
Janis Alnis

How to build
your own
GSM alarm

2006

Janis Alnis
How to build your own GSM alarm

 This 33 page e-book is an instruction how to get started on developing your own GSM alarm
module to be attached to very common Siemens or other GSM mobile phones via headset
connector.

 Application areas include car, house, garage alarms, unattended monitoring of
temperature, fault acknowledgement. The GSM alarm can be used in opposite direction as a
world-wide remote control to control electrical processes somewhere far away, like switch
on heating in home before you arrive, or control your scientific experiment while away from
the lab.

 It is a great collection of experience that will save you a lot of time to get acquainted with
this interesting new field of hobby electronics. It will teach you the AT commands used to
control the mobile phone and how to build a small control board based on PIC16C84 that
sends commands to the Siemens C55 mobile phone to call any given number (for example your
second mobile phone) when a sensor (switch, motion detector) is activated.

 Experience in building electronic circuits and programming is required at high
school student level.

 The author of this e-book Dr. Janis Anis is doing research in Laser Physics works in the Nobel
Prize winner laboratory. He also reads lecture courses for students, and has 20 years
experience in hobby and ham-radio electronics. Last two years he is interested in this new
exciting area of GSM phone based interfaces.

E-BOOK publishing, (2006)

© Master reseller rights are granted on distribution of this e-book. The book is preferably
distributed as an electronic media, but it can be also supplied in printed version or on a CD.
The author is not responsible for any possible mistakes in the information supplied in this
book.

 2

CONTENTS

Introduction ………………………………………………………………………………………… 4

1.Theory of AT command set ……………………………………………………………….. 6
2. Serial communication between PC and a phone ………………………………. 8
3. The Accessory Connector of the Siemens Mobile Phones ……………….., 9
4. Data Cable between PC and Siemens Mobile Phone …………………………. 10
5. Sending your first commands over the data cable …………………………… 12
6. GSM Alarm Board Construction ………………………………………………………….. 14
7. PIC microcontroller programmer ………………………………………………………. 16
8. Software for our GSM Alarm ………………………………………………………………. 18
9. Motion detector as a sensor ………………………………………………………………. 19
10. Autonomous power from Lithium accumulator pack ………………………. 20
11. Simple GSM remote control………………………………………………………………. 22
12. Further Reading - Online Information Overview ……………………………… 24

Appendix
1. Advanced Example: EMAIL sending application ……………………………..… 26
2. The C program for our circuit board …………………………………………..……. 28
3. Code to be sent to the PIC programmer …………………………………..……… 33

 3

Introduction

 Mobile phones are developing very rapidly over the last decade. For
electronics hobbyist it is fashionable to learn how to program them and make
simple micro-controller based interfaces that can be used as a world-wide
remote controllers.

 HOW IT WORKS:
 Mobile phones can be controlled via the accessory connector. A small
control board sends commands to the phone to call a given number (another
mobile phone) when the sensor (switch, motion detector) is activated.

Simple application areas include

� Car, garage, house, boat, summer house alarms
� Reboot remote server
� switch ON a VCR recording
� autonomous gate opener after receiving a dial signal
� motion detection sensor
� Unattended monitoring of temperature, fuel level sensors
� Some device fault acknowledgement if device halts and does not reset

the watchdog timer
� Wending machine that dials your number when empty

The GSM alarm can be used in opposite direction as a world-wide remote
control

� switch on heating in home before you arrive, or
� control your scientific experiment while away from the lab.

Advanced applications

� solar panel weather station
� transfer remote snapshot camera pictures
� radio-controlled model
� GPS tracking
� data logger
� vegetable/ flower production
� chicken production

 4

The applications grouped by communication type

� simply dial the number of other mobile phone – costs nothing if other
side does not pick up

� send SMS
� send E-mail

 In the first chapter I will explain how to communicate with mobile phone
from a PC using AT command set.

 Next we will build a data cable communicating between PC and mobile
phone. This will allow to practice and see how different commands work.

 And, finally, we will build a Microchip PIC16C84 microcontroller based circuit
that sends the same commands to the phone as a PC. This circuit will dial the
number of your other mobile phone when the sensor input is activated. Of
course, you can modify the example according to your requirements.

