radius ry -
O IO ‘
O
Ttem Deseription Range
radius nuineric expression, in current taits —
total gides numeric expression, rounded to an infeger. | 3 through 32 767
default = 60
sides to draw numeric expression, rounded to an integer. 1 through 32 767
default = all sides

Example Statements
POLYGON Radius,Total_sides,Drawn_sides
POLYGON ~Size,5,FILL,EDGE

Details

The radius is the distance that the vertices of the polygon wiil be from the logical pen
position. The first vertex will be at a distance specified by “radins” in the direction of the
positive X-axis. Specifying a negative radius results in the figure being rotated 180 degrees.

The total sides and the number of sides drawn need rot be the same. Thus,
POLYGON 1.5,8,5

will start to drawn an octagon whose vertices are 1.5 units from the current pen position,
but will only draw five sides of it before closing the polygon at the first point. If the number
of sides to draw is greater than the specified total sides, sides to draw is treated as if it were
equai to total sides.

POLYGON forces polygon closure, that is, the first vertex is connected to the last vertex, so
there is always an inside and an outside area. This is true even for the degenerate case of
drawing only one side of a polygon, in which case & single line results. This is actually two
lines, from the first point to the last point, and back to the first point.

2-272 Keyword Dictionary

POLYGON

Graphics Transformations

The cutput of POLYGON is affected by only these graphics transformations:
m scaling specified by WINDOW

m scaling specified by SHOW

s rotations specified by PIVOT

» rotations specified by PDIR

Polygon Shape

The shape of the polygon is affected by the viewing transformation specified by SHOW or
WINDOW. Therefore, anisotropic scaling causes the polygon to be distorted; stretched or
compressed along the axes. If a rotation transformation is in effect, the polygon will be
rotated first, then stretched or compressed along the unrotated axes.

The pen status also affects the final shape of a polygon if sides to draw is less than total sides.
If the pen is up at the time POLYGON is specified, the first vertex specified is connected to
the last vertex specified, not inciuding the center of the polygor, which is the current pen
position. If the pen is down, however, the center of the polygon is also included in it. If sides
to draw is less than total sides, piece-of-pie shaped polygon segments are created.

FILL and EDGE

FILL causes the interior of the polygon or polygon segment to be filled with the current fil}
color as defined by AREA PEN, AREA COLOR, or AREA INTENSITY. EDGE causes the
edges of the polygon to be drawn using the current pen and line type. If both FILL and
EDGE are specified, the interior will be filled, then the edge will be drawn. If neither FILL
not EDGE is specified, EDGE is assumed.

After POLYGON has executed, the pen is in the same position it was before the statement
was executed, and the pen is up. The polygon is clipped at the current clip limits.

Keywerd Dictionary 2-273

POLYLINE
POLYLINE draws all or part of an open regular polygon.

Syntax
(POLYLINE] radius >
L@_. total
sides o
sides |_J
o draw
Tiem Description Range
radius nUMmeric expressich, il current units —
total sides numeric expression, rounded to an integer. 3 through 32 767
default = 60
sides to draw numeric expression, rounded to an integer. 1 through 32 767
default = all sides

Example Statements
POLYLINE Radius,Total_sides,Drawn_sides
PALYLINE -Size,B

Details

The radius is the distance that the vertices of the polygon will be from the current pen
position. The first vertex will be at a distance specified by “radius” in the direction of the
positive X-axis. Specifying a negative radius results in the figure being rotated 180 degrees.

The total sides and the number of sides drawn need not be the same. Thus,
POLYLINE 1.5,8,5

will start to drawn an octagon whose vertices are 1.5 units from the current pen position, but
will only draw five sides of it. If the number of sides to draw is greater than the total sides
specified, it is treated as if it were equal to the total sides.

Graphics Transformations

The output of POLYLINE is affected by only these graphics transformations:
m scaling specified by WINDOW

m scaling specified by SHOW

m rotations specified by PIVOT

e rotations specified by PDIR

2-274 Keyword Dictionary

POLYLINE

Shape of Perimeter

oy

first vertex is not connected to the last vertex, so there is no “inside” or “outside” area.

The shape of the polygon is affected by the viewing transformation specified by SHOW or
WINDOW. Therefore, anisotropic scaling causes the perimeter to be distorted; stretched
or compressed along the axes. I a rotation transformation is in effect, the polygon will be
rotated first, then stretched or compressed along the unrotated axes.

The pen status also affects the way a POLYLINE statement works. If the pen is up at the
time POLYLINE is specified, the first vertex is on the perimeter. If the pen is down, the first
point is the current pen position, which is connected to the first point on the perimeter.

After POLYLINE has executed, the current pen position is in the same position it was before
the statement was executed, and the pen is up. The polvgon ig clipped at the current clip
fimits.

Keyword Dictionary 2-275

POS

POS returns the first position of a substring within a string.

Syntax

siring ()) string ,(:) wl
OS o sgarched searched for

Item l Description l Range

string searched string expression | -

string searched for Istri.ng eXpression -

Example Statements
Point=P0S(Big$,Little$)
IF POS(A$,CHR$(10)) THEN Line_end

Details

If the value returned is greater than 0, it is the position of the first character of the string
being searched for in the string being searched. If the value returned is 0, the string being
searched for cannot be found (or the string searched for is the null string).

Note that the position returned is the relative position within the string expression used
as the first argunment. Thus, when a substring is searched, the position value refers to that
substring.

2-276 Keyword Dictionary

PRINT

PRINT

PRINT sends items to the PRINTER IS device, The defanit PRINTER IS device is the
alphanumeric display.

Syntax
{ PRINT } o
image j print j
USING specifier L’@‘L’ terns
Expandad diagrm:
< PRINT) »|
wage hne
USING labat
. image line
irmage
specifiar rumber
wnage
specifler
o
1
-
W
- string } ol
expresaion 3 '
string N
> array name d (*)
print
items - ﬁumar{c gl trailing punciuation
Sxpression not allowed with USING
numgric N >
> array name ((%) /7
O~ 0%

- CRT ic:)’ CRT !(')
. TaBXY 0 column Fow

tab function not allowed with USING

literal form of image specifier

h 4

" [imuage of o
specifier Hiat
N repeat image
factor specifier list

Keyword Dictionary 2-277

PRINT

Item

Description

Range

image line nwmber

image line label
image specifier
string array name

numeric array
name

colurmn

CRT column

CRT row

tmage specifier st
repeat factor
print itermns

integer constant identifying an IMAGE
statement

name identifying an IMAGE statement
string expression

name of a string array

name of a numeric array

nurperic expression, rounded to an integer
nueric expression, rounded to an integer
numeric expression, rounded to an integer
literal

integer constant

string constant composed of characters from
the keyboard, including those generated
using the ANY CHAR key

Example Statements

PRINT "LINE";Number

PRINT Array(*)

PRINT TABXY(1,1),Head$,TABXY(Col,3), Msg$
PRINT String$l[1,8],TAB(12),Result

PRINT USING 125;X,Y,Z

PRINT USING “5Z.DD";Money

PRINT USING Fmt3;Id,Item$,Kilograms/2.2

Details

Standard Numeric Format

1 through 32 766

any valid name
(see drawing)
any valid name

any valid name

device dependent

1 through screen width
1 through alpha height
(see next drawing)

1 through 32 767

quote mark not allowed

The standard rumeric format depends on the value of the number being displayed. If the
absolute value of the number is greater than or equal to 1E-4 and less than 1E+6, it is
rounded to 12 digits and displayed in floating point notation. If it is not within these limits,
it is displayed in scientific notation. The standard numeric format is used unless USING is
selected, and may be specified by using K in an image specifier.

2-278 Keyword Dictionary

PRINT

Automatic End-Of-Line Sequence

After the print list is exhausted, an End-Of-Line (EOL} sequence is sent to the PRINTER 1S
device, unless it is suppressed by trailing punctuation or a pound-sign (#) image specifier.
The printer width for EOL sequences generation is set to the screen width (50, 80 or 128
characters) for CRTs and to 80 for external devices unless the WIDTH attribute of the
PRINTER IS statement was specified. WIDTH is off for files. This “printer width exceeded”
EOL is not suppressed by trailing punctuation, but can be suppressed by the use of an image
specifier.

Control Codes

Some ASCII control codes have a special effect in PRINT statements if the PRINTER 1S
device is the CRT {device selector=1):

Character Keystroke Name Action

CHRS$(7) bell Sounds the beeper

CHRS(8) backspace Moves the print position back one
character.

CHRS3{10) tine-feed Moves the print position down one line.

CHRS$(12) form-feed Prints two line-feeds, then advances the
CRT buffer enough lines to place the
next item at the top of the CRT.

CHR$(13) carriage-return | Moves the print position to column 1.

The effect of ASCII control codes on & printer is device dependent. See your printer manual to
find which control codes are recognized by your printer and their effects.

Arrays

Entire arrays may be printed using the asterisk specifier. Each element in an array is treated
as a separate item by the PRINT statement, as if the items were listed separately, separated
by the punctuation following the array specifier. If no punctation follows the array specifier, a
comma is assumed.

PRINT Fields

If PRINT is used without USING, the punctuation following an item determines the width of
the item’s print field; a semicolon selects the compact field, and a comma selecis the default
print field. Any trailing punctation will seppress the automatic EOL sequence, in addition to
selecting the print field to be used for the print item preceding it.

The compact field is slightly different for numeric and string items. Numeric items are printed
with one trajling blank. String items are printed with no leading or trailing blanks,

The default print field prints items with trailing blanks to fill to the beginning of the next
10-character field. '

Keyword Dictionary 2-279

PRINT

Numeric data is printed with one leading blank if the number is positive, or with a minus sign
if the number is negative, whether in compact or default field.

TAB

The TAB function is used to position the next character to be printed on a line. In the TAB
function, a column parameter less than one is treated as one. A column parameter greater
than zero is subjected to the following formula:

TAB position = ((column — 1) MOD width) + 1

If the TAB position evaluates to a column number less than or equal to the number of
characters printed since the last EQL sequence, then an EOL sequence is printed, foliowed by
(TAB position - 1} blanks. If the TAB position evaluates to a column number greater than
the aumber of characters printed since the last EOL, sufficient blanks are printed to move to
the TAB position.

TABXY

The TABXY function provides X-Y character positioning on the CRT. It is ignored if a device
other than the CRT is the PRINTER IS device. TABXY{1,1) specifies the upper left-hand
corner of the CRT. If a negative value is provided for CRT row or CRT column, it is an error.
Any number greater than the screen width for CRT columa is treated as the last column on
the screen. Any number greater than the height of the output area for CET row is treated as
the last line of the output area. If 0 is provided for either parameter, the current value of thas
parameter remains wnchanged.

PRINT with Using

When the computer executes a PRINT USING statement, it reads the image specifier, acting
on each field specifier (field specifiers are separated from each other by comimas) as it is
encountered. If nothing is required from the print items, the field specifier is acted upon
without accessing the print list. When the field specifier requires characters, it accesses the
next item in the print list, using the entire item. Each element in an array is considered a
separate item.

The processing of image specifiers stops when there is no matching display item (and the
specifier requires a display item). If the image specifiers are exhansted before the display
items, they are reused, starting at the beginning,.

If a numeric item requires more decimal places to the left of the decimal point than are
provided by the field specifier, an error is generated. A minus sign takes a digit place if M
or 5 is not used, and can generate unexpected overflows of the image field. If the namber
containg more digits to the right of the decimal point than are specified, it is rounded to fit
the specifier.

If a string is longer than the field specifier, it is truncated, and the right-most characters are
lost. If it is shorter than the specifier, trailing blanks are used to fill out the field.

2-280 Keyword Dictionary

PRINT

Effects of the image specifiers on the PRINT statement are shown in the following table:

Tmage Meaning |
Specifier

K Compact field. Prints a number or string in standard form with no leading or trailing

blanks.
-K Same as K.

H Similar to K, except the number is printed using the European number format {comma
radix).

-0 Same as H.

S Prints the number’s sign {-+ or —).

M Prints the number’s sign if negative, a blank if positive.

D Prints one digit character. A leading zero is replaced by a blank. If the number is
negative and no sign image is specified, the minus sign will oceupy a leading digit
position. If a sign is printed, it will “float” to the left of the left-mosi digit,

A Same as D, except that leading zeros are printed.

* Like Z, except that asterisks are printed instead of leading zeros.

FPrinis a decimal-point radix indicator.
R Prints a comma radix indicator (European radix).
E Prints an E, a sign, and a two-digit exponent.
ESZ Prints an E, a sign, and a one-digit exponent.
ESLZ Same as E.
ESZZZ | Prints an E, a sign, and a three-digit exponent.

A Prints a string character. Trailing blanks are output if the number of characters specified
is greater than the number available in the corresponding string. If the image specifier is
exhausted before the corresponding string, the remaining characters are ignored.

X Prints a blank.

literal Prints the characters contained in the literal.

B Prints the character represented by one byte of data. This is similar to the CHR$
function. The number is rounded to an INTEGER and the least-significant byte is sent.
1f the number is greater than 32 767, then 255 is used; if the number is less than —32 768,
then 0 is used.

W Prints two characters represented by the two bytes in a 16-bit, two’s-complement integer
word. The corresponding numeric item 1s rounded to an INTEGER. If it is greater than
32 767, then 32 767 is used; if it is less than —32 768, then —32 768 is used. On an 8-bit
interface, the most-significant byte is sent first. On a 16-bit interface, the two bytes are
sent as one word in a single operation.

Y Same as W.

Keyword Dictionary 2-281

PRINT

Image Meaning
Specifier
Suppresses the automatic output of the EOL (Fnd-Of-Line) sequence following the last
print item.
%o Ignored in PRINT images.
+ Changes the automatic EOL sequence that normally follows the last print item to a single

carriage-return.

Changes the automatic EOL sequence that normally follows the lagt print item fo a single
line-feed,

Sends a carriage-return and a line-feed to the PRINTER IS device.

Sends the current EQL sequence to the PRINTER IS device, The default EOL characters
are CR and LF; see PRINTER IS for information on re-defining the EOL sequence, If the
destination is an 1/0O path name with the WORD attribute, a pad byte may be sent after
the EOQL characters to achieve word alignment.

Sends a form-feed to the PRINTER IS device.

2-282 Keyword Dictionary

PRINTER 1S

PRINTER IS

PRINTER IS specifies the defanlt destination for the ouiput of various statements that send
output to a “printer”. The PRINTER IS device is set to 1 (the alpha window) at power-on
and after SCRATCH A.

Syntax

{ PRINTER IS }-*- device
sefector

fiteral form of file specifier

end=~of—line
characters

P

fiie

o1

directory _j

path

(S

HFS or DOS files only

| name |

LIF protect
code

O
L volume _j
apacifier

-
LIF files only

Keyword Dictionary 2-283

PRINTER IS

Iiem Deseription Range
tile specifier string expression -
device selector numeric expression, rounded to an integer {see Glossary)
end-of-line string expression; defanlt = CR/LF 0 through 8 characters
characters
line width numeric expression, rounded to an integer; 1 through 32 767

default = (see text)

directory path literal (see MASS STORAGE 18)
file name literal depends on volume’s format (see
Glossary)
LIF protect code | literal; first two non-blank characiers are > not allowed
significant
volume specifier literal (see MASS STORAGE IS)

Example Statements
PRINTER IS CRT
PRINTER IS “myfile"
PRINTER IS PRT;WIDTH 80

Details

The system printing device or file receives all data seat by the following statements in which
the destination is not explicitly specified:

m PRINT
m CAT
m LIST

The default printing device is the alphanumeric display (select code 1) at power-on and after
executing SCRATCH A.

Using PRINTER 1S with WIDTH

The WIDTH attribute specifies the maximum number of characters which will be sent to the
printing device before an EOL sequence is antomatically sent. The EQL characters are not
counted as part of the line width. If a USING clause is included in the PRINT statement,
WIDTI is ignored. The default WIDTH for files is OFF.