 5

CHAPTER 1

Theory of AT command set

 Most GSM/UMTS mobile phones that work at 900 MHz, 1800 MHz and
1900MHz.include an internal modem. GSM cellular phones can accept an
extension of the AT command set that is similar to one used for computer
modems (Hayes modem commands).
Besides SMS management, the extension embraces many functions: mobile
identification, address book management, signal strength level, call waiting
and forwarding, error report, battery charge monitoring, ringing tones,
volume, plus non-standard commands introduced by manufacturers like
keyboard emulation. Extended sets are used by some phone manufacturers
who allow to modify logos, ringtones and calendar entries.

 The standard for GSM cell phones (including the AT modem command set
extension) are published on-line by ETSI (European Telecommunication
Institute). AT command set for general phone control you can download here
3GPP TS 27.005
http://webapp.etsi.org/key/key.asp?GSMSpecPart1=27&GSMSpecPart2=005
and for SMS and 3GPP TS 27.007
http://webapp.etsi.org/key/key.asp?GSMSpecPart1=27&GSMSpecPart2=007

 Then you have to read a lot, but remember that not all commands are a
must have, actually most are optional.

 For everyday programming it is actually quite enough to use a compilation
of the most commonly used AT commands.

Calling commands

AT Attention
ATD Dial Command
ATH Hang Up Call
ATL Monitor Speaker Loudness
ATM Monitor Speaker Mode
ATO Go On-Line
ATP Set Pulse Dial as Default
ATT Set Tone Dial as Default
AT+CSTA Select Type of Address
AT+CRC Cellular Result Codes

SMS Commands

AT+CPMS Preferred Message Storage
AT+CMGF Message Format
AT+CSCA Service Centre Address
AT+CSMP Set Text Mode Parameters
AT+CSDH Show Text Mode Parameters

 6

http://webapp.etsi.org/key/key.asp?GSMSpecPart1=27&GSMSpecPart2=005
http://webapp.etsi.org/key/key.asp?GSMSpecPart1=27&GSMSpecPart2=007

AT+CSCB Select Cell Broadcast Message Types
AT+CSAS Save Settings
AT+CRES Restore Settings
AT+CNMI New Message Indications to TE
AT+CMGL List Messages
AT+CMGR Read Message
AT+CMGS Send Message
AT+CMSS Send Message from Storage
AT+CMGW Write Message to Memory
AT+CMGD Delete Message

Phone control operations

AT&Y Select Set as Power up Option
AT+GCAP Request Complete Capabilities List
AT+GMI Request Manufacturer Identification
AT+GMM Request Model Identification
AT+GMR Request Revision Identification
AT+GSN Request Product Serial Number Identification

AT+CGMI Request Manufacturer Identification
AT+CGMM Request Model Identification
AT+CGMR Request Revision Identification
AT+CGSN Request Product Serial Number Identification
AT+CMEE Report Mobile Equipment Error
AT+CPAS Phone Activity Status
AT+CPBF Find Phone Book Entries
AT+CPBR Read Phone Book Entry
AT+CPBS Select Phone Book Memory Storage
AT+CPBW Write Phone Book Entry
AT+CSCS Select TE Character Set
AT+CSQ Signal Quality

 7

CHAPTER 2

Serial communication between PC and a phone

First of all you need a physical connection to the phone, like a data cable, PC
Card (PCMCIA), Infrared (IrDA) or Bluetooth. The simplest method is to use
IRDA. Here is a simple home-made IRDA adapter
http://pavouk.org/hw/irda.html

Use HyperTerminal which comes with Windows
Start->Accessories->Communications->HyperTerminal
to start a HyperTerminal window.

To send commands use Terminal emulation tools like HyperTerminal
(Windows)
http://www.hilgraeve.com/htpe/download.html

Open a serial connection to the phone via the port where the phone is
attached. Settings:

Data Rate: 9600 or 19200 baud
Parity: None

Data Bits: 8
Stop Bits: 1

Software Flow Control:

Off

There exists a special software for communication with Siemens mobile
phones. Called SiMoCo. It is a shareware and a trial can be downloaded for
example here
http://www.softpedia.com/get/Mobile-Phone-Tools/Siemens/Siemens-
Mobile-Control.shtml

SiMoCo can read the phone address book, call the numbers, send SMS. SiMoCo
has a window for monitoring the commands sent through the COM port

 8

http://pavouk.org/hw/irda.html
http://www.hilgraeve.com/htpe/download.html
http://www.hilgraeve.com/htpe/download.html
http://www.softpedia.com/get/Mobile-Phone-Tools/Siemens/Siemens-Mobile-Control.shtml
http://www.softpedia.com/get/Mobile-Phone-Tools/Siemens/Siemens-Mobile-Control.shtml

CHAPTER 3

The Accessory Connector of the Siemens Mobile Phones

 We want to build a data cable between PC and phone connected to hands-
free accessory connector since we need to practice and be sure we
understand the serial communication signals before we build a microprocessor
based circuit.

 There is a great database of different mobile phone connector schematics
on Pinouts.ru
http://pinouts.ru/cgi-bin/view_filt.cgi?text=siemens&lang=ru

 Connector for Siemens A35, A36, A40, C25, C35, C45, M35, M35i, M50, ME45,
MT50, S25, S35, S45, SL-42, SL45, 3118 cell phones Applicable to A/C/S/M/SL

2x, 3x, 4x, 5x, x25, x35, 3508, s2588.

Pin Name Dir Description
1 GND - Ground
2 SELF-SERVICE in/out Recognition/control battery charger
3 LOAD in Charging voltage
4 BATTERY out Battery (S25 only)
5 DATA OUT (TX) out Data sent
6 DATA IN (RX) in Data received

7 Z_CLK - Clock line for accessory bus. Use as DCD
In data operation

8 Z_DATA - Data line for accessory bus. Use as CTS in
data operation

9 MICG - Ground for microphone
10 MIC in Microphone input
11 AUD out Loudspeaker
12 AUDG - Ground for external speaker

 9

http://pinouts.ru/cgi-bin/view_filt.cgi?text=siemens&lang=ru

CHAPTER 4

Data Cable between PC and Siemens Mobile Phone

 Now let’s build a data cable that will allow to see the communication
signals using oscilloscope or LEDs. I use my Siemens C55 mobile phone, but
other models can be used as well. Other manufacturers like Ericsson and
Nokia should have a similar interface, but you need to check connector
pinouts.

 The phone is connected to PC COM port with a data cable. The newer
notebook computers do not have COM ports any more and one needs
additional USB to COM emulator cable.

 This data cable converts RS232 ±3...15 V levels to 0...+3 V levels that are
needed for most of the phones. Without a limiting Zener diode the phone
locks-up because the voltage supplied by Max232 chip is 5V but internal
voltage of the phone is 3V. This is not a damage of phone because the inputs
of the phone connector are protected by diodes and causes phone to stop
responding until it is switched OFF and ON again.

 Siemens phone data connector I built first from a charger cable. It only has
2 pins and it takes some work to gluing in 2 more gold-plated contacts taken
from a PC RAM memory connector. A much better solution is to buy headset
and use the connector since it has all the 12 pins. Headset is usually cheaper
than to buy just a new connector in your electronics shop.

 10

 The cable between MAX232 board and phone is used from a 10 pin used
RS232 connector connecting slot on the back of PC with the PC motherboard.
Also a USB connector or phone line connector can be used.

For continuous operation external power supply can be used or +5 V power
from an USB connector necessary for phone charging.

You can make your own program that controls your mobile phone from PC. For
example you run long calculations on your PC and at the end you want to
receive notice that calculations are finished.

The windows XP does not allow direct sending of data into the address of COM
port, so you need some high level programming language like Delphi. On Win
98 and older one can use in principle Qbasic or Pascal.

 11

CHAPTER 5

Sending your first commands over the data cable

Connecting to a mobile and issuing a few AT commands like dial number is
straightforward, but SMS handling can be done after some practice.

After setting HyperTerminal to 9600,N,8,1 type the AT command:
AT
And the cell phone should answer:
OK
This is the simplest command to tell the mobile phone to go on attention. It
doesn't do anything. However, this is also a means to test if the phone
responds on the baud rate and all the serial settings.

Now make a phone call to your mobile phone. The GSM phone will send a
RING
RING
message to PC, when it picks up an incoming call from the network. To accept
the call, you may use the ATA command.

With that, we have the means to communicate to the phone via serial port.
Thus, we could build a system to remotely send or receive data.
Now lets try to call somebody.
ATD123456789;
OK
Please not that ATD123456789 starts a data call and a ATD123456789;
starts a voice call. The semicolon on the end of the string is the small
difference between a voice call and a data call.

ATZ to hang-up.