2-284 Keyword Dictionary

PRINTER 1S

Using PRINTER IS with Files
The file must be a BDAT or DOS file {(a file created by CREATE).

The PRINTER IS file statement positions the file pointer to the beginning of the file you
specify. Thus, PRINTER IS overwrites the file if it already exists.

You can read the file with ENTER if it is created using ASSIGN with FORMAT ON.
You may close the file by executing another PRINTER. 1S statement or SCRATCH A.

Keyword Dictionary 2-285

PROUND

PROUND returns the value of the argument rounded to a specified power of ten.

Syntax
. ., powar
PROUND c argument—'PO-b ot ten —"@-'P
Item i Description l Range
argurnent NUMeric eXpression —
power of ten aumeric expression, rounded to an integer - -

Example Statements
Money=PROUND(Result,-2)

PRINT PROUND(Quantity,Decimal_place)

2-286 Keyword Dictionary

PRT

PRT

PRT returns 701, the default (factory set) device selector for an external printer.

Syntax

Example Statements
OUTPUT PRT;Text$

Keyword Dictionary 2-287

PURGE
PURGE deletes a file or directory.

Syntax
file
PURGE sm;ifier i i
dirgsiory
specifier
dtaral farm of file specifier
noms
L directory J L,@_, LR protect _@_I L volume j
path code specifier
k 4
LR »
HES or DOS files oniy WF files anly
Brered form of directory specifien
__,@ o directory @-’l
FRHTIS
L’ cHrectary j L volums _j
path specifier
(VU
HFS or DOS rfiles only
Ttem Description Range
file specifier string expression (see drawing)
directory specifier | siring expression {see drawing)
directory path literal {see MASS STORAGE 1S)
file name literal depends on volume’s format (see
Glossary)
LI¥ protect code | literal; first two non-blank characters are > not allowed
significant
volume specifier literal (see MASS STORAGE 1S}
directory name literal depends on volure’s format {see
Glossary)

2-288 Keyword Dictionary

PURGE

Example Statements
PURGE File_name$
PURGE "File"
PURGE "C:\TEMP\#.%"
PURGE "Dir1/Dir2/Dir3"
PURAGE “*"
PURGE "Monday_?"

Details

Once a file is purged, you cannot access the information which was in the file. The records of
a purged file are returned to “available space.”

An open file must be closed before it can be purged. Any file opened by ASSIGN can be
closed by ASSIGN TG * {see ASSIGN). All files except those opened with the PRINTER IS
statement are closed by clicking on the button in the control pad. A PRINTER. IS file
can be closed by executing a PRINTER IS to another device or file. SCRATCH A closes all
files.

If vou are using a version of HP Instrument BASIC that supports wildeards, you can use
them in file specifiers with PURGE. You must first enable wildcard recognition using
WILDCARDS. Refer to the keyword entry for WILDCARDS for details.

Purging Files and Directories
To PURGE a directory or file, all of the following conditions must be met:

m It must be closed. The current working directory is closed by an MSI to a different
directory. SCRATCH A closes all directories and files.

m If it is a directory, it must be empty. That is, it must not contain any subordinate files or
directories.

Keyword Dictionary 2-289

RAD

RAD selects radians as the unit of measure for angles.

Syntax

Example Statements
RAD

Details

All functions which return an angle will return an angle in radians. All operations with
parameters representing angles will interpret the angle in radians. If no angle mode is
specified in a program, the default is radians (also see DEG).

A subprogram “inherits” the angle mode of the calling context. If the angle mode is changed
in a subprogram, the mode of the calling context is restored when execution returns to the
calling context.

2-280 Keywaord Dictionary

RANDOMIZE

RANDOMIZE
RANDOMIZE selects a seed for the RND function.
Syntax
E=D T —
sead
Itemn ; Deseription i Range
seed numeric expression, rounded to an integer; | I through 2312

default = pseudo-random

Example Statements
RANDOMIZE
RANDOMIZE 01d_seed*PI

Details

The seed actually used by the random number generator depends on the absolute value of the
seed specified in the RANDOMIZE statement.

Absolate Value Vahie Used
of Seed
less than 1 1
1 through 23! -2 INT{ABS(seed})
greater than 2°%1 -2 2819

The seed is reset to 37 480 660 by power-up, SCRATCH A, SCRATCH, and program prerun.

Keyword Dictionary 2-291

RANK

RANK returns the number of dimensions in an array.

Syntax
' . W arcay y :
e [T) Q)
Ttem | Description l Range
array name | name of an array] any valid name

Example Statements
Dimensions=RANK (Array$)
IF RANK(A)=2 THEN PRINT "4 is a matrix"

2-292 Keyword Dictionary

RATIO

RATIO

RATIO returns the ratio of the width (in pixels) to the height (in pixels) of the graph window,

Syntax

Example Statements
WINDCW ©,10%RATIO,-10,10
X_gdu_max=100+«MAX(1,RATIO)
¥.gdu_max=100%MAX{1,1/RATIO)

RATIO }—

Keyword Dictionary 2.293

READ

READ reads values from DATA statements and assigns them to variables.

Syntax

ol

()

A\ 1
string ft\]
name RY/ F S

heginning }

progition
ending
pasition
SULsCript substring
length
(9)
\ i numeric y
nams
subrscript
{ ey 3
ANV
Description Range

Item

string name

subscript

beginning position

ending position

substring length

numeric name

name of a string variable

numeric expression, rounded to an integer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

name of s numeric variable

Example Statements
READ Number,String$

READ Array(*)

READ Field$[5, 15}
READ Item(f,1),Item{2,1),Ttem{3,1)

2-294 Keyword Dictionary

any valid name

—32 767 through +32 767 (see
“array” in Glossary)

1 through 32 767 (see “substring”
in Glossary)

0 through 32 767 (see “substring”
in Glossary)

0 through 32 767 (see “substring”
in Glossary)

any valid name

READ

Details

The nuteric items stored in DATA statements are considered strings by the computer, and
if they are READ info a numeric variable, they are first processed by a number builder to
convert them to numbers. The number builder for REAI recognizes the usual combinations
of signs, digits, decimal points, and signed exponents. H the characters are not a valid
representation of a number, an error results. If a number in a DATA statement contains

a fractional part and is read into an INTEGER variable, it will be rounded up or down

(not truncated) appropriately. A string variable may read numeric items, as long as it is
dimensioned large enough to contain the characters.

The first READ statement in a context accesses the first item in the first DATA statement
in the context unless RESTORE has been used to specify a different DATA statement as
the starting point. Successive READ operations access following items, progressing through
DATA statements ag necessary. Trying to READ past the end of the last DATA statement
results in error 36. The order of accessing DATA statements may be altered by using the
RESTORE statement.

An entire array can be specified by replacing the subscript list with an asterisk. The array
entries are made in row major order (right most subscript varies most rapidly).

Keyword Dictionary 2-285

REAL

REAL reserves storage for floating point variables and arrays.

Syntax
{ e
N/
PUFEFG el
REAL name o
e
{ -y
(upper
" {bound
lowar
brotard
Item Description Range
numeric name name of a numeric variable any valid name
lower bound integer constant; default = OPTION BASE | —32 767 through +32 767 {see
value {0 or 1) : “array” in Glossary)
upper bound mnteger constant 32 767 through +32 787 [ses
“array” in Glossary)

Example Statements
REAL X,Y,Z
REAL Array(-128:127,15)

Details

Each REAL variable or array element requires eight bytes of number storage. The maximum
number of subscripts in an array is six, and no dimension may have more than 32 767
elements.

2-286 Keyword Dictionary

RECTANGLE

RECTANGLE
RECTANGLE draws a rectangle.

Syntax

A

RECTANGLE width —»O—» height l py
OGS

Ttem l Deseription | Range
widih numeric expression —
height nurmeric expression e

Example Statements
RECTANGLE Width,Height
RECTANGLE 4,-6,FILL,EDGE

Details

The rectangle is drawn with dimensions specified as displacements from the current pen
position. Thus, both the width and the height may he negative,

Which corner of the rectangle is at the pen position at the end of the statement depends upon
the signs of the parameters:

Sign Sign | Corner of Rectangle
of X of Y |at Pen Position

+ + Lower left

-+ - Upper left

- + Lower right

- — Upper right

Graphics Transformations

The output of RECTANGLE is affected by only these graphics transformations:
w scaling specified by WINDOW

m scaling specified by SHOW

m rotations specified by PIVOT

w rotations specified by PDIR

Keyword Dictionary 2.297

RECTANGLE

A rectangle’s shape is affected by the current viewing transformation. If isotropic units are in
effect, the rectangle will be the expected shape, but if anisotropic units {set by WINDOW)} are
in effect, the rectangle will be distorted; it will be siretched or compressed along the axes.

If a rotation transformation and anisotropic units {set by WINDOW) are in effect, the
rectangle is rotated first, then stretched or compressed along the unrotated axes.

FILL and EDGE

FILL causes the rectangle to be filled with the current fill color, and EDGE causes the
perimeter to be drawn with the current pen color and line type. If both FILL and EDGE are
specified, the interior will be filled, then the edge will be drawn. If neither FILL nor EDGE is
specified, EDGE is assumed.

2-298 Keyword Dictionary

REDIM

REDIM
REDIM changes the subscript range of previously dimensioned arrays.
Syntax
e
~ 1
i b
REDIM a rl?’gi;}eﬁg me /’:\< ot
ae’rzimr?eme { L - EES:L
Fower
bouzd @j
Item Deseription Range
array name name of an array any valid name
lower bound numeric expression, rounded to an integer; —32 768 through +32 787 (see
default=0PTION BASE value (G or 1) “array” in glossary)
upper bound nurseric expression, rounded $o an integer —32 768 through +32 787 (see
“array” in glossary)

Example Statements
REDIM Array(New_lower:New_upper)
REDIHM S‘tring$ {4,B,C)

Details
The following rules must be followed when redimensioning an array:

a The array to be redimensioned must have a currently dimensioned size known to the context
(i.e., it must have been implicitly or explicitly dimensioned, or be currently allocated, or it
must have been passed into the context.)

m You must retain the same number of dimensions as specified in the original dimension
statement.

m The redimensioned array cannot have more elements than the array was originally
dimensioned to hald.

m You cannot change the maximum string length of string arrays.

REDIM does not change any values in the array, although their locations will probably be
different. The REDIM is performed left-to-right and if an error oceurs, arrays to the left of
the array the error occurs in will be redimensioned while those to the right will not be, If an
array appears more than once in the REDIM, the right-most dimensions will be in effect after
the REDIM.

Keyword Dictionary 2-299

REM

REM specifies that the remainder of a program line is a comment, not a program statement or
fabel.

Syntax
(ReEm) >
J 1
: | L litara! —J
Ttemn l Description I Range
literal

string constant composed of characters from | —
the keyboard

Example Statements

100 REM Program Title
190 !
200 Info=0 ! ({lear flag byte

Details

REM must be the first keyword on a program line. If you want to add comments to a
statement, an exclamation point must be used to mark the beginning of the comment. If
the first character in a program line is an exclamation point, the line is treated like a REM
statement and is not checked for syntax.

2-300 Keyword Dictionary

REMOTE

REMOTE

REMOTE places HP-IB devices having remote/local capabilities into the remote state.

Syntax
/0 path
EMOTE @ narme
" device
selactor
Item Description Range

1/0O path name name assigned to a device or devices any valid name (see ASSIGN)
device selector numetic expression, rounded to an integer {see Glossary)

Example Statements
REMOTE 712
REMOTE Device
REMOTE @QHpib

Details

If individual devices are not specified, the remote state for all devices on the bus having
remote/local capabilities is enabled. The bus configuration is unchanged, and the devices
switch to remote if and when they are addressed to listen. If primary addressing is used, only
the specified devices are put into the remote state.

When the computer is the system controller and is switched on, reset, or ABORT is executed,
bus devices are automatically enabled for the remote state and switch to remote when they
are addressed to listen.

The computer musl be the system controller to execute this statement, and it must be the
active controller to place individual devices in the remote state.

Keyword Dictionary 2-301

REMOTE

Bus Actions

Summary of Bus Actions

Interface Select Code Only Primary Address Specified

Active REN REN

Conirotler ATN ATN

MTA

UNL

LAG

Not Active REN Error
Controller

2-302 Keyword Dictionary

REN

REN

RIN renumbers the lines in all or part of a program.

Syntax

X

REN
t heginning

ling number| "
gtarting - I ending e
value — line number

paginning

L—FO-‘ incrament fing lohel

ending

ling label

(-

Ttem Description Range

starting value integer constant identifying a program line; |1 through 32 766
default = 10

increment integer constant; default = 10 1 through 32 767

beginning line integer constant identifying program line 1 through 32 766

number

beginning line label | name of a program line any valid name

ending line number | integer constant identifyving program line; I through 32 766
defanlt = last program line

ending line label name of a program line any valid name

Example Commands

REN ! Renumbers the entire program by 10s.
REN 1000 ! Renumbers starting at line 1000 by 10s.
REN 100,2 ! Renumbers starting at line 100 by 2s.

REN 261,1 IN 260,Label2 ! Renumbers the range 260-Label2
! starting with 261 by is.

Details

The program segment to be renumbered is delimited by the beginning line number or label
(or the first line in the program) and the ending line number or label (or the last line in the
program}. The first line in the renumbered segment is given the specified starting value, and
subsgequent line numbers are separated by the increment. If & renumbered line is referenced by
a statement (such as GOTO or GOSUB), those references will be updated to reflect the new
line numbers. Renumbering a paused program causes it to move to the stopped state.

REN cannoct be used to move Enes. If renumbering would cause lines to overlap preceding or
following lines, an error occurs and no renumbering takes place.

Keyword Dictionary 2-303

REN

If the highest line number resulting from the REN command exceeds 32,766, an error message
is displayed and no renumbering takes place. An error occurs if the beginning line is after the
ending line, or if one of the line iabels specified doesn’™ exist.

2-304 Keyword Dictionary

RENAME

RENAME

RENAME changes a file’s or directory’s name.

Syntax
ald file new diractory
RENAME specifier TO specifier
old directory new filg
specifier specifier
fiteral form of file specifier;
I file "
rarne
directory LIF protect volurre
path code specifier
\“__“\/‘__““)
HFS or DOS files only
iteral form of directory specifier:
w o directory n
T
diractory volurné
path specifier
HFS or DOS files only
Ttem Description Range

old file specifier
new file specifier

old directory
specifier

new directory
specifier

directory path

file name

LIF proteci code

volume specifier

string expression
string expression

string expression

string expression

literal

literal

significant

literal

literal; first two non-biank characters are

(see “file specifier” drawing)
(see “file specifier” drawing)

(see “directory specifier” drawing)
(see “directory specifier” drawing)

(see MASS STORAGE IS)

depends on volume’s format: 10
characters for LIF; 8 characters for
DOS (short file name); (see
Glossary)

> not allowed

(see MASS STORAGE IS)

Keyword Dictionary 2-305

RENAME

Example Statements
RENAME "Cld_name’ TO "New_name"
RENAME Name$ TC Temp$
RENAME "Diri/file” T0 "Dir2/file"

Details
The new file or directory name must not duplicate the name of any other file in the directory.

w Files are closed by ASSIGN ... TO * (explicitly closes an I/0 path}. All files except those
opened with the PRINTER IS statement are also closed by clicking on [Stop] in the control
pad. A PRINTER IS file can be closed by execating a PRINTER IS to another device or
file.

® The current working directory is closed by an MSI to a different directory.
SCRATCH A also closes all files and directories.
If you try to rename an open file or directory, you will not receive an error.

Because you cannot move a file from one mass storage volume to another with RENAME, an
error will be given if a volume specifier is included which is not the current location of the file.
However, RENAME can perform limited file-move operations between directories.