 The following are some simple AT commands to manage SMS

The AT+CMGR=1 command reads the SMS message at the index location of 1.
Each SMS, when they arrived are stored in indexed memory location of the
mobile phone.
For more details look at USBDeveloper homepage
http://www.usbdeveloper.com/GSMPage/gsmpage.htm

With the command AT+CNMI you can switch the GSM modem in a mode that
you will give you a "String" with every incoming SMS. This command is
described in paragraph 3.4.1 of the GSM 07.05 specification. Alternatively,
the command AT+CMGR can be used to poll the modem for new messages.

 12

http://www.usbdeveloper.com/GSMPage/gsmpage.htm

For a very good explanation please look at the webpage of Alexander Traud.
He describes how to read numbers from phonebook
http://www.traud.de/gsm/numbers.htm
For examples how to read SMS entries
http://www.traud.de/gsm/sms.htm
Reading and sending SMS is more difficult because all the characters are
encoded in so called PDU format with fixed length. A good explanation how to
read SMS and send a pre-stored SMS is given by Alberto Ricci Bitti, the
developer of Tiny Planet GSM phone controller:
http://www.riccibitti.com/tinyplanet/tiny_article.htm

AT+CMGF=1
OK

This sets the phone to "SMS Text mode" which can be read more easily, but
not all phones support it. Value 0 is the PDU mode which is a rather difficult
way to organize SMS, but should be used in professional programs for editing
the SMS.

AT+CMGL="ALL"
…
This displays all SMS on the internal phone storage. Some phones have
problems with this command sequence.

 Using this technique, you can select the commands relevant to your
application, simulating manually the intended algorithm before putting it on a
microcontroller.

 13

http://www.traud.de/gsm/numbers.htm
http://www.traud.de/gsm/sms.htm
http://www.riccibitti.com/tinyplanet/tiny_article.htm

CHAPTER 6

GSM Alarm Board Construction

 Our next step is to construct a small control board attached to phone via
accessory connector and based on a single chip processor PIC16C84A or
PIC16F84A. Please download the datasheet from Microchip.com
http://ww1.microchip.com/downloads/en/DeviceDoc/35007b.pdf
The PiC will be programmed to make a call when the sensor input is
activated.

 The circuit diagram is simple. The RX, TX and GND signals go to the phone
via the cable that we made for the data cable board. There are many free
pins that can be programmed for additional functions. It is assembled on a
prototyping breadboard allowing to modify the schematics easily.

 14

http://ww1.microchip.com/downloads/en/DeviceDoc/35007b.pdf

Note a 5-wire in circuit programming adapter works and greatly saves time on
removing the processor from sockets.

Alarm board consumes 33 mA from 5...20 V supply. For battery operation it
should be less and PIC should be programmed to enter the sleep mode.
If the sensor has no relay output, but just voltage output, you can build input
with an opto-coupler input.

This picture shows the GSM Alarm circuit board from both sides.

Parts cost estimation is as follows:
PIC 5 EUR,
motion detector 10 EUR,
other components 10 EUR,
programmer 10 EUR,
phone + prepaid SIM card for O2 in Germany 50 EUR + 10 EUR/year.

Totally the GSM alarm system costs less than 100 EUR. The commercial
systems cost from 200 to 400 EUR.

 15

CHAPTER 7

PIC microcontroller programmer

 The programm for PIC can be written much more easier in C language than
in Assembler. You can download a free compiler CC5X_C_compiler from
http://www.bknd.com/
 The C-compiler generates a Hex file with data to be put in PIC memory. The
Hex file can be opened with a freeware Oshon PIC programmer on Win98.
http://www.oshonsoft.com/picprog.html

Win XP does not allow to address the PC parallel port directly, but newer
programs that run also on WinXP.

The Oshon PIC programmer software allows to use the classic David Tait's PIC
programmer hardware attached to the LPT printer port. My long-living
programmer schematic and design is shown below. Default settings used
D2 vdd noninverted
D3 vpp MCLR noinverted
INVERT CLOCK RB6 D1
DOUT RB7 DO
DIN S6

 16

http://www.bknd.com/
http://www.oshonsoft.com/picprog.html

Notice a 5-wire in-circuit-programming adapter that saves time on removing
the processor from sockets.

 There are many programmer versions around and they are all quite similar
because the standard is set by Microchip. Like this one
http://www.rentron.com/Myke4.htm.