If you are using a version of HP Instrument BASIC that supports wildcards, you can use
them in file specifiers with RENAME. You must first enable wildcard recognition using
WILDCARDS. Refer to the keyword entry for WILDCARDS for details. Wildcard file
specifiers used with RENAME must match one and oniy one file name.

LIF Protect Codes

A protected file retains its old protect code, which must be included in the old file specifier.

Limited File Moves and Directories

RENAME can be used to move files within and among directories. Directories cannot be
moved with RENAME., Moving of files must occur within a single volume. If you move a file
with RIENAME, the original file is purged.

2-306 Keyword Dictionary

REPEAT ... UNTIL

REPEAT ... UNTIL

REPEAT ... UNTIL defines a loop which is repeated until the expression in the UNTIL
staternent is evaluated as true (non-zero).

Syntax

pragrom
sagment

baciean
UNTHL axpressien -’i

ftem Description Range

program segment | any number of contiguous program lines not |- -
containing the beginning or end of a main
program or subprogram, but which may
contain properly nested constructs(s).

Boolean expression | numeric expression; evaluated as true if —
non-zero and false if zero

Example Statements

770 REPEAT
780 CALL Process(Param)
790 Param=Param*Scaling

80CG UNTIL Param>Maximum

Details

The REPEAT ... UNTIL construct allows program execution dependent on the outcome of a
relational test performed at the end of the loop. Execution starts with the first program line
following the REPEAT statement, and continues to the UNTIL statement where a relational
test is performed. If the test is false a branch is made to the first program line following the
REPEAT statement,

When the relationral test is true, program execution continues with the first program line
following the UNTIL statement.

Branching into a REPEAT ... UNTIL construct {via a GOTO) results in normal execution
up to the UNTIL statement, where the test is made. Execution will continue as if the
construct had been entered normally.

Nesting Constructs Property

REPEAT ... UNTIL constructs may be nested within other constructs provided the inner
construct begins and ends before the outer construct can end.

Keywaord Dictionary 2-307

RE-SAVE

RE-SAVE writes the current HP Instrument BASIC program to the specified file in a
human-readable ASCII format. If the specified file already exists, the old entry is purged after
the new file is written.

Syntax
Y specifier LT
baginning
tine nurmber -
ending -
P line number
beqinning
line iabe!
efding b
e lobel
literal form of file specifier
. . fila oo ©
name
| directory LiF protect vabme
path code specifier
HFZ or DO files only o
LIF files anly
Item Description Range

file specifier

beginning line
number

beginning line label

ending line number

ending line label
directory path

file name

LIF protect code

volume specifier

string expression

integer constant identiying program line;
default = first program line

name of a program line

integer constant identifying a program line;
defanft = last program line

name of a program line
literal

literal

literal; first two non-blank characters are
significant

literal

2-308 Keyword Dictionary

(see drawing)

1 through 32 766

any valid name

1 through 32 766

any vahd name
(see MASS STORAGE IS)

depends on volume’s format (see
Glossary)

> not allowed

(see MASS STORAGE IS)

RE-SAVE

Example Statements
RE-SAVE "NailFile®
RE-SAVE Name$,1,Sort

Details

Amn entire program can be saved, or the portion delimited by beginning and (if needed) ending
line labels or line numbers. If the file name already exists, the old file entry is removed from
the directory after the new file is successfully saved on the mass storage media.

If the file does not already exist, RE-SAVE performs the same action as SAVE (a new file is
created).

If a specified line label does not exist, error 3 occurs. If a specified line number does not exist,
the program lines with numbers inside the range specified are saved. If the ending line number
is less than the beginning line number, error 41 occurs.

If you are using a version of HP Instrument BASIC that supports wildcards, you can use
them in file specifiers with RE-SAVE. You must first enable wildcard recognition using
WILDCARDS. Refer to the keyword entry for WILDCARDS for details. Wildcard file
specifiers used with RE-SAVE must match one and only one file name.

Keyword Dictionary 2-309

RESTORE
RESTORE specifies which DATA statement will be used by the next READ operation.

Syntax
(RESTORE) >
ine
number
fine
ke
Item Description Range

line label name of a program line any valid name
line number integer constant identifying a program line; |1 through 32 766

default = first DATA statement in context

Example Statements
RESTORE
RESTORE Third_array

Details

If a line is specified which does not contain a DATA statement, the computer uses the first
DATA statement after the specified line. RESTORE can only refer to lines within the current
context. An error results if the specified line does not exist.

2-310 Keyword Dictionary

RE-STORE

RE-STORE

RE-STORE writes the current HP Instrument BASIC program to the specified file in a special
compact, fast-loading format. If the specified file already exists, the old entry is purged after
the new file is successfully stored.

Syntax
(RE_STORE) spefiﬁ‘ier -+
titaral form of file specifier:
" » it “
—O mr:e O—’l
L directory _j L,@_. LF protect _@J L wedrne j
path code specifier
e o /
HES or BOS flles ondy LIF fites only
Ttem Description Range
file specifier string expression {see drawing)
directory path literal {see MASS STORAGE I8)
file name literal depends on volume’s format (see
Glossary)
LIF protect code literal; first two non-blank characters are > not allowed
significant
volurme specifier literal (see MASS STORAGE 1IS)

Example Statements
RE-STORE Filename$&Volume$
RE-STORE "“Prog_a"

Details

If the specified file already exists, the old file is removed from the directory after the new file
is successfully stored in the current mass storage device. If an old file does not exist, a new
one is ereated as if this were the STORE statement.

If you are using a version of HP Instrument BASIC that supports wildcards, you can use
them in file specifiers with RE-STORE. You must first enable wildcard recognition using
WILDCARDS. Refer to the keyword entry for WILDCARDS for details. Wildcard file
specifiers used with RE-STORE must match one and only one file name.

Keyword Dictionary 2-311

RETURN

RETURN returns program execution to the line following the invoking GOSUB. The keyword
RETURN is also used in user-defined functions.

Syntax

RETURN)=

Example Statements
To return from a GOSUB subroutine:
RETURN
To return a value from a ugser-defined function:
RETURN Value
RETURN 13774
RETURN SIN(X)-4*EXP(SIN(PI/Q))

RETURN File$

Details

There may be more than one RETURN statement. The result in the RETURN statement is
the value returned to the calling context. The result type, numeric or string, must match the
function type (i.e., a numeric function cannot return a string result).

When vou exit a multi-line function, the following actions take place:
® local files are closed
w local variables are deallocated

m ON ... statements may be affected

2-312 Keyword Dictionary

RETURN . ..

RETURN ...

This statement returns a value from a multi-line function.

Syntax
Y funchion ol
{ DEF FN i -
parameter
Hst
program
seqment
Py MNote: A user—defined function
RETURN expression may contain any number of
RETURN staterments.
string
expression
pragearn
segment
Item Description Range
function name name of the user-defined function any valid name

program segment | any number of contriguous program lines not —
containing the beginning or end of a main
program or subprogram

numeric expression | numeric expression range of REAL

slring expression string expression —

Example Statements

IF D THEK RETURN D
RETURN A$4B$%

Details

There may be more than one RETURN statement. The result in the RETURN statement is
the value returned to the calling context. The result type, numeric or string, must match the
function type (i.e., a numeric function cannot return a string result).

When you exit a multi-line function, the following actions take place:
® local files are closed;
® local variables are deallocated;

m ON ... statements may be affected. See ON ... /OFF ...

Keyword Dictionary 2-313

RETURN ...

REVS

REVS returns a string formed by reversing the sequence of characters in the argument.

Syntax

" J _ string ,(:) ,i
EV o exprassion

Example Statements
Reverse$=REV$ (Forward$)
Last_ blank=LEN(A$)-POS(REVE(A%)," ")

Details

The REVS function is useful when searching for the last occurrence of an item within a string.

2-314 Keyword Dictionary

RND

RND

RND returns a psendo-random number greater than 0 and less than 1.

Syntax
RND

Example Statements
Parcent=RND*100
IF RND<.5 THEN Casel

Details

The random number returned is based on a seed set to 37,480,660 at power-on, SCRATCH,
SCRATCH A, or program prerun. Fach succeeding use of RND returns a random number
which uses the previous random number as a seed. The seed can be modified with the
RANDOMIZE statement.

Keyword Dictionary 2-315

ROTATE

ROTATE returns an integer which equals the value obtained by shifting the 16-bit binary
representation of the argument the number of bif positions specified. The shift is performed

with wraparound.

Syntax
(O srasment O e ()

Ttem I Description I Range
argument nurneric expression, rounded to an integer ~32 768 through +32 767
bit position numeric expression, rounded to an integer —15 through +15
displacement '

Example Statements
New_word=ROTATE(0ld_word,2)
Q=ROTATE(G,Places)

Details

The argument is converted into a 16-bit, two’s-complement form. If the bit position
displacement is positive, the rotation is towards the least-significant bit. If the bit position
displacement is negative, the rotation is towards the most-significant bit. The rotation is
performed without changing the value of any variable in the argument.

2.316 Keyword Dictionary

RPLOT

RPLOT

RPLOT moves the pen from the current pen position to the specified relative X and Y
position.

Syntax
% ¥]
RPLOT, displacernent _bO_’ displacement I
pen -
control i
array Y .
name ((*) s i
FILL | >
Item Description Range
x displacement numeric expression n current units |
v displacement numeric expression in current nnits e
pen control numeric expression, rounded to an integer; —32 768 through +32 767
default = 1
array name name of two-dimensional, two-column or any valid name
three-column numeric array. Requires
GRAPHX

Example Statements
RPLOT 1G,12
RPLAOT Rel_x,Rel_y,Pen.control
RPLOT Array(*)
RPLOT Shape(*),FILL,EDGE

Details

RPLOT moves the pen to the specified X and Y coordinates relative to the local coordinate
origin. Both moves and draws may be generated, depending on the pen control parameter.
Lines are drawn using the current pen color set by PEN and the current line type set by LINE
TYPE.

The local coordinate origin is not changed by the RPLOT statement.

Lines drawn by RPLOT are clipped at the current clipping boundary. If none of the lines are
inside the current clip Emits, the pen is not moved, but the logical pen position is wpdated.

Keyword Dictionary 2-317

RPLOT

Graphics Transformations |

The output of RPLOT is affected by only these graphics iransformations:
m scaling specified by WINDOW

m scaling specified by SHOW

m rotations specified by PIVO'F

m rotations specified by PDIR

Non-Array Parameters

The specified X and Y displacements information is interpreted according to the current
unit-of-measure. Lines are drawn using the current pen color and line type.

If none of the line is inside the current clip limits, the pen is not moved, but the logical pen
position is updated.

The optional pen control parameter specifies the following plotting actions; the default value ig
+1 (down after move).

Pen Control Parameter

Pen Control Resultant Action
—Even Pen up before move
—0dd Pen down before move
+Even Pen up after move
+0dd Pen down after move

Array Parameters

When using the RPLOT statement with an array, either a two-column or a three-column
artay may be used. If a two-column array is used, the third parameter is assumed to be +1;
pen down after move.

FILL and EDGE

When FILL or EDGE is specified, each sequence of two or more lines forms a polygon. The
polygon begins at the first point on the sequence, includes each successive point, and the final
point is connected or closed back to the first point. A polygon is closed when the end of the
array is reached, or when the value in the third column is an even number less than three, or
in the range 5 to 8 or 10 to i5.

I FILL and/or EDGE are specified on the RPLOT statement itself, it causes the polygons
defined within it to be filled with the current fill color and/or edged with the current pen
color. Hf polygon mode is entered from within the array, and the FILL/EDGE directive for
that series of polygons differs from the FILL/EDGE directive on the RPLOT statement itself,
the directive in the array replaces the directive on the statement. In other words, if a “stari
polygon mode” operation selector (a 6, 10, or 11) is encountered, any current FILL/EDGE

2-318 Keyword Dictionary

RPLOT

directive {whether specified by a keyword or an eperation selector) is replaced by the new
FILL/EDGE directive.

I FILL and EDGE are both declared on the RPLOT statement, FILL occurs first. If neither
one is specified, simple line drawing mode is assumed; that is, polygon closure does not take

place.

When using an RPLOT statement with an array, the following table of operation selectors
applies. An operation selector is the value in the third column of a row of the array to be
plotted. The array must be a two-dimensional, two-column or three-column array. If the third
column exists, it will contain operation selectors which instruct the computer to carry out
certain operations. Polygons may be defined, edged (using the current pen), filled (using the
current fill color), pen and line type may he selected, and so forth.

Column 1 Columm 2 Operation Meaning
Selector
X Y -2 Pen up before moving
X Y -1 Pen down before moving
X Y 0 Pen up after moving (Same as +2)
X Y H Pen down after moving
X Y 2 Pen up affer moving
pen number 1gnored 3 Select pen
line type repeat value 4 Select tine type
color 1gnored 5 Color value
ignored ignored 6 Start polygon mode with FILL
ignored ignored 7 End polygon mode
ignered ignored 8 End of data for array
ignored ignored 9 NOP {(no operation)
ignored ignored 10 Start polygon mode with EDGE
ignored ignored 11 Start polygon mode with FILL and EDGE
ignored ignored 12 Draw a FRAME
pen number ignored 13 Area pen value
red value green value 14 Color
blue value ignored 15 Value
ignored ignored >15 Ignored

Moving and Drawing

If the operation selector is less than or equal to two, it is interpreted in exactly the same
manner as the third parameter in a non-array RPLOT statement. Even is up, odd is down,
positive is after pen motion, negative is before pen motion. Zero is considered positive.

Keyword Dictionary 2-319

RPLOT

Selecting Pens

An operation selector of 3 selects a pen. The value in column one is the pen number desired.
The value in column two is ignored.

Selecting Line Types

An operation selector of 4 selects a line type. The line type (column one) selects the pattern,
and the repeat value {column two) is the length in GDUs that the line extends before a single
occurrence of the pattern is finished and it starts over. On the CRT, the repeat value is
evaluated and rounded down to the next multiple of 5, with 5 as the minimum,

Selecting a Fill Color

Operation selector 13 selects a pen from the color map with whick to do area fills. This works
identically to the AREA PEN statement. Column one contains the pen number.

Defining a Fill Color

Operation selector 14 is used in conjunction with operation selector 15. Red and green are
specified in columns one and two, respectively, and column three has the value 14. Following
this row in the array (not necessarily immediately), is a row whose operation selector in

column three has the value of 15. The first column in row contains the blue value. The:

AL AL R RS VEL T AL ULRALAL lJJ\ IJ La;l ROT'F\[UL UCIJiLiD lJLJ.L/
numbers range from 0 to 32 767, where 0 is no color and 32 767 is full intensity. Operation
seiectors 14 and 15 together comprise the equivalent of an AREA INTENSITY statement.

Operation selector 15 actually puts the area intensity into effect, but only if an operation
gelector 14 has already been received.

Operation selector 5 iIs another way to select a fill color. The color selection is through a
Red-Green-Blue (RGB) color model. The first column is encoded in the following manuer.
There are three groups of five bits right-justified in the word; that is, the most significant

bit in the word is ignored. Each group of five bits contains a number which determines the
intensity of the corresponding color component, which ranges from zero to sixteen. The value
in each field will be sixteen minus the intensity of the color component. For example, il the
value in the first column of the array is zero, ail three five-bit values would thus be zero.
Sixteen minus zero in all three cases would turn on all three color components to full intensity,
and the resultant color would be a bright white.

Assuming you have the desired intensities {(which range from 0 thru 1) for red, green, and blue
. in the variables I, G5, and B, respeciively, the value for the first column in the array could be
defined thus:

Array(Row,1)=SHIFT(16%(1-B},-10)+SHIFT(16%(1-G),-5)+16*(1~R)

If there is a per color in the color map similar to that which vou request here, that
non-dithered color will be used. If there is not a similar color, you will get a dithered pattern.