 If you are making the first steps also in microcontroller programming my
advice is try to make some simple code like blinking LED. The way to test the
programmer is to write something and read out the PIC and verify if the code
saved on PIC is the same or to erase chip and read out it. It should be empty.

 17

http://www.rentron.com/Myke4.htm

CHAPTER 8

Software for our GSM Alarm

 The code that you program into the Microchip PIC checks the sensor switch
and, if it is activated, calls the number +498932905292. After a delay the
program will tell phone to hang up. Then it waits approximately 1 minute and,
if sensor still activated, will call again.

Your phone will call me in Germany if you don’t change the C and HEX
code given in the Appendix and I will be glad to hear your circuit works.

 You can later modify the program code that it calls the number in the first
address in the phonebook.

 The code is written in C and supplied in the Appendix. It is a modified serial
communication example code available from Microchip.com and
USBsolutions.com websites. There are several functions in the code not used
in our simple algorithm, but left for you in case you need them when you
make your own program.

 The programmer will need to know the PIC control code. It is 19H since we
run on a quartz oscillator.

Osc XT 4 MHz
D4 PRotCode 1
D3 Timer 1
D2 WDT 0
D1 XT 0
D0 XT 1

 18

CHAPTER 9

Motion detector as a sensor

 Motion detector (Conrad electronics Germany) current consumption is15
mA. I have made a 5 m long extension cable between the sensor and the
phone for facilitating hiding of the phone. Long cable is also useful if sensor
picks up transmitter interference from the phone.

Here is a general circuit running on 5 V. It is not worth to make the circuit but
better to buy a complete module. The schematic is just for reference to
illustrate the working principle of piro-electric motion sensor.

 19

CHAPTER 10

Autonomous power from Lithium accumulator pack

If you want to monitor activity in your fruit garden where is no electricity
please read this chapter.

To my surprise, I have observed that the board described in the previous
chapter runs also without any power supply, because PIC power line gets
charged to 1.5 V from mobile phone serial output line that is on 2.5 V when no
data are transmitted. At this low voltage the current consumption is negligible
but PIC still works and can send commands to dial number (LEDs however do
not emit light at this low voltage). So the alarm still works without battery
and one can use a switch or a wire loop as a sensor.

The mobile phone can be made autonomous for longer time or for power
failure backup using external battery pack. External battery can be connected
to the charging input of phone or less energy wasting option is to solder
external Li battery in parallel to the phone battery.

2000 mAh Li cells can be obtained from morally old notebooks and 8 cells can
be soldered together in parallel to make amazing 16000 mAh pack. It can keep
the system running for 1 month or longer.

The charging of the Li batteries can be done from a phone built in charger if a
connector is made parallel to the original phone battery and external pack is
connected to it.

The charging of Li rechargeable batteries is also special. It is charged at a
constant voltage of 4.2V and the charging current decreases from maximum
value to small value when the cell is charged full.

 20

The Li cells can keep their charge for much longer time compared to NiCd or
NiMH batteries because the self-discharge rate is low. Li cells do not have a so
called “memory effect” that reduces capacity if the cell was not fully
discharged.

!!!
Li cells are very sensitive for overvoltage and can get fire if charged over
4.2V per cell. A prlonged short-short will cause heating and fire.
It is recommended to keep the cells in a metal container or in a flower-pot
during charging.

The discharge below 3 V is decreasing the cell capacity. If deep discharge has
happened, one needs to charge with very small current like 10 mA until the
cell voltage reaches 3 V.

If your GSM alarm is autonomous a good way to hide it is to put it in several
plastic bags with some silicone grains for moisture absorption like in some
medical drug containers and to dig the package under ground. 10 cm works
without any problems a few km from base station. If not far from base station
you can have system in a metal box and phone will still work. I tried to put
phone in a stainless cooking pot with cover and also in a microwave oven with
closed doors and still could call it. The sensitivity of the mobile phone
receiver is astonishing to be able to violate the Faraday cage shielding effect.

A World-wide Microphone

Sometimes you want to listen if the motor that you switched on is still
running. The you connect a headset and switch a phone in auto-answer mode.
When you will call the phone will answer and you can hear what is going on.

 21

CHAPTER 11

Simple GSM remote control

There is a possibility to make a very simple GSM remote control without
programming. Use a photodiode on photoresistor placed near the screen and
an amplifier to activate a relay that further activates a time relay. The time
relay for long delay times should be digital, for example using a PIC
microcontroller with nested delay FOR loops in the programme. The possible
application is to switch on heater before arriving to home or sauna.

None of the parts of the light sensor are critical. Use potentiometer to adjust
the level during light ON phase.

 If you will make a GSM remote control you might use one of the following
circuit ideas.

 This circuit is used to control high current DC motors in radio-controlled
electric model community. Several FETs can be put in parallel. They are

 22

special FETs that are steered with TTL logical signals while the load voltage to
be controlled can be higher.

IRL2505 with TTL logical input can withstand 55V, 104 A, R = 0.008 Ω.
IRL2203 specifications are very little better: logical input, 30V, 116A, 0.007Ω

Below is a nice circuit using a solid state relay, but might be more expensive
than just an opto-coupler and a triac.

 This is a classic transistor circuit. One can even omit the input transistor.

 23

CHAPTER 12

Further Reading - Online Information Overview

The circuit described in this book was developed thanks to several GSM
programming enthusiasts who placed a very valuable information online. I
will try to make a short guide for you.

Tiny planet
Very good website how to make GSM remote control and SMS decoding
http://www.riccibitti.com/tinyplanet/tiny_intro.htm

Serasidis Vasilis
SMS controlled Relay card
http://www.serasidis.gr/circuits/smscontrol/smscontroller.htm

USB developer
Very good website with the programm similar to one used in this book.
http://www.usbdeveloper.com/Solutions/solutions.htm

Active Experts
They give the set of AT commands
http://www.activexperts.com/activcomport/at/

Advanced Wireless Planet
How to send HTML and EMAIL
http://www.gsm-modem.de/gsm-modems.html

SMS-RC
Switch on video recorder VCR for recording TV programme.
http://www.frisnit.com/sms/

Georg Traud Website
Good explanation of AT commands.
http://www.traud.de/gsm/index.html

 24

http://www.riccibitti.com/tinyplanet/tiny_intro.htm
http://www.serasidis.gr/circuits/smscontrol/smscontroller.htm
http://www.usbdeveloper.com/Solutions/solutions.htm
http://www.activexperts.com/activcomport/at/
http://www.gsm-modem.de/gsm-modems.html
http://www.frisnit.com/sms/
http://www.traud.de/gsm/index.html

There are many commercial systems, but they are quite expensive:
http://www.hinkel-elektronik.de/shop/7992.html
www.Conrad.com
http://www.dpspro.com/tcs.html

PROBYTE FINLAND relay card and optocoupled inputs -
http://www.probyte.fi/info/gsm.htm#Model%20seclection%20chart

One can search in google words GSM alarm for new information.

Wish you success in your own developments!

 25

http://www.hinkel-elektronik.de/shop/7992.html
http://www.conrad.com/
http://www.dpspro.com/tcs.html

Appendix 1

Advanced Example: EMAIL sending application
Source from
http://www.gsm-modem.de/smtp-gprs.html

Let' suppose you want to send with your embedded device an EMAIL by using a
SMTP server.

Initial data:
Server to be contacted: smtp.gsm-modem.de
Application Layer Protocol: SMTP (RFC821)
Sender: "JOHN SMITH"<John.Smith@gsm-modem.de>
Receiver: "Receiver"<receiver@gsm-modem.de>
Subject: Email Test
Message body: this message is sent for test Easy GPRS feature. Hello World!

GPRS settings:
APN: internet.gprs
IP of GPRS device: dynamically assigned by the network
DNS: assigned by the network
USERID: Happy User
PASSWORD: EASY GPRS

Checking on the RFC990 the SMTP service we can found that the port 25 is
dedicated for SMTP service, therefore our SMTP server will be waiting for
incoming connections on that port and we will fix the EASY GPRS port to be
contacted on the remote server exactly to 25. Second thing we have to
discover is whether the transport protocol has to be TCP or UDP; on the
RFC821 we can read that the SMTP Application layer protocol is meant to be
on top of TCP/IP protocol, therefore the transport protocol choice will fall on
TCP.