If you are using a gray scale display, Operation selector 5 uses the five bit values of the RGB
color specified to calculate luminosity. The resulting gray luminosity is then used as the area
fill.

2.320 Keyword Dictionary

RPLOT

Polygons

A six, ten, or eleven in the third column of the array begins a “polygon mode”. If the
operation selector is 6, the polygon will be filled with the current fill color. If the operation
selector is 10, the polygon will be edged with the current pen number and line type. If the
operation selector is 11, the polygon will be both filled and edged. Many individual polygons
can be filled without terminating the mode with an operation selector 7. This can be done
by specifying several series of draws separated by moves. The first and second columns are
igrored and should not contain the X and Y values of the first point of a polygon.

Operation selector 7 in the third column of a plotted array terminates definition of a polygon
to be edged and/or filled and also terminates the polygon mode (entered by operation
selectors 6, 10, or 11). The values in the first and second columns are ignored, and the X
and Y values of the last data point should not be in them. Edging and/or filling of the most
recent polygon will begin immediately upon encountering this operation selector.

Doing a FRAME

Operation selector 12 does a FRAME around the carrent soft-clip limits. Soft clip limits
carnot be changed from within the RPLOT statement, so one probably would not have more
than one operation selector 12 in an array to RPLOT, since the last FRAME will overwrite all
the previons ones.

Premature Termination

Operation selector 8 causes the RPLOT statement to be terminated. The RPLOT statement
will successfully terminate if the actaal end of the array has been reached, so the use of
operation selector 8 is optional.

Ignoring Selected Rows in the Array

Operation selector 9 causes the row of the array it is in to be ignored. Any operation selector
greater than fifteen is also ignored, but operation selector 9 is retained for compatibility
reasons. Operation selectors less than -2 are not ignored. If the value in the third column is
less than zero, only evenness/oddness is considered.

Keyword Dictionary 2-321

RPTS

RPTS returns a string formed by repeating the argument a specified number of times.

Syntax
T e O I 1 O e
Ttem I Deseription 1 Range
argument string expression —
repeat factor nurneric expression, rounded to an integer {) through 32 767

Example Statements
PRINT RPT$("x", 80)
Center$=RPT$(" ", (Right-Left-Length)/2}

Details

The value of the numeric expression is rounded to an ;nteger If the numeric expression
evaluates to a zero, a null string is returned.

An error will result if the numeric expression evaluates to a negative number or if the string
created by RPTS$ contains more than 32 767 characters.

2-322 Keyword Dictionary

RUN

RUN

RUN starts program execution at the specified line. If no parameter is specified, the program
starts at the beginning.

Syntax
(run) »
line
number
line
latel
Ttem Deseription Range
line number mteger constant identifying a program line; |1 through 32 766
defanlt = first program line

line label name of a program line any valid name

Example Commands

RUN
RUN 10
RUN Partz

Details

Clicking on in the control pad is the same as executing RUN with no label or line
number.

RUN is executed in two phases: prerun initialization and program execution.

The prerun phase consists of:

m Reserving memory space for variables specified in COM statements (both labeled and
blank). See COM for a description of when COM areas are initialized.

m Reserving memory space for variables specified by DIM, REAL, INTEGER or implied in
the main program segment. This does not include variables used with ALLOCATE, which
is done at run-time, Numeric variables are initialized to 0; string vartables are initialized to
the null string.

m Checking for syntax errors which require more than one program line to detect. Included in
this are errors such as incorrect array references, and mismaiched parameter or COM lists.

If IIP Instrument BASIC detects an error during prerun, prerun halts and an error message is
displayed.

After successful completion of prerun initialization, program execution begins with either the
lowest numbered program line or the line specified in the RUN command. If the line number
specified does not exist in the main program, execution beging at the next higher-numbered

Keyword Dictionary 2-323

RUN

line. An error results if there is no higher-numbered line available within the main program,
or if the specified line label cannot be found in the main program.

2-324 Keyword Dictionary

SAVE

SAVE

SAVE writes all or part of the program currently in memory to a text file in a human-readable

format.

Syntax

SAVE

file

specifiar

beginning

iteral form of fite specifier

file

T

s

HFS or DOS files only

Ttem

line nurpber
_J ending =
beginning line rumber
tine labet
ending -

¥

ling label

> »f @
J neene
diractary LIF protect] volume
path oo specifier
% 4

UF files oniy

Description

Range

file specifier

beginning line
number

beginning lize label

ending line number

ending line label
directory path

file name

LIF protect code

volume specifier

string expression

integer constant, identifying a program line;
default = first program hne

name of a program line

integer constant identifying a program line;
default = last program line

name of a program line
literal

literal

literal; first two non-blank characters are
significant

literal

(see drawing)

I through 32 766

any valid name

1 through 32 766

any valid name

(see MASS STORAGE IS)
depends on volume’s format (see
Glossary)

> not allowed

(see MASS STORAGE IS)

Keyword Dictionary 2-325

SAVE

Example Statements
SAVE WHALES"
SAVE File$,First_line,Last_line
SAVE "TEMP",1,Sort

Details

SAVE writes all or part of the program in memory to the specified text file. The format of a
SAVEd file is different from the PROG format used by STORE. The PROG format uses less
disk space and loads more quickly into HP Instrument BASIC. The ASCII format is more
portable (it can be read by other versions of HP BASIC) and it is human-readable.

SAVE creates a new file; to replace an existing file use RE-SAVE. Attempting to SAVE &
program to a file name that already exists causes error 54.

If a specified line label does not exist, error 3 results. If a specified line number does not exist,
the program lines with numbers inside the range specified are saved. If the ending line number
is less than the beginning line number, error 41 occurs. If no program lines are in the specified
range, error 46 occurs.

Lines longer than 256 characters will not be saved correctly,. When a GET is performed on a
program with such a line, an error will occur. However, a program containing lines exceeding
this length can be successfully STOREd and LOADed.

2-326 Keyword Dictiocnary

SCRATCH

SCRATCH _
SCRATCH erases all or selected portions of memory.
Syntax
(scratcH } >
_b‘ A # o
—®
COoM
Details

SCRATCH clears the HP Instrument BASIC program and all variables not in COM.

SCRATCH A clears the HP Instrument BASIC program memory and all variables (including
those in COM). Most internal parameters in the computer are reset by this command. The
clock is not reset and the recall buffer is not cleared.

SCRATCH C clears all variables, including those in COM. The program is left intact.

Example Commands

SCRATCH
SCRATCE A
SCRATCE ALL
SCRATCE COM

Keyword Dictionary 2-327

SECURE

SECURE protects programs lines so they cannot be listed.

Syntax

tem

(SECURE J L ‘;{

bregmning 2

line number o
ending »
fine number

beginning line
number

Description Range

integer comstant; default = first line in —
program

ending lne number | integer constant; default = beginning line —

number if specified, or last line in program

Example Commands

SECURE

SECURE Check_ password
SECURE Routinel,BRoutine2

Details

If no lines are specified, the entire program is secured. If one line number is specified, only
that line is secured. If two lines are specified, all lines between and including those lines are

secured.

Program lines whick are secure are listed as an *. Ouly the line number is listed.

Caution

Bo not SECURE the only copy of vour program. Make a copy of vour
program, SECURE the copy, and save the original “source code” version
of your program in a safe place. There is no way to “unsecure” a program
once you have protected it with the SECURE statement. This prevents
unauthorized vsers from listing your program.

2-328 Keyword Dictionary

SELECT ... CASE

SELECT ... CASE

SELECT ... CASE provides conditional execution of one program segment chosen from

several.

Syntax

Tiem

< SELECT ""P' exprassion e

match
item

beginning
- makch ikerm '.’(_IE)_’

pragram
segment

Program
segment

END SELEC

Description

Range

expression

match ttem

prograin segment

a numeric or string expression

& numeric or string expression; must be same
type as the SELECT expression

any number of contiguous program lines not
containing the beginning or end of a main
program or subprogram, but which may
contain properly nested construct(s).

Keyword Dictionary 2-329

SELECT ... CASE

Example Statements

600 SELECT String$
610 CASE "0Q¥ TO "o

620 GOSUB Digits

630 CASE " ;¢

640 GOSUB Delimiter

650 CASE <CHR$(32),>CHR$(:126)
660 GOSUB Control_chr

670 CASE ELSE

680 GOSUB Ignore

690 END SELECT

Details

SELECT ... END SELECT is similar to the IF ... THEN ... ELSE ... END IF construct,
but allows several conditional program segments to be defined; however, only one segment will
be erecuted each time the construct is entered. Each segment starts after a CASE or CASE
ELSE statement and ends when the next program line is a CASE, CASE ELSE, or END
SELECT statement.

The SELECT statement specifies an expression, whose value is compared to the list of values
is executed. The remaining segments are skipped and execution continues with the first
program line following the END SELECT statement.

All CASE expressions must be of the same type, {either string or numeric) and must agree in
type with the corresponding SELECT statement expression.

The optional CASE ELSE statement defines a program segment to be executed when the
selected expression’s value fails 1o match any CASE statement’s list.

Branching into a SELECT ... END SELECT construct (via GOTQ) results in normal
execution until a CASE or CASE ELSE statement is encountered. Execution then branches to
the first program line following the END SELECT statement.

Errors encountered in evaluating CASE statements will be reported as having occurred in the
corresponding SELECT statement.
Nesting Constructs Properly

SELECT ... END SELECT constructs may be nested, provided inner construct begins and
ends before the outer construct can end.

2-330 Keyword Dictionary

SEPARATE ALPHA

SEPARATE ALPHA

This statement may not work on all instruments. It is included for compatability with
RMB-UX. It has no affect except in RMB Workstation. Like RMB-UX, this will generate a
runiime errar of 713. Request is nof supported by dev.

Syntax

(SEPARATE ALPHA } >
L—(FROM GRAF’HECS}J

Details

Color map entries below the lowest alpha pen value have their default colors set by

PLOTTER IS CRT,"INTERNAL". Using a value in this range as an alpha pen will produce
transparent text (i.e., is equivalent to using pen 0). Setting up the color or gray map as given
in the table causes the alpha text to be dominant over graphics images. If the COLOR MAP
option is used with PLOTTER IS5, the SET PEN statement can still be used to set all color or
gray map entries, not just those dedicated to graphics pens.

Here is a BASIC program that performs similar configuration of the planes of a 4-plane
display:

100 PLOTTER IS CRT, "INTERNAL";COCLOR MAP!Series 300 display
110 FOR I=8 TO 15

120 SET PEN I INTENSITY 0,1,0 ! Set alpha colors (green).
130 NEXT I

140 ALPHA PEN O ! Set alpha pen to black {temp).

180 ALPHA MASK 15 ! Enable all planes (temp).

160 CLEAR SCREEN

170 ALPHA MASK 8 ! Erable plane 4 for alpha.

180 ALPHA PEN 8 ! Set alpha pen.

190 INTEGER Gm{0) ! Declare array for GESCAPE.

200 Gm(0)=7 ! Set bits 2,1,0, which select

210 GESCAPE CRT,7,Gm(x} ! graphics planes 3,2,1.

220 ALPHA ON ! Dispiay alpha plane.

230 GRAPHICS ON ! Display graphics planes.

240 PLOTTER IS CRT,"INTERNAL" ! Return to non-color-map
250 END ! mode.

Note that when using this operation with AREA COLOR and AREA INTENSITY, there may
he unexpected results. The algorithm that AREA COLOR and AREA INTENSITY use to
select graphics pens does not account for the graphics write-enable or display-enable masks.

If the pens selected by these statements have bits outside of the write-enable mask, then the
planes corresponding to these bits will not be affected. The result is that the area fill colors
will not be what is expected.

Example Statements
SEPARATE ALPHA

Keyword Dictionary 2-331

SET ALPHA MASK

SET ALPHA MASK is included for compatibility with RMB-UX. It has no effect except in
RMB Workstation.

The behavior of this statement will be instrument specific. Refer to the instrument specific
manual for more information.

Syntax

(SET APHA mask >, Teme Ly

buffer mask

Item l Description/Defanlt | Range Restrictions

frame buffer mask | numeric expression, rounded to an integer 1 through 2°n — 1, where n equals

the number of display planes

Example Statements

SET ALPHA MASK Frame_mask

SET ALPHA MASK 3

SET ALPHA MASK IVAL("iiQO",2)

IF Total _frames = 5 THEN SET ALPHA MASK 8

2-332 Keyword Dictionary

SET PEN

SET PEN

SET PEN assigns a color to one or more graphics pens. SET PEN Las an effect only when
color-mapped mode is active (PLOTTER 1S ... COLOR MAP).

Syntax

() ’ pen
SET PEN selectar

Ttem

saturation —PO—P hirninosity

N

INTENSITY

Description

3L array
e

réed

RGE array
name

r

blue

Range

pen selector

hue

saturation
laminosity

HSL array name

red

green

blue

RGB array name

numeric expression, rounded to an integer

numeric expression
numeric expression

HIITIETEC eXpression

nare of a two-dimensional, three-colurmn

REAL array
nueric expression
numeric expression

RURIMETic eXpression

name of a two-dimensional, three-column

REAL array

0 through 32 767
0 through 1

0 through 1

0 through 1

any valid name

0 through 1
0 through 1
0 through 1

any valid name

Note

IS ... COLOR MAP statement, such as:
PLOTTER IS CRT, "INTERNAL"; COLOR MAP

The colors defined with SET PEN become active only after a PLOTTER

Example Statements

SET PEN P_num COLOR Hue,Saturate,Luminous
SET PEN Selector INTENSITY Red,Blue,Green
SET PEN Start_pen COLOR Hsl_array{*)

SET PEN 2 INTENSITY 4/15,1/15,9/15

Keyword Dictionary 2-333

SET PEN

Details

SET PEN will operate correctly only if the computer’s video interface supports at least 256
colors. If the video interface supports fewer than 256 colors, SET PEN executes without error
and without effect. Note that a Super VGA or better interface is required to obtain 256
colors.

SET PEN defines the color or gray value for one or more entries in the color map.
In simpler terms, SET PEN allows you to defire a color and assign it to one of the
HP Instrument BASIC PEN numbers. SET PEN has an effect only in the color-mapped

mode. The color-map mode is controlled by PLOTTER IS ... COLOR MAFP. In
noa-color-mapped mode, SET PEN executes without error and without effect.

For both SET PEN COLOR and SET PEN INTENSITY, the pen selector specifies the first
color or gray map entry to be defined. If individual RGB or HSL values are given, that entry
in the color or gray map is the only one defined. If an array is specified, the color or gray map
is redefined, starting at the specified pen, and continuing until either the highest-numbered
entry in the map is redefined or the source array is exhausted.

Specifying color or gray with the SET PEN and AREA PEN statements (resulting in
non-dithered color) results in a muck more accurate representation of the desired color than
specifying the color with an AREA COLOR or AREA INTENSITY statement.

PEN COLOR

SET
The hue valae specifies the color. The hue ranges from zero to one, in a circular manner, with
a value of zero resulting in the same hue as a valoe of one. The hue, as it goes from zero to
one, proceeds through red, orange, yellow, green, cvan, blue, magenta, and back to red.

The saturation value, classically defined, is the inverse of the amount of white added to a hue.
What this means is that saturation specifies the amount of hue to be mixed with white. As
saturation goes from zero to one, there is 0% to 100% of pure hue added to white. Thus,

a saturation of zero results in a gray, dependent only upon the luminosity; hue makes no
difference.

‘The luminosity value specifies the brightness per unit area of the color. A luminosity of zero
resulis in black, regardless of hue or saturation; if there is no color, it makes no difference
which color i is that is not there,

If you are using a gray scale display, hue and saturation are not used, and the brightness per
nnit area of gray is specified by the luminosity value. A luminosity of zero results in black.

SET PEN INTENSITY

For » color display, the red, green, and blue values specify the intensities of the red, green, and
blue displayed on the screen.

2-334 Keyword Dictionary

SET TIME

SET TIME
This statement resets the time-of-day given by the real-time clock.
Syntax
(SET TIME) seconds ||
Ttem l Description l Range
seconds npumneric expression, rounded to the nearest |0 through 86 399.99

hundredth

Example Statements

SET TIME 0
SET TIME Hours*3600+Minutes*60
SET TIME TIME("8:37:30%)

Details

SET TIME changes only the time within the current day, not the date. The new clock setting
is equivalent to (TIMEDATE DIV 86 400)x86 400 plus the specified setting.

Keyword Dictionary 2-335

SET TIMEDATE

This statement resets the absolute seconds (time and day) given by the real-time clock.

Syntax
(SET TIMEDATE }—#{ seconds
Item] Deseription E Range
seconds numeric expression, rounded to the 2.086 629 12 E+11 through

nearest hundredth 2.143 252 223 999 9 E+411

Example Statements

SET TIMEDATE TIMEDATE+3600
SET TIMEDATE Strange_number
SET TIMEDATE DATE("1 Jan 1989") + TIME("13:57:20")

Details

The volatile clock is set to 2.086 629 12 E+11 (midnight March 1, 1900) at power-on (BASIC
Workstation semantics}. If there is a battery-backed (non-volatile} clock, then the volatile
clock is synchronized with it at power-up. The clock values represent Julian time, expressed in
seconds.

2.336 Keyword Dictionary

SGN

SGN

SGN returns 1 if the argument is positive, 0 if it equals zero, and -1 if it is negative.

Syntax

GO~O-{FE
exprassion

Example Statements
Root=SGH (X) *SGR(4ABS{X))
Z=2+PI*SGN(Y)

Keyword Dictionary 2-337

SHIFT

SHIFT returns an integer which equals the value obtained by shifting the 16-bit binary
representation of the argument the number of hit positions specified, without wraparound.

Syntax
OO i PO~
Item I Description } Range
argument numeric expression, rounded to an integer —32 768 through +32 767
bit position numeric expression, rounded to an integer ~15 through +15
displacement

Example Statements
New_word=SEIFT(0ld _word,-2)

1

Mask=SHIFT(i,Position)

Details

If the bit position displacement is positive, the shift is towards the least-significant bit. If the
bit position displacement is negative, the shift is towards the most-significant bit. Bits shifted
out are lost. Bits shifted in are zeros. The SHIFT operation is performed without changing

the value of any variable in the argument.

2-338 Keyword Dictionary

SHOW

SHOW

SHOW defines an isotropic current unit-of-measure for graphics operations.

Syntax
@O—W}-» jaft —a-o—b- righit —v@—r Battom -oO—b top -l
Ttem Description Range
left numeric expression e
right numeric expression # left
bottom numeric expression —
top numeric expression # bottom

Example Statements
SHOW -5,5,0,100
SHOW Left,Right,Bottom,Top

Details

SHOW defines the values which must be displayed within the hard clip boundaries, or the
boundaries defined by the VIEWPORT statement. SHOW creates isotropic units (units the
same in X and Y). The direction of an axis may be reversed by specifying the left greater than
the right or the bottom greater than the fop.

Keyword Dictionary 2-339

SIN

SIN returns the sine of the angle represented by the argument.

Syntax
= SIN) o argument -l-@—”
Item Description Range
Restrictions
argument numeric expression in current units of angle | absolute values less than:
when arguments are INTEGER or REAL 1.708 312 781 2 E+14 deg or
2.981 568 26 E-+8 rad

Example Statements
Sine=SIN(Angle)
PRINT “Sine of";Theta;"=";S8IK{(Theta)

2-340 Keyword Dictionary

SIZE

SIZE
SIZE returns the number of elements in a dimension of an array.
Syntax
O H— O O~
Iiem ' Description ’ Range
array name name of an array any valid name
dimensicn numetric expression, rounded to an integer i through 6; < the RANK of the

array
Example Statements

Total_words=SIZE(Words$,1)
Upperbound(2)=BASE{A1,2)+SIZE{(Al,2)~1

Keyword Dictionary 2-341

SPOLL.

SPOLL returns an integer containing the serial poll response from the addressed device.

Syntax

/¢ path

Mame
device
selector
Item I Description l Range

1/O path name name assigned to a device any valid name (see ASSIGN)
device selector numeric expresgion, rounded to an integer must include a primary address

(see Glossary)

Example Statements
Stat=SPOLL(707)
IF SPDLL{@Device) TEEN Respond

Details

A SPOLL may be executed under the following conditions:

» the computer must be the active controller

u multiple listeners are not allowed

m one secondary address may be specified to get status from an extended talker

Refer to the documentation provided with the polled device for information conceraing the
device’s status byte.

2-342 ¥Keyword Dictionary

Summary of SPOLL Bus Actions

Interface Select
Code Only

Primary Address
Specified

Error

ATN
UNL
MLA
TAD
SPE
Read data
ATN
SPD
UNT

SPOLL

Keyword Dictionary 2-343

SQR
See SQRT.

2-344 Keyword Dictionary

SQRT

SQRT
SQRT returns the square root of the argument. The keywords SQR and SQRT behave
identically. '
Syntax
P argument *’@—b
Summary of Bus Actions
Iiem Description/Default Range
Restrictions
argument [ALMETIC eXpression any valid INTEGER or REAL

Example Statements
Amps=SQRT (Watts/Chms)

PRINT "Square root of';X;"=";SQR{X)

value for INTEGER and REAL
expressions

Keyword Dictionary 2-345

STATUS

The behavior of this statement will be instrument specific. Refer to the instrument specific
manual for more information.

Appendix C contains more information on registers for I/O path names, interfaces, and
psendo select code 32.

STATUS can perform a variety of functions:

= For [/O paths assigred to files, STATUS returns the values of registers that describe the
size, format, and status of the file,

» For [/O paths assigned to hardware interfaces, such as HP-1B and serial interfaces, STATUS
returns the values of registers that describe the configuration and status of the interface.

Syntax for Files

nurneric
name

] .
STATUS @] /¢ ren >
. J L’O_’ registar _}

= 3
interface e
select code

Item Description Range

I/0 path name name assigned o a device, devices, mass any valid name (see ASSIGN)
storage file, buffer, or pipe

interface select numeric expression, rounded to an integer 1 through 40

code

register number numeric expression, rounded o an integer; interface dependent
default = 0

nuIeric name name of a numeric variable any valid name

Example Statements
STATUS Interface,Reg;Vall ! Read status of a hardware interface.

STATUS @File,5;Record ! Read status of a file.

Details

2-346 Keyword Dictionary

STATUS

Using STATUS with Files and Hardware Interfaces

The value of the beginning register number is copied into the first variable, the next register
value into the second variable, and so on. The information is read until the variables in

the list are exhausted; there is no wrap-arcund to the first register. An attempt to read a
nonexistent register generates an error.

The register meanings depend on the specified interface or on the resource to which the 1/0
path name is currently assigned. Register 0 of I/O path names can be interrogated with
STATUS even if the 1/0 path name is currently invalid (i.e., unassigned to a resource). Note
that the status registers of an [/O path are different from the status registers of an interface.

Keyword Dictionary 2-347

STOP

STOP terminates execution of the program.

Syntax

Example Statements
STOP
IF Done THEN STOP

Details

Once a program is stopped, it cannot be resumed by CONTINUE. RUN must be executed
to restart the program. PAUSE should be used if you intend to continue execution of the
program.

A program can have multiple STOP statements. Encountering an END statement or clicking
on (Step J in the control panel has the same efect as executing STOP. After a. STOP, variables

that existed in the main context are available from the keyboard.

2-348 Keyword Dictionary

STORE

STORE

STORE writes the program currently in memory to a PROG file in a special binary form used
only by HP Instrument BASIC.

Syntax

() N file
STORE Spefcifier _’{

jiteral form of file specifien

_@ N i "
name
L directory _J LIF protect _.@_j L velume _j
path coda spacifiar

L —— N y
HFS or DOS files only L files only
Ttem Description Range
file specifier string expression (see drawing}
directory path literal (see MASS STORAGE IS)
file name literal depends on volume’s format {see
Glossary)
LIF protect code | literal; first fwo non-blank characters are > not allowed
significant
volume specifier literal {see MASS STORAGE IS)

Example Statements
STORE Filename$

Details

STORE writes the program in memory o the specified IBPRG file. This format is different
from the ASCII format used by SAVE. The IBPRG format loads more quickly into

HP Instrument BASIC. The ASCII format is more portable (it can be read by other versions
of HP BASIC) and it is human-readable.

In all STORE statements, an error occurs if the storage media cannot be found, the media or
directory is full, or the file specified already exists. To update a file which already exists, see
RE-STORE.

STORE

The STORE statement creates a IBPRG file and stores an internal form of the program into
that file.

Keyword Dictionary 2-349

SUB

SUB is the first statement in a SUB subprogram and specifies the sabprogram’s formal
parameters. SUB subprograms must follow the main program’s END statement and must be
terminated by a SUBEND statement.

Syntax

required <

parameters

Htem

subprogram

SUB fname i
parareter
fint

. prOGram
segment

- porameter st

M\
1 ./
o) rnurmeric
3 name r

®

A i

o string %\

name

(%)

/0 path
@ nama

Description

Range

subprogram name
numeric name
string name

I/O path name

program segment

name of the SUB subprogram
name of a numeric variable
name of a string variable

naine assigned to a device, devices, or mass
storage file

any number of contignous program lines not
containing the beginning or end of a main

program or subprogram

2-350 Keyword Dictionary

any valid narme
any valid name
any valid name

aay valid name (see ASSIGN)

sSuB

Example Statements
SUB Parse(String$)
SUB Process
SUB Transform(@Printer,INTEGER Array(x),Text$)

Details

SUB subprograms must appear after the main program. The first line of the subprogram
must be a SUB statement. The iast line must be a SUBEND statement. Comments after the
SUBEND are considered to be part of the subprogram.

Variables in a subprogram’s formal parameter list must not be duplicated in COM or other
declaratory statements within the subprogram. A subprogram may not contain any SUB
statements, or DEF FN statements. Subprograms can be called recursively and can contain
local variables. A uniquely labeled COM must be used if the local variables are fo preserve
their values hetween invocations of the subprogram.

Use SUBEXIT to exit the subprogram at some point other than the SUBEND. Multiple
SUBEXITs are allowed; SUBEND may only occur once in a subprogram. ERROR SUBEXIT
can be used in the same way as SUBEXIT.

Keyword Dictionary 2-351

SUBEND

SUBEND is the last statement of a SUB subprogram. SUBEND marks the end of the
subprogram and returns control to the calling context.

Example Statement
SUBEND

2.352 Keyword Dictionary

SUBEXIT

SUBEXIT

SUBEXIT returns program control from a subprogram at some point other than the SUBEND
statement.

Syntax

Example Statements
SUBEXIT
IF Done THEN SUBEXIT

Keyword Dictionary 2-353

SUM

SUM returns the sum of all the elements in a numeric array.

Syntax
] array |, (:) >
SUM o reHNe
Ttem l Description l Range
array npame l name of a pumeric array i any valid name

Example Statements
Total=SUM({Array)
PRINT SUM(Squares)

2-354 Keyword Dictionary

SYSTEM PRIORITY

SYSTEM PRIORITY
SYSTEM PRIORITY sets the system priority to a specified level.

Syntax
(SYSTEM PRiOR!TY)—> new priotity fa]
Tiern E Description l Range
new priority !nu.meric expression, rounded to an integer I 0 through 15

Example Statements
SYSTEM PRIDRITY Level
SYSTEM PRIORITY 15

Details

Zero is the lowest user-specifiable priority and 15 is the highest. The END, ERROR, and
TIMEOUT events have an effective priority higher than the highest user-specifiable priority. If
no SYSTEM PRIORITY has been executed, minimum system priority is 0.

'T'his statement establishes the minimum for system priority. Once the minimuam system
priority is raised with this statement, any events of equal or lower priority will be logged but
not serviced. In order to allow service of lower-priority events, minimum system priority must
be explicitly lowered.

If SYSTEM PRIORITY is used to change the minimum system priority in a subprogram
context, the former value is restored when the context is exited.

Ezroré?? results if SYSTEM PRIORITY is executed in a service routine for an ON ERROR
GOSUB or ON ERROR CALL statement.

Keyword Dictionary 2-355

SYSTEMS

SYSTEMS returns a string containing system status and configuration information.

Syntax
topic
(O~ PO
Item I Description ! Range
topic specifier i string expression see the following table

Example Statements

System_prior=VAL{SYSTEM$ ("SYSTEM PRIORITY"))
PRINT SYSTEM$("VERSTON:INSTR") ! The version no. of HP IBASIC .

Details

The topic specifier is used to specify what system configuration information SYSTEM$ will

return.

The following tahle lists the valid topic specifiers and the information returned for each one.

Topic Specifier

Information Returned

MASS STORAGE 15, MSI

PRINTER 18

SYSTEM 1D

SYSTEM PRIORITY

VERSION:INSTR

The mass storage unit specifier of the current MASS STORAGE
IS device, as it appears in a CAT heading.

A string containing numerals which specify the device selector of
the current PRINTER IS device or the path name of the current
PRINTER 1S file.

Returns instrument name.

A string containing numerals which specify the current system
priority.

Returns the current version of IBASIC, for example, A.00.G0

2-356 Keyword Dictionary

TAB

TAB
See PRINT and DISP.

Keyword Dictionary 2-357

TABXY
See PRINT.

2-358 Keyword Dictionary

TAN

TAN

TAN returns the tangent of the specified angle.

Syntax
Item Description/Defaunlt Range
Restrictions
arguiment numeric expression in the current units of absolute values less than: 8.541

angle when argumenis are INTEGER or
REAL.

Example Statements

Tangent=TAN{Angle)
PRINT “"Tangent of";Z;"=";TAN(Z)

Details

563 906 E+9 deg. or 1.490 784 13
E+8 rad. for INTEGER and
REAL arguments

Error 31 is reported for INTEGER and REAL arguments when trying to compute the TAN of
an odd multiple of 90 degrees.

Keyword Dictionary 2-359

TIME

TIME converts a formatted time-of-day string into a numeric value of seconds past midnight.

Syntax
, tme of
O O
literal formn of time of day
'-'F@‘-F hours =M detimiter =9 minutes j :@—P
LI' delimiter - seconds
Tiem Deseription Range
time of day string expression reprezenting the time mn (see drawing)
24-hour format
hours lteral 0 through 23
minutes iiteral O through 59
geconds fiteral; default = 0 { through 59.99
delimiter fiteral; single character {see text)

Example Statements
Seconds=TIME(T$)

Details

TIMIS returas a REAL whole number, in the range 0 through 86 399, equivalent to the
number of seconds past midnight.

While any number of non-numeric characters may be used as a delimiter, a single colon is
recommended. Leading blanks and non-numeric characters are ignored.

2-360 Keyword Dictionary

TIME$

TIMES

TIMES converts the number of seconds past midnight into a string representing the formatted
timne of day (HH:MM:SS).

Syntax
Item t Description i Range
geconds numeric expression, truncated to the nearest | through 86 399

second; seconds past midnight

Example Statements
PRINT "It is ";TIME$(TIMEDATE)
IF VAL(TIME$(T1))>17 THEN Overtime

Details

TIMES$ takes time (in seconds) and returns the time of day in the form HH:MM:SS, where
HH represents hours, MM represents minutes, and S5 represents seconds, A modulo 86 400 is
performed on the parameter before it is formatted as a time of day.

Keyword Dictionary 2-361

TIMEDATE

TIMEDATE returns the current value of the real-time clock.