Now we have all the information needed to configure our system. With our
micro controller we issue to the JOHN SMITH the following AT commands:
AT+CGDCONT = 1,"IP","internet.gprs","0.0.0.0",0,0<cr> (1-GPRS context
setting)
AT#USERID = "Happy User"<cr> (2-Authentication setting)
AT#PASSW = "EASY GPRS"<cr> (2-Authentication setting)
AT#SKTSET= 0,25,"smtp.gsm-modem.de"<cr>(3-remote host setting)
For our convenience we store all these parameters with the command:
AT#SKTSAV
Now we can activate the GPRS connection and let the JOHN SMITH module
contact the server:
AT#SKTOP<cr>
When we receive the CONNECT indication, then we are exchanging data with
the SMTP server program on the remote host machine.Now following the SMTP

 26

http://www.gsm-modem.de/smtp-gprs.html

protocol we proceed with the HELLO presentation and mail delivery directly
over the serial line (in green the data sent by us, in violet the one received
from host):
220 smtp.gsm-modem.de ESMTP ; Thu, 5 Jun 2003 14:45:11 +0200
HELLO gsm-modem.de<cr><lf>
250 smtp.gsm-modem.de Hello [111.111.111.127], pleased to meet you
MAIL FROM: "JOHN SMITH"<John.Smith@gsm-modem.de><cr><lf>
250 2.1.0 "JOHN SMITH"<John.Smith@gsm-modem.de>... Sender ok
RCPT TO: "Receiver"<receiver@gsm-modem.de><cr><lf>
250 2.1.5 " John.Smith@gsm-modem.de "... Recipient ok
DATA<cr><lf>
354 Enter mail, end with "." on a line by itself
From: "JOHN SMITH"<John.Smith@gsm-modem.de><cr><lf>
To: "Receiver"<receiver@gsm-modem.de><cr><lf>
Subject: Email Test<cr><lf>
This message is sent for testing Easy GPRS feature. Hello World!<cr><lf>
.<cr><lf>
250 2.0.0 h55CjBVI020859 Message accepted for delivery

DONE! Easy as EASY GPRS.

 27

Appendix 2

The C program for our circuit board

#pragma chip PIC16F84

/*
 Baudrate 9600 baud => 104.167 microsec. per bit
 TMR0 counts each 8th microsec. => 13.02 steps per bit
 ______ _____ _____ _____ _____ _____ _____ _____ _____ _____
 |_____|_____|_____|_____|_____|_____|_____|_____|_____|
 Start bit0 bit1 bit2 bit3 bit4 bit5 bit6 bit7 Stop
*/

#define _4_MHz /* 4 MHz system clock */
#define BPS9600 /* 9600 bits per sec */

// optional items
#define UseTMR0
#define USE_CONST

#pragma bit RS232_out @ PORTA.0
#pragma bit RS232_in @ PORTB.0
#pragma bit LED_Green @ PORTA.1
#pragma bit Button0 @ PORTB.4

#ifdef _4_MHz

 #ifdef BPS9600
 #define TimeStartbit 4 //9600
 #define BitTimeIncr 13 //9600
 #endif

#endif

unsigned long DelayCount;
char bitCount, limit;
char serialData;
char command; //first 4 bits are state
 // state 0 - expected = 0xAA
 // state 1 - expected = 0x55
 // state 2 - command
 // state 3 - bitwise complement of command

 //MSB 4 bits are the actual command.

#ifdef _4_MHz
 #ifdef UseTMR0
 #define delayStart limit = TMR0;
 #define delayOneBit \
 limit += BitTimeIncr; \
 while (limit != TMR0) \
 ;
 #else
 #define delayStart /* empty */

 #ifdef BPS9600

 28

 #define delayOneBit { \
 char ti; \
 ti = 30; \
 do ; while(--ti > 0); \
 nop(); \
 } /* total: 5 + 30*3 - 1 + 1 + 9 \
 = 104 microsec. at 4 MHz */
 #endif

 #endif
#endif

void sendData(char dout)
/* sends one byte */
{
 RS232_out = 0; /* startbit */
 delayStart
 for (bitCount = 9; ; bitCount--) {
 delayOneBit
 if (bitCount == 0)
 break;
 Carry = 1; /* incl. stopbit */
 dout = rr(dout);
 RS232_out = Carry;
 }
}

#define NText 20
const char text[NText] = "ATD+498932905292\r\n";