Syntax

~{ TIMEDATE)}

Example Statements
DISP TIME$(TIMEDATE) ,DATE$(TIMEDATE)
Elapsed=TIMEDATE-T1
DISP "Beconds since midnight = “;TIMEDATE MDD 86400

Details

The value returned by TIMEDATE represents the sum of the last time setting and the
number of seconds that have elapsed since thai setting was made. The volatile clock value
set at power-on is 2.086 629 12 E+11, which represents midnight March 1, 1900. If there
is a battery-backed (non-volatile) clock, then the volatile cloek is synchronized with it at
power-up. The clock values represent Julian time, expressed in seconds. The time value
accumulates from that setting unless it is reset.

The resolution of the TIMEDATE function is .01 seconds. If the clock is properly set, this
expression equals the number of seconds since midnight:

TIMEDATE MOD 86400

2-362 Keyword Dictionary

TRIGGER

TRIGGER

TRIGGER sends a trigger message to a selected device, or to all devices addressed to listen,
on the HP-TB.

Syntax

TG path

TRIGGER —v@ S eme T
device
Seedod salaciar e
Item Description Range

1/O path name name assighed 1o a device or devices any valid name (see ASSIGN)
device selector numeric expression, rounded to an integer {see Glossary)

Example Statements
TRIGGER 712
TRIGGER Device
TRIGGER @Hpib

Details
The computer must be the active controller to execute this statement.

If only the interface select code is specified, all devices on that interface which are addressed
to listen are triggered. If a primary address is given, the bus is reconfigured and only the
addressed device is triggered.

Summary of Bus Actions

System Controller Not System Controiler
Interface Select | Primary Addressing Iuterface Select | Primary Addressing
Code Only Specified Code Only Specified
Active/Controlleri ATN ATN ATN ATN
GET UNL GET UNL
LAG LAG
GET GET
Not Active Error Error Error Error
Controller

Keyword Dictionary 2-363

TRIMS

TRIMS returns a string formed by stripping all leading and trailing blanks from its argument.

Syntax

.) " airing 3 (:) i
!M$ o expres*.;;s'on

Example Statements
Left$=TRIME (" cehter "y
Clean$=TRIM$ (User_input$)

Details

Only CHR${32) (the space character) is trimmed. Only leading and trailing ASCII spaces are
removed: embedded spaces are not affected.

2-364 Keyword Dictionary

UNTIL

UNTIL
See REPEAT ... UNTIL.

Keyword Dictionary 2-365

UPCS

UPCS returns a string formed by replacing any lowercase characters with the corresponding
uppercase characters,

Syntax

o ! atring s < :) .
E}F‘Cii . expression

Example Statements
Capital$=UPC${Mixed$)
IF UPC$(Yes$)="Y" THEN True_test

2-366 Keyword Dictionary

VAL

VAL
VAL converts a string expression into a numeric value.
Syntax
argument
Ttem ’ Deseription | Range

numerals, decimal point, sign and
exponent notation

string argument string expression

Example Statements
Day=VAL(Date$)
IF VAL(Response$)<0 THEN Negative

Detaiis

The first non-blank character in the string must be a digit, a plus or minus sign, or a decimal
point. The remaining characters may be digits, a decimal point, or an E, and must form

a valid numeric constant. If an E is present, characters to the left of it must form a valid
mantissa, and characters to the right must form a valid exponent. The string expression is
evaluated when a non-numeric character is encountered or the characters are exhausted.

Keyword Dictionary 2-367

VALS

VAL$ converts a numeric expression to a string.

Syntax

numeric
ar gument

Item ’ Description

numeric argument]numeric expression
Exampie Statements

PRINT Esc$;VAL$(Cursor-1)
Special$=Text$&VAL$ (Number)

2-368 Keyword Dictionary

VIEWPORT

VIEWPORT

VIEWPORT defines an area {in GDUs) onto which WINDOW and SHOW statements are
mapped. It also sets the soft clip Hmits to the boundaries it defines.

Syntax
teft rigng bottom top
VIEWPORT edyge () adge () adqe () sdge ";-E
Iiem Description Range
left edge NWMETic expression —
right edge HHINeric expression >left edge
bottom edge numeric expression e
top edge NUMEric eXpression >bottom edge

Example Statements
VIEWPORT 0,35,50,80
VIEWFORT Left,Right,Bottom,Top

Details

The parameters for VIEWPORT are in Graphic Display Units (GDUs). Graphic Display
Units are 1/100 of the shorter axis of a plotting device. GDUs are isotropic (the same length
in X and Y). The soft clip limits are set to the area specified, and the units defined by the last
WINDOW or SHOW are mapped into the area. Since the dimensions of the graph window
can be changed, the length of the longer side must be determined using RATIO. If RATIO is
greater than one, the Y axis is 100 GDUs long, and the length of the X axis is (100*RATIO).
If the ratio is less than one, then the length of the X axis is 100 GDUs and the length of the ¥
axis is (100*RATIO).

A value of less than zero for the left edge or bottom is treated as zero. A value greater than
the hard clip limit is treated as the hard clip limit for the right edge and the top. The left
edge must be less than the right edge, and the bottom must be less than the top, or error 704
results.

Keyword Dictionary 2-369

WAIT

WAIT causes the computer fo wait the number of seconds specified before executing the next
statement,

Syntax
WAIT seconds |»]
Item } Deseription i Range
seconds numeric expression, rounded to the nearest {less than 2 147 483.648

thousandth
Example Statements

WAIT 3
WAIT Seconds/2

2-370 Keyword Dictionary

WHERE

WHERE

WHERE returns the current logical position of the graphics pen.

Syntax

(WHERE > vamabie -»O—» v varioble . — >
L,O__» smtuzw\;ireqbae @_}
Tiem Description Range
x variable name name of a numeric variable any valid name
v variable name name of a numeric variable any valid name
status variable name of a string variable whose dimensioned | any valid name
name length is at least 3

Example Statemenis
WHERE X_pos,Y_pos
WHERE X,Y,Status$

Details

The characters in the status string have the following meaning:

Character Position Value Meaning
1 G Pen is up
“17 Pen is down
2 comma | (delimiter)
3 “ Current position is outside hard clip limits.
“17 Current position is inside hard clip hmits byt
outside viewport boundary.
“xr Current position is inside viewport boundary and
hard clip limits.

Keyword Dictionary 2-371

WHILE

WHILE defines a loop which is repeated until the expression in the WHILE statement
evaluates to false (zero).

Example Statements

Syntax

(). boolean
WHILE SUDIESRionN _H

program
segment

END WHILE }—»

Item Description Range

Boolean expression | numeric expression: evaluated as true if e
nonzero and false if zero.

program segment | any number of contiguous program lines not -
containing the beginning or end of a main
program or subprogram, but which may
contain properly nested construct(s).

330 WHILE Size>=Minimum
340 GOSUB Process

350 Size=8ize/Scaling
380 END WHILE

Details

The WHILE ... END WHILE construct allows program execution dependent on the outcome
of a relational test performed at the start of the loop. If the condition is true, the program
segment between the WHILE and END WHILE statements is executed and a branch is made
back to the WHILE statement. The program segment will be repeated until the test is false.
When the relational test is false, the program segment is skipped and execution continues with
the first program line after the END WHILE statement.

Branching into a WHILE ... END WHILE construct (via a GOTO) results in normal
execution up to the END WHILE statement, a branch back to the WHILE statement, and
then execution as if the construct had been entered normally.

Nesting Constructs Properly

WHILE ... END WHILE constructs may be nested within other constructs, provided the
inner construct begins and ends before the outer construct can end.

2-372 Keyword Dictionary

WILDCARDS

WILDCARDS

WILDCARDS enables and disables wildcard recognition in various file-related commands.

Wildcard recognition is disabled at power-up and after SCRATCH A. To use wildcards, you
must explicitly enable them using WILDCARDS DOS.

Syntax

(wiLbcaRDS DOS

OFF

Example Statements
WILDCARDS DOS
WILDCARDS OFF

Details
Definitions for WILDCARDS DOS
Wildeard Meaning
? Matches ¢ or | characters. For example, X77 matches file names of ap {0 3 characters
tha$ begin with the letter X {for example “X”, “Xa”, and “Xab”).
*

Matches any sequence of 0 or more characters either before or after a “7 in a file
name. For example, X* matches all file names {with null extensions) of one or more
characters that begin with X, Similarly, X* b* would match “Xabc bat” or “Xyz.bak”,
You can use only one asterisk before the period and one asterisk after the period to
match file names.

Here i1s an example program segment using WILDCARDS DOS:

100 WILDCARDS DOS ‘
110 PURGE 'FILE_x* deletes all files prefired FILE with no ertension
120 PURGE "% .DAT" deletes all files with .DAT extension

Wildcards generate matches through file name expansion or file name completion. FExpansion
means that more than one file name can match the wildcard specification. Completion means
that one and only one file name can match the wildcard specification, or an error is generated.

Keyword Dictionary 2-373

WILDCARDS

Commands Allowing Wildcards

File Name! File Name
Expansion | Completion
CAT ASSIGN
PURGE | GET
COPY LOAD
LOAD SUB
MSI
PRINTER IS
RENAME
RE-SAVE
RESTORE

2-374 Keyword Dictionary

WINDOW

WINDOW

WINDOW is used to define an anisotropic current unit-of-measure for graphics operations.

Syntax

Ttem

teft right
(WINDOW }-—*- edge —P{ }—*' edga

uOn

Description

bottorm l(); top ,‘
adge adqge

Range

left edge
right edge
bottom edge

top edge

NUIMEric eXxpression
NUImeric expression
numeric expression

numeric expression

Example Statements

WINDOW -

5,5,0,100

WINDOW Left,Right,Bottom,Top

Details

left edge

bottom edge

WINDOW defines the values represented at the hard clip boundazies, or the boundaries
defined by the VIEWPORT statement. WINDOW may be used to create non-isotropic {not
equal in X and Y) units. The direction of an axis may be reversed by specifying the left edge
greater than the right edge, or the bottom edge greater than the top edge. (Also see SHOW.)

Keyword Dictionary 2-375

A

Error Messages

10

11

12

13

15

16

Configuration error. Statement recognized but can’t be executed.

Memory overflow. If you get this error while loading a file, the program is too large
for the computer’s memory. If the program loads, but you get this error when vou
press RUN, then the overflow was caused by the variable declarations. Eitker way,
vou need to modify the program or add more read /write memory.

Line not found in current context. Could be a GOTO or GOSUB that references a
non-existent {or deleted) line, or an EDIT command that refers to a non-existent
line labei,

Improper RETURN. Executing a RETURN statement without previously
executing an appropriate GOSUB or function call. Also, a RETURN statement in a
user-defined function with no value specified.

Improper context terminator. You forgot to put an END statement in the program.
Also applies to SUBEND ard FNEND.

Improper FOR ... NEXT matching., Executing a NEXT statement withous
previously executing the matching FOR statement. Indicates improper nesting or
overlapping of the loops.

Undefined function or subprogram. Aftempt to call a SUB or user-defined function
that is not in memory. Look out for program lines that assumed an optional CALL.

Improper parameter matching. A type mismatch between a pass parameter and a
formal parameter of & subprogram.

Improper number of parameters. Passing either too few or too many parameters to a.
subprogram. Appiies only to non-optional parameters.

String type required. Attempting to return a numeric from a user-defined string
function. '

Numeric type required. Attempting to return a string from a user-definred numeric
function.

Attempt to redeclare variable. Including the same variable name twice in declarative
statements such as DIM or INTEGER.

Array dimensions not specified. Using the (%) symbol after a variable name when
that variable has never been declared as an array.

Invalid bounds. Attempt to declare an array with more than 32 767 elements or with
upper bound less than lower bound.

Improper or inconsistent dimensions. Using the wrong number of subscripts when
referencing an array element.

Error Messages A-1

17 Subscript out of range. A subscript in an array reference is outside the current
bounds of the array.

18 String overflow or substring error. String overflow is an attempt to put too many
characters into a string (exceeding dimensioned length). This can happen in an
assignment, an ENTER an INPUT, or a READ. A substring error is an attempted
violation of the rules for subsirings., Watch out for null strings where you weren’t
expecting them.

18 Improper value or cut of range. A value is too large or too small. Applies to items
found in a variety of statements. Often occurs when the number builder overflows
{or underflows) during an I/0 operation.

20 INTEGER overflow. An assignment or result exceeds the range allowed for
INTEGER variables. Must be —32 768 thru 32 767.

22 REAL overflow. An assignment or restlt exceeds the range allowed for REAL
variables.

24 Trig argument too large for accurate evaluation. Out-of-range argument for a
function such as TAN.

25 Magnitude of ASN or ACS argument is greater than 1. Arguments to these
functions must be in the range —1 thru +1.

26 Zero to non-positive power. Exponentiation error.

27 Negative base to non-integer power. Exponentiation error.

28 LOG or LGT of a non-positive nember.

29 llegal fioating point number. Does not occur as a result of any calculations, but is

possible when a FORMAT OFYF 1/0 operation fills a REAL variable with something
other than a REAL number.

30 SQR of a negative number.
31 Division (or MOD) by zero.
32 String does not represent a valid number. Attempt to use “non-numeric” characters

as an argument for VAL, data for a READ, or in response to an INPUT statement
requesting a number.

33 Improper argument for NUM or RPT$. Null string not allowed.

34 Referenced line not an IMAGE statement. A USING clause contains a line identifier,
and the line referred to is not an IMAGE statement.

35 Improper image. See IMAGE or the appropriate keyword in the HF Instrument
BASIC Language Reference.

36 Out of data in READ. A READ statement is expecting more data than is

available in the referenced DATA statements. Check for deleted lines, proper use of
RESTORE, or typing errors.

38 TAB or TABXY not allowed here. The tab functions are not allowed in statermnents
that contain a USING clause. TABXY is allowed only in a PRINT statement.

40 Improper attempt to renumber Line numbers must be whole numbers from 1 to 32
766,

A-2 Error Messages

41

46
47

49

53

H4

5D

58

59

60

62

64

65
66

67

First line number > second. Attempted to SAVE, REN, DELETE, LIST or
SECURE lines with improper line number parameters,

Attempting a SAVE when there is rno program in memory.

COM declarations are inconsistent or incorrect. Includes such things as mismatched
dimensions, unspecified dimensions, and blank COM occurring for the first time in a
subprogram.

Branch destination not found. A statement such as ON ERROR or ON KEY refers
t0 a line that does not exist. Branch destinations must be in the same context as the
ON ... statement,

Improper mass storage volume specifier. The characters used for a msvs do not
form a valid specifier. This could be a missing colon, too many parameters, illegal
characters, etc.

Improper file name. The file name is too long or has characters that are not allowed.
LIF file names are limited to 10 characters; SRM file names to 16 characters; HFS
file names to 14 characters. LForeign characters are allowed, but punctuation {in
commands, ete.) is not.

Duplicate file name. The specified file name already exists in directory. It is illegal
to have two files with the same name on one LIF volume or in the same SRM or
HFS directory.

Directory overflow. Although there may be room on the media for the file, there

is no room in the directory for another file name. LIF Discs initialized by HP
Instrument BASIC have room for over 100 entries ir the directory, but other systems
may make a directory of a different size.

File name is undefined. The specified file name does not exist in the directory.
Check the contents of the disc with a CAT command.

Improper file type. Many mass storage operations are limited to certain file types.
For example, LOAD is limited to PROG files and ASSIGN is limited to ASCII,
BDAT, and HP-UX files.

End of file or buffer found. For files: No data left when reading a file, or no space
left when writing a file. For buffers: No data left for an ENTER, or no buffer space
left for an OUTPUT.

End of record found in random mode. Attempt to ENTER or QUTPUT a field that
is larger than a defined record.

Protect code violation. Failure to specify the protect code of a protected file, or
attempting to protect a file of the wrong tvpe.

Mass storage media overflow. The disc is full. (There is not enough free space for
the specified file size, or not enough contiguous free space on a LIF disc.)

Incorrect data type.

INTTTIALIZE failed. Too many bad tracks found. The disc is defective, damaged, or
dirty.

Hlegal mass storage parameter. A mass storage statement contains a parameter
that is out of range, such as a negative record number or an out of range number of
records.

Error Messages A-3

68

72

78

79

80

81

82

83

84

87
88

89

90
93

100
161
182

103

Syntax error occurred during GET. One or more lines in the file could not be stored
as valid program lines. The offending lines are usually listed on the system printer.
Also occurs if the first line in the file does not start with a valid line number.

Dise controller not found or bad controller address. The msus contains an improper
device gelector, or no external dise s conneeted.

Improper device type in mass storage volume specifier. The msvs has the correct
general form, but the characters used for a device type are not recognized.

Incorrect unit number in mass storage volume specifier. The msvs contains a unit
number that does not exist on the specified device.

Operation not allowed on open file. The specified file is assigned to an I/0 path
name which has not been closed.

Invalid mass storage volume label. Usually indicates that the media has not been
initialized on a compatible system. Could also be a bad disec.

File open on target device. Atiempt to copy an entire volume with a file open on the
destination disc.

Disc changed or not in drive, Fither there is no disc in the drive or the drive door
wag opened while a file was assigned.

Mass storage hardware failure. Also occurs when the disc is pinched and not
turaing. Try reinserting the disc.

Mass storage volume not present. Hardware problem or an attempt to access a
left-hand drive on the Model 226.

Write protected. Attempting to write to a write-protected disc. This includes many
operations such as PURGE, INITIALIZE, CREATE, SAVE, QUTPUT, ete.

Record not found. Usually indicates that the media has not been initialized.
Media not initialized. (Usually not produced by the internal drive.)
Record address error. Usnally indicates a problem with the media.

Read data error. The media is physically or magnetically damaged, and the data
cannot be read.

Checkread error. An error was detected when reading the data just written. The
media is probably damaged.

Mass storage system error. Usunally a problem with the hardware or the media.

Incorrect volume code in msvs., The msvs contains a volume number that does not
exist on the specified device.

Numeric IMAGE for string item.
String IMAGE for numeric item.

Numeric field specifier is too large. Specifying more than 256 characters in a numeric

fleld.

Item has no corresponding IMAGE. The image specifier has no fields that are used
for item processing. Specifiers such as # £ / are not used to process the data for the
item list. Item-processing specifiers include things like KD B A.

A-4 Error Messages

118

121

122
125
126
127
128
131

134
135

136
146

150
153

158

159

Numeric IMAGE field too small. Not enough characters are specified to represent
the number.

IMAGE exponent field too small. Not enough exponent characters are specified to
represent the number.

IMAGE sign specifier missing. Not enough characters are specified to represent the
number. Number would fit except for the minus sign.

'Too many nested structures. The nesting level is too deep for such structures as
FOR, SELECT, IF, LOGP, etc.

Too many structures in context. Refers to such strauctures as FOR/NEXT,
IF/THEN/ELSE, SELECT/CASE, WHILE, etc.

Line not in main program. The run line specified in a LOAD or GET is not in the
main context. 122 Program is not continuable. The program is in the stopped state,
not the paused state. CONT is allowed only in the paused state.

Program is not continuable.

Program not ruaning.

Quote mark in unquoted string. Quote marks must be used in pairs.

Statements which affect the knob mode are out of order.
Line too long during GET.

Unrecognized non-ASCII keycode. An output to the keyhoard contained a
CHR$(255) followed by an illegal byte.

Improper SCRATCH statement,

READIO/WRITEIO to nonexist mem. Attempt fo access nonexistent memory
location.

REAL underflow. The input or result is closer to zero than 10/598 (approximately).

Duplicate line label in context. There cannot be two lines with the same line label in
one context.

Illegal interface select code or device selector. Value out of range.

Insufficient data for ENTER. A statement terminator was received before the
variable list was satisfied.

String greater than 32 767 bytes in ENTER.
Bad interface regisier number. Attempted to access nonexistent register.
Hlegal expression type in list. For example, trying to ENTER into a constant.

No ENTER terminator found. The variable list has been satisfied, but no statement
terminator was received in the next 256 characiers. The # specifier allows the
statement to terminate when the last item is satisfied.

Improper image specifier or resting images more than 8 deep. The characters used
for an image specifier are improper or in an improper order.

Numeric data not received. When entering characters for a numeric field, an item
terminator was encounteraed before any “numeric” characters were received.

Error Messages A-5

160
163

165
167

168
170

171

173

177

178

180
181
182
183
185
186
187
188
189
190
191
192
193
194
195
196

Attempt to enter more than 32 767 digits into one number.

Interface not present. The intended interface is not present, set to a different select
code, or is malfunctioning.

Image specifier greater than dimensioned string length.

Interface status error. Exact meaning depends upon the interface type. With HP-IB,
this can happen when a non-controller operation by the computer is aborted by the
bus.

Device timeout occurred and the ON TIMEOUT branch could not be taken.

I/0 operation not allowed. The 1/0 statement has the proper form, but its
operation is not defined for the specified device. For example, using an HP-1B
statement on a non-HP-IB interface or directing a LIST to the keyboard.

lllegal 1/0 addressing sequence. The secondary addressing in a device selector is
improper or primary address too large for specified device.

Active or system controller required. The HP-IB is not active controller and needs
to be for the specified operation.

Nested IO prohibited. An I/0 statement contains a user-defined function. Both the
original statement and the function are trying to access the same file or device.

Undefined I/0O path name. Attempting to use an I/O path name that is not assigned
to a device or file.

Trailing punctuation in ENTER. The trailing comma or semicolon that is sometimes
used at the end of QOUTPUT statements is not allowed at the end of ENTER
statements.

HFS disc may be corrupt.

No room in HFS buffers.

Not supported by HFS.

Permission denied. You have insufficient access rights for the specified operation.
HFS volumes must be mounted.
Cannot open the specified directory.
Cannot link across devices.

Renaming using ., .., or / not allowed.
Too many open files,

File size exceeds the maximum allowed.
Too many links to a file.

Networking error.

Resource deadlock would occur.
Operation would block.

Too many levels of a symbolic link.

Target device busy.

A-6 Error Messages

197
1498
199
200
292

293

204
295
296
301
303
304
308
310
332

345

347

401

427
453
459
460
465
466
482
485
522
609

810

Incorrect device type in device file.

Invalid msvs mapping (e.g., not a directory)
Incorrect access to mounted HFS volume
Cannot access disk (e.g., uninitialized media)

Wildcards not allowed. Attempt to use wild cards with CREATE, INITIALIZE or
SAVE.

Operations failed on some files. Wildcard operation did not succeed on all files
found.

Wildcard matches > 1 item. Wildeard name expanded to mere than one file name.
Improper destination type.

Unable to purge file. Unable to purge file during copy operation.

Cannot do while connected.

Not allowed when trace active.

Too many characters without terminator.

IHegal character in data.

Not connected.

Non-existent dimension given. Attempt to specify a non-existent dimension in a
SIZFE or BASE operation.

CASE expression type mismatch. The SELECT statement and its CASE statements
must refer to the same general type, numeric or string.

Structures improperly matched. There is not a corresponding number of structure
beginnings and endings. Usually means that you forgot a statement such as END IF,
NEXT, END SELECT, etc.

Bad system function argument. An invalid argument was given to & SYSTEMS$
function.

Priority may not be lowered.

File in use—HTFS error.

Specified file is not a directory—HFS error.

Directory not empty—HFS error.

Invalid rename across volumes.

Daplicate volume entries.

Cannot move a directory with a RENAME operation—HFS error.
Invalid volume copy—HFS error.

Device not present.

IVAL or DVAL result too large. Attempt to convert a binary, octal, decimal, or
hexadecimal string into a value outside the range of the function.

Feature not supported on HP-UX.

Error Messages A-7

816

881

902

903

906

09

910

940
942

943

946

947

. Invalid opcode in program. Attempted to load a corrupt program.

Array is not INTEGER type.

Must delete entive context. Attempt fo delete a SUB or DEF FN statement without
deleting its entire context.

No room to renumber. While EDIT mode was renumbering during an insert, all
available line numbers were wsed between insert location and end of program.

SUB or DEF FN not allowed here. Attempt to insert a SUB or DEF FN statement
into the middle of a context. Subprograms must be appended at the end.

May not replace SUB or DEF FN. Similar to deleting a SUB or DEF FN.
Attempted to insert lines: between a CSUB statement and the following SUB, DEF
I'N, or CSUB statement; or after a final CSUB statement at the end of the program.

Identifier not found in this context. The keyboard-specified variable does not already
exist in the program. Variables cannrot be created from the keyboard; they must be
created by running a program.

Improper I/0 list.

Numeric constant not allowed.
Numeric identifier not allowed.
Numeric array element not allowed.
Numeric expression not allowed.
Quoted string not allowed.

String identifier not allowed.

String array element not allowed.
Substring not allowed.

String expression not allowed.

I/0 path name not allowed.
Numeric array not allowed.

String array not allowed.

Identifier is too long: 15 characters maximum.

Unrecognized character. Attempt to store a program line containing an improper
name or illegal character.

Duplicate formal param name,.

Invalid 1/O path name. The characters after the @ are not a valid name. Names
must start with a letter.

Invalid function name. The characters after the F¥ are not a valid name. Names
must start with a letter.

Dimensions are inconsistent with previous declaration. The references to an array
contain a different number of subscripts at different places in the program.

Invalid array bounds. Value out of range, or more than 32 767 elements specified.

A-8 FError Messages

948 Multiple assignment prohibited. You cannot assign the same value to multiple
variables by stating X=Y=Z=0. A separate assignment must be made for each
varizble. '

949 Syntax error at cursor. The statement yon typed contains elements that don’t
belong together, are in the wrong order, or are misspelled.

950 Must be a positive integer.

951 Incomplete statenient. This keyword must be followed by other items to make a
valid statement,

861 CASE expression type mismatch. The CASFE line contains items that are not the
same general type, numeric or string.

962 Programmable only: cannot be execuied from the keyhoard.

963 Command only: cannot be stored as a program line.

977 Statement is too complex. Contains too many operators and functions. Break the

expression down so that it is performed by two or more program lines.

980 Too many symbols in this context. Symbols include variable names, 1/0 path
names, COM block names, subprogram names, and line identifiers.

982 Too many subseripts: maximum of six dimensions allowed,

983 Wrong type or number of parameters. An improper parameter list for a

machine-resident function.

985 Invalid quoted string.
987 Invalid line number: must be & whole number 1 thrn 32 766.
999 Internal Brror. Hardware failure has occurred.

Error Megsages A-9

Glossary

angle mode

array

ASCII

bit

byte

The current units used for expressing angles. Fither degrees or radians may
be specified, using the DEG or RAD statements, respectively. The default at
power-on and SCRATCH A is radians.

A subprogram “inherits” the angle mode of the calling context. If the angle
mode is changed in a subprogram, the mode of the caliing context is restored
when execution returns to the calling context.

A structured data type that can be of type REAL, INTEGER, or string.
Arrays are created with the DIM, REAL, INTEGER, or COM statements.
Arrays have 1 to 6 dimensions; each dimension is allowed 32 767 elements.
The lower and upper bounds for each dimension must fall in the range —32
767 thru 432 767, and the lower bound must not exceed the upper bound.
The default base in every environment is zero,

Fach element in a string array is a string whose maximum length is specified
in the declaring statement. The declared length of a string must be in the
range 1 thru 32 767.

To specify an entire array, the characters (%) are placed after the array name.
To specify a single element of an array, subscripts are placed in parentheses
after the array name. Fach subscript must not be less than the current

lower bound or greater than the current upper bound of the corresponding
dimension.

g QFFGY]
Ve

If an array is not explicitly dimensioned, it is implicitly given the number
of dimensions used in its first occurrence, with an upper bound of 10.
Undectared strings have a default length of 18,

This is the acronym for “American Standard Code for Information
Interchange”. It is a commonly used code for representing letters, numerals,
punctuation, special characters, and control characters,

This term comes from the words “binary digit”. A bit is a single digit in base
2 that must be either a 1 or a 0.

A group of eight bits processed as a unit.

Glossary B-1

command

context

device selector

directory name

dyadic
operator

B-2 Glossary

A statement that can be typed on the input line and executed (see
“statement™).

An instance of an environment. A context consists of a specific instance of all
data types and system parameters that may be accessed by a program at a
specific point in its execution. Context changes occur when subprograms are
invoked or exited.

A numeric expression used to specify the source or destination of an I/O
operation. A device selector can be either an interface select code or a
combination of an interface select code and an HP-IB primary address. To
construct a device selector with a primary address, multiply the interface
select code by 100 and add the primary address. For instance, a device
selector that specifies the device at address 1 on interface select code 7 Iz 701.
The device at address 0 on interface select code 14 is 1400. Device selector
1516 selects interface select code 15 and primary address 16.

Secondary addresses may be appended after a primary address by multiplying
the device selector by 100 and adding the address. This may be repeated up
to 6 times, adding a new secondary address each time. A device selector, once
rounded, may contain a maximum of 15 digits. For example, 70502 selects
interface 7, primary address 05, and secondary address 2.

A directory name specifies a directory of files on a hierarchically structured

mass storage volume.

The directory name on a Hierarchical File System (HFS) volume consists of 1
to 14 characters, which may include all ASCII characters except “/” and 7
and “<”. Spaces are ignored.

An operator that performs its operation with fwo expressions. It is placed
between the two expressions. The following dyadic operators are available:

Dyadic Operation
Operator

+ REAL, or INTEGER addition
- REAL, or INTEGER subtraction
* REAL, or INTEGER multiplication
/ REAL division
" REAL, or INTEGER exponentiation®
& String concatenation

IV (zives the integer quotient of a division

MCE Gives the remainder of a division

HODULD Gives the remainder of a division, similar to MOD

= Comparison for equality

<> Comparison for inequality
< Comparison for less than
> Comparison for greater than

<= Comparison for less than or equal to

>= Comparison for greater than or equal to

AND Logical AND

OR Logical inclusive OR,

EXOR Logical exclusive OR

file name A name used to identify a file. The length and characters allowed in a file

name vary according to the format of the volume on which the file resides,

m A file name on a Logical Interchange Format (LIF) volume consists of 1 to
10 characters, which may include uppercase and lowercase letters, digits 0
through 9, the underbar { _) character, and national language characters
[CHR${161) through CHR${254)]. The first character in a LII*-compatible
file name must be a letter. Spaces are ignored. {Note that some LIF
implementations do not allow lowercase letters.)

m A file name on a Hierarchical File System (HFS) volume consists of 1 teo 14
characters, whick may include all ASCII characters except “/” and “” and
“<7. Spaces are ignored.

w A file name on an MS-DOS (DOS) volume consists of two parts; a file name
and an optional extension. The file name contains from 1 to 8 characters
and the extension contains from 1 to 3 characters. A period separates the
extension from the file name. All ASCII characters may be used except for

i’he fOHOW.‘;.IigI Cé.”’ 44[75’ 44]”5 LC?”, H\??’ LL/?? é:’:” LL’” £L>]<777 14:77 (A998 - A

Lﬁ_i'_ﬂ
+ + ‘ IR ’
U ds Mg

y * :

bl H

Glossary B-3

function

hierarchy

I/O path

INTEGER

integer

interface select
code

B-4 Glossary

A procedural call that returns a value. The call can be to a user-defined-
function subprogram (such as FNInvert) or a machine-resident function (such
as COS or EXP). The value returned by the function is used in place of the
function call when evaluating the expression confaining the function call.

When a numeric or string expression contains more than one operation, the
order of operations is determined by a precedence system. Operations with
the highest precedence are performed first. Multiple operations with the
same precedence are performed left to right. The following tables show the
hierarchy for numeric and string operations.

Math Hierarchy

Precedence Operator

Highest Parentheses: (may be used to force any order of operations)
Functions: user-defined and machine-resident
Exponentiation: ~

Multiplication and division: = / M0D DIV MODULOD
Addition, subtraction, menadic plus and minus: + -
Relational operators: = <> < > <= >®

NOT

AND

Lowest OR EXOR

String Hierarchy

Precedence Operator
Highest Parentheses
Functions (user-defined and machine-resident) and substring
operations
Lowest Concatenation: &

A combination of firmware and hardware that can be used during the transfer
of data to and from an HP Instrument BASIC program. Associated with an
I/O path is a unique table that describes the 1/O path. This association table
uses 148 bytes and is referenced when an 1/0 path name is used. For further
details, see the ASSIGN statement.

A numeric data type stored internally in two byies. Two's-complement
representation is used, giving a range of —32 768 thru +32 767. If a numeric
variable is not explicitly declared as an INTEGER, it is a REAL.

A number with no fractional part; a whole nember.

A numeric expression that selects an interface for an 1/0 operation. Interface
select codes 1 thru 7 are generally reserved for internal interfaces. Interface

keyward

LIF

LIF protect
code

literal

monadic
operalor

msus

msvs

select codes 8 thru 31 are generally used for external interfaces. The internal
HP-IB interface with select code 7 can be specified in statements that are
restricted to external devices. (Also see “device selector”.)

A group of uppercase ASCII letters that has a predefinred meaning to the
computer. Keywords may be typed using all lowercase or all uppercase letters.

This is the acronym for “Logical Interchange Format”. This HP standard
defines the format of mass storage files and directories. It allows the
interchange of data between different machines. See “file name” for file name
restrictions.

A non-listable, two-character code kept with a file description in the directory
of a LIF volume. It guards against accidental changes te an individual file. It
may be any two characters, but must rot contain a “>" since that is used to
terminate the protect code. Blanks are trimmed from protect codes. When
the result contains more than two characters, only the first two are used as
the actual protect code. A protect code that is the null string {or all blanks)
is interpreted as no protect code.

A string constant. When quote marks are used to delimit a literal, those
quote marks are not part of the literal. To include a quote mark in a literal,
type two consecutive quote marks. The drawings showing literal forms of
specifiers {such as file specifiers) show the quote marks required to delimit the
literal.

An operator that performs its operation with one expression. It is placed in
front of the expression. The following monadic operators are available:

Monadic Operation
Operator

- Reverses the sign of an expression

+ Identity operator

NOT Logical complement

The acronym for “mass storage unit specifier”. This archaic term is no longer
used, because: it is not descriptive of newer mass storage devices which may
have multiple unifs or multiple volumes; and it is not an industry-standard
term. See the Glossary entry for volume specifier.

The acronym for “mass storage volume specifier”. See the Glossary entry for
volume specifier.

A name identifies one of the following: variable, line label, common block, I/0
path, function, or subprogram. A name consists of one to fiffeen characters.
The first character must be an ASCII lefter or one of the characters from
CHRS$(161) thru CHR$(254). The remaining characters, if any, can be

ASCII letters, numerals, the underbar (_), or national language characters
CHRS$(161) thru CHR$(254). Names may be typed using any combination of
uppercase and lowercase letters, unless the name uses the same letters as a
keyword. Conflicts with keywords are resolved by mixing the letter case in the
name. (Also see “file name”, “directory name”, and “volume name”.)

Glossary B-5

numeric
expression

B-6 Glossary

l] iORaIC _j

operator

nume?fc N dyadic
EXPIESSion aperatar

Ineric

FILHTISNIC
SXPression

constant

numeric varighie

name

numeric function

subseript

A4

keyword

pararmeter |

FN ™ numerie
function names

narameter

string 2 CArmMparisan
axprassion aperator

airing
expression

numneric)
expression

Y

Ttem

Deseription

monadic operator

dyadic operator

numeric constant

numeric varlable
name

subscript

numeric funetion
keyword

numeric function
name

An operator that performs its operation on the expression immediately
o its right: + - NOT

An operator that performs its operation on the two expressions it is
hetween: = % / MOD DIV + - = <> < > <= »>= AND OR EXOR MODULC

A numeric quantity whose value is expressed using numerals, decimal
point, and optional exponent notation

The name of a numeric variable or the name of a numeric array from
which an element is extracted using subscripts

A numeric expression used to select an element of an array (see
“array”}

A keyword that invokes a machine-resident function which returns a
aumeric valie

The name of a user-defined function that returns a numeric value

parameter A numeric expression, string expression, or I/O path name that is
passed to a Tunction
cOmparison An operator that returns a 1 (trae) or a 0 (false} baged on the result of
operator a relational test of the operands it separates: > < <= >= = <
permission A file-access permission on an HFS volume,
primary A numeric expession in the range of 0 thru 31 that specifies an individual
address device on an interface which is capable of servicing more than one device, The

program line

protect code

REAL

record

HP-IB interface can gervice multiple devices. (Also see “device selector”.)

A statement that is preceded by a line number (and an optional line label)
and stored in a program (see “statement”).

See “LIF protect code”.

A numeric data type that is stored internally in eight bytes using
gign-and-magritude binary representation. One bit is used for the number’s
sign, 11 bits for a biased exponent (bias = 1023), and 52 bits for a mantissa.
On all values except 0, there is an implied “1.” preceding the mantissa

(this can be thought of as the 53rd bit). The range of REAL numbers is
approximately:

—1.797 693 134 862 32 E-+308 thru —2.225 073 858 507 2 E—308, 0, and
+2.225 (73 858 507 2 E~308 thru +1.797 693 134 862 32 E+308.

If a numeric variable is not explicitly declared as INTEGER, it is REAL.

The records referred fo in the HP Instrument BASIC manuals are defined
records. Defined records are the smallest unit of storage directly accessible on
the mass storage media. The length of a record is different for various types
of files. For ASCII files, the record length is the same as the sector size (256,

512, or 1024 bytes). For HP-UX files, defined records are always 1 byte long.
For BDAT files, the defined record length is determined when a BDAT file is

Gtlossary B-7

recursive

row-major
order

secondary
address

specifier
statement

string

B-8 Glossary

created by a CREATE BDAT statement. All records in a file are the same
size.

There is another type of record called a “physical record” {or sector) which
is the unit of storage handled by the mass storage device and the operating
system. Physical records contain 256, 512, or 1024 bytes and are not
accessible to the user via standard HP Instrument BASIC statements.

See “recursive”,

The order of accessing an array in which the right-most subscript varies the
fastest.

A device-dependent command sent on HP-IB. It can be interpreted as a
secondary address for the extended talker/listener functions or as part of a
command sequence. (Also see “device selector”.)

A string used to identify a method for handling an I/O operation. A specifier
is usually a string expression. For example: mass storage volume specifier
selects the proper drivers for a mass storage volume, and plotter specifier
chooses the protocol of a plotting device.

A keyword combined with any additional items that are allowed or required
with that keyword. If a statement is placed after a line number and stored, it
becomes a program line. If a statement is typed without a line number and
executed, it is called a command.

A data type comprised of a contiguous series of characters. Strings require
one byte of memory for each character of declared length, plus & two-byte
length header. Characters are stored using an extended ASCII character set.
'The first character in a string is in position 1, The maximum length of a
string is 32 767 characters. The current length of a string can never exceed
the dimensioned length.

If a string is not explicitly dimensioned, it is implicitly dimensioned to
18 characters. Each element in an implicitly dimensioned string array is
dimensioned to 18 characters.

When 2 string is empty, it has a current length of zero and is called a “null
string”. All strings are null strings when they are declared. A null string can
be represented as an empty literal (for example: A$=""} or as one of three
special cases of substring. 'I'he substrings that represent the null string are:

1. Beginning position one greater than current length
2. Ending position one less than beginning position

3. Maximum substring length of zero

string
expression

subprogram

i atring skring
Expransion Exprasan 3
° . .
d EriG wariable *
L1t

o beginning
poaition I
° efind
. ' pasiion l
. o substring
bength

sty function
keysord

puraretar

m strng function ”
L, Hare

o string »{ 3 7
ERPFEEZION

Ttem Description

literal A string constant composed of any characters available on
the keyboard, including those generated with the ANY
CHAR key.

string ‘The name of a string variable or the name of a string array
variable name | from which a string is extracted using subscripts

subscript A numeric expression used to select an element of an array
(see “array”)

beginning A numeric expression specifying the position of the first
position character in a substring (see “substring”)

ending A numeric expression specilying the position of the last
position character in a substring (see “substring”)

substring A numeric expression specifying the maximum number of
length characters to be included in a substring (see “substring”)
string A keyword that invokes a machine-resident function which
function returns a string value. String function keywords always end
keyword with a dollar sign.

string The name of a user-defined function that returns a string

function name | value

parameter A numeric expression, string expression, or I/0 path name
that is is passed to a function

Can be a SUB subprogram or a user-defined-function subprogram (DEF FN).
‘The first line in a SUB subprogram is a SUB statement. The last line in a
SUB subprogram (except for comments) is a SUBEND statement. The first
line in a function subprogram is a DEF FN statement. The last line in &

Glossary B-9

stbroutine

volume

B-10 Glossary

function {except for comments) is an FNEND statement. Subprograms must
follow the END staterment of the main program.

SUB subprograms are invoked by CALL. Funciion subprograms are imvoked
by an FN function occurring in an expression. A function subprogram returns
a value that replaces the occurrence of the FN function when the expression
is evaluated. Subprograms may alter the values of parameters passed by
reference or variables in COM. It is recommended that you do not let function
subprograms alter values in that way.

Invoking a subprogram establishes a new context. The new context remains
in existence until the subprogram is properiy exited or program execution is
stopped. Subprograms can be recursive,

A program segment accessed by a GOSUB statement and ended with a
RETURN statement.

@ SO, [Beqginning]
name position

t ﬁn»:_fifaq

wogition

| subsoript . subgtring
' lenath

A substring is a contiguous series of characters that comprises all or part of
a string. Substrings may be accessed by specifying a beginning position, or
a beginning position and an ending position, or a beginning position and a

maximum substring length.

‘I'he beginning position must be at least one and no greater than the current
length plus one. When only the beginning position is specified, the substring
inciudes all characters from that position to the current end of the string.

The ending position must be no less than the beginning position minus

one and no greater than the dimensioned length of the string. When both
beginning and ending positions are specified, the substring includes all
characters from the beginning posttion to the ending position or current end
of the string, whichever is less.

The maximum substring length must be at least zero and no greater than one
plus the dimensioned length of the string minus the beginning position. When
a beginning position and substring length are specified, the substring starts at
the beginning position and includes the number of characters specified by the
substring length. If there are not enough characters available, the substring
includes only the characters from the beginning position to the current end of
the string.

A named mass storage media, or portion thereof, which may contain several
files. With HP Imstrument BASIC, volumes are entities which are recognized
by the disc controller.

volnme name
(or label)

volume
specifier

A name used to identify a mass storage volume. The volume name is assigned
to the volume at initialization, (and read with CAT).

m LII' volume names consist of 1 to 6 characters which may be any ASCII
character except “/7, “7, 7" and “<”,

» IFS volume names may contain 1 to 6 characters, which may be any ASCII
character except “/” and “” and “<”. Spaces are ignored.

m DOS volume names may contain 1 to 11 characters, which may be any
ASCI} Cha{&(ltel' eXCept 54')5.1 CC[”’ C‘-']”’ “???? “\777 56/77? d(ﬁ”'; ““”, 4617?7 “““;“‘”, “*”1
ié:”’ é/.;n7 i@© 777 «:c<973 4a>>5’ &I].d :(in.

A string of information that identifies & mass storage volume. It consists of a
device type (optional), device selector, unit number {optional; default=unit
0}, and volume number {optional; default=volume number 0}. Here are some
examples:

:C880, TOO
v, 700
1,802, ©
1,1400,0,0

See MASS STORAGE IS for the complete syntax drawing.

Glossary B-11

C

Interface Registers

This sectior lists the STATUS and CONTROL registers for 1/0 path names, interfaces, and

pseudo-select code 32,

i/0 Path Registers

Registers for All /O Paths

STATUS Register 0

G=Invalid 1/0 path name

1=1/0 path name assigned to a device
2=1/0 path name assigned o a data file
3=1/0 path name assigned to a buffer

4=1/0 path name assigned to an HP-UX special file

/0 Path Names Assigned to an ASCII File

STATUS Register 1
STATUS Register 2

STATUS Register 3
STATUS Register 4
STATUE Register 5
STATUS Register 6
STATUS Register 9
CONTROL Register 9

CONTROL Register 10

File type = 3

Device selector of mass storage device (not supported for HF on

BASIC/UX)

Number of records

Bytes per record = 256

Current record

Chrrrent byte within record

File 1/0 buffering in use

Set file /0 buffer.

BASIC/WS allows you to write to this register but no action is taken.
Writing zero (0) enables buffering. Writing one (1) disables buffering.

In BASIC/DOS, writing a 1 to this register writes the peading buffer
to the disk file and updates the directory entry for the file. However,
this command has no eflect on the buffering moede as defined by
Control Register 9.

Note that BASIC/WS and BASIC/UX allow this command but
perform no action.

Interface Registers C-1

1/0 Path Names Assigned to a BDAT File

STATUS Register 1
STATUS Register 2

STATUS Register 3
STATUS Register 4
STATUS Register 5
CONTROL Register 5
STATUS Register 6
CONTROL Register 6
STATUS Regigter 7
CONTROL Register 7
STATUS Register 8
CONTROL Register 8
STATUS Register 9
CONTROL Register 9

CONTROL Register 10

C-2 Interface Registers

File type = 2

Device selector of mass storage device {not supported for HF on

BASIC/UX)

Number of defined records
Defined record length
Curreni record

Set record

Current byte within record
Set byte within record
EOF record

Set EOF record

Byte within EOF record
Set byte within EOF record
File/1/0 buffering in use

Set. file I/O buffer. BASIC/WS and BASIC/DOS aliow you to write to
this register but no action is taken. Writing zero (0) enable buffering,.
Writing one {1} disables buffering.

In BASIC/DOS, wriging a 1 to this register writes the pending buffer
to the disk file and updates the directory entry for the file. However,

this command has no effect on the buffering mode as defined by
CONTROL Register 9.

Note that BASIC/WS and BASIC/UX allow this command but
perform no action.

1/0 Path Names Assigned to a DOS File

STATUS Register 0 = Invalid path name
1 = 1/Q path assigned to device
2 = 1/O path assigned to data file
5 = I/O path assigned to widget

STATUS Register 1 Tile type = 4

STATUS Register 2 Device selector of mass storage device
STATUS Register 3 Number of defined records

STATUS Register 4 Defined record length (fixed record length = 1)
STATUS Register 5 Current record

CONTROL Register 5 Set record

STATUS Register 6 Current byte within record

CONTROL Register 6 Set byte within record

STATUS Register 7 EQF record

CONTROL Register T Set EQF record

STATUS Register 8 Byte within EOF record

CONTROL Register 8 Set byte within EOF record

STATUS Register § File/1/O buffering in use

CONTROL Register 9 Set file I/Q buffer.

CONTRQOL Register 10 Flush file I/O buffer contents immediately; all buffered data is written

to the disk

CRT and CONTROL Registers

See the instrument specific HP Instrament BASIC manual.

Keyboard STATUS and CONTROL. Registers

See the instrument specific HP Instrument BASIC manual.

HP-1B STATUS and CONTROL Registers

See the instrument specific HP Instrument BASIC manual.

RS232C Serial STATUS and CONTROL Registers

See the instrument specific HP Instrument BASIC manual.

interface Registers C-3