#define NText2 3
const char text2[NText2] = "ATZ";

const char ResetMobile[5] = "ATZ\r\n"; //reset mobile
const char NoEcho[6] = "ATE0\r\n"; //no echo
const char FwdMsg[13] = "AT+CNMI=3,3\r\n"; //forward all messages to
mobile phone
const char SndMsg[12] = "AT+CMGS=26\r\n"; //send message to mobile
phone, AT+CMGS=%d\r\n...PDU..
const char Dial[8] = "ATD000\r\n"; //Dial number 000
const char text1[5] = "State";
const char SMSMsg[54] =
"0011000881697193280000FF10C3B01C146487E56D50704C4FDBCB";

/*
#define delay12usec { \
 char titemp0; \
 titemp0 = 30; \
 do ; while(--titemp0 > 0); \
 nop(); \
 } /* total: 5 + 30*3 - 1 + 1 + 9 \
 = 104 microsec. at 4 MHz */
*/

#define delay10usec { \
 nop(); \
 nop(); \

 29

 nop(); \
 nop(); \
 nop(); \
 nop(); \
 nop(); \
 nop(); \
 nop(); \
 } /* to create a total of 12 sec, but, adjusted for the looping
delay at 4 MHz */

#define delay12usec { \
 nop(); \
 nop(); \
 nop(); \
 nop(); \
 nop(); \
 nop(); \
 nop(); \
 nop(); \
 nop(); \
 nop(); \
 } /* to create a total of 12 sec, but, adjusted for the looping
delay at 4 MHz */

#define delay13usec { \
 nop(); \
 nop(); \
 nop(); \
 nop(); \
 nop(); \
 nop(); \
 nop(); \
 } /* to create a total of 13 sec, but, adjusted for the looping
delay at 4 MHz */

void delay_1millisec(void)
{
 int temp;
 for (temp = 0; temp < 100; temp++)
 {
 delay10usec;
 }
}

void delay_500millisec(void)
{
 int16 temp;
 for (temp = 0; temp < 500; temp++)
 {
 delay_1millisec();
 }
}

void delay_200millisec(void)
{
 int16 temp;
 for (temp = 0; temp < 250; temp++)

 30

 {
 delay_1millisec();
 }
}

const char Digitext[10] = "0123456789";
void print_dec(unsigned char bytedata)
{
char i_temp, j_temp;

 if (bytedata > 100)
 {
 i_temp = bytedata/100;
 sendData(Digitext[i_temp]);

 j_temp = (bytedata/10);
 i_temp = j_temp % 10;
 sendData(Digitext[i_temp]);

 i_temp = bytedata % 10;
 sendData(Digitext[i_temp]);
 }
 else if (bytedata > 10)
 {
 i_temp = bytedata/10;
 sendData(Digitext[i_temp]);
 i_temp = bytedata % 10;
 sendData(Digitext[i_temp]);
 }
 else
 { //single digit
 sendData(Digitext[bytedata]);
 }
}

const char Digitext[10] = "0123456789";

void send_SMS(void)
{
 int i;
 for (i = 0; i < 12; i++)
 {
 sendData(SndMsg[i]);
 }
 delay_500millisec();
 for (i = 0; i < 54; i++)
 {
 sendData(SMSMsg[i]);
 }
 sendData(0x1A);
 sendData('\r');
 sendData('\n');
}

void main(void)
{
 char i;

 31

 PORTB = 0x07; // xxxx xx11
 TRISB = 0xFB; // Bit 2: US_Enable_N (output), Bit 1: Ultrasonic
Recvd Bit (Input), Bit 0 : Rxd_RS232 (Input)

 PORTA = 0x01; // xxxx xx11
 TRISA = 0xF0; // xxxx xx10

 serialData = 0;

 OPTION = 2; // prescaler divide by 8, for 9600 bps

 while(1)
 {
 LED_Green = 1;
 delay_500millisec();

for (i = 0; i < NText; i++) {
 sendData(text[i]); /* text string */
 }

 delay_500millisec();
 delay_500millisec();
 delay_500millisec();
 delay_500millisec();
 delay_500millisec();
 delay_500millisec();
 delay_500millisec();
 delay_500millisec();
 delay_500millisec();
 delay_500millisec();
 delay_500millisec();
 delay_500millisec();
 delay_500millisec();
 delay_500millisec();

for (i = 0; i < NText2; i++) {
 sendData(text2[i]); /* text string */
 }
 LED_Green = 0;
 delay_500millisec();
 while (Button0 == 0)
 {
 LED_Green = 1;
 delay_200millisec();
 LED_Green = 0;
 delay_200millisec();
 }
 }
}

 32

Appendix 3
Code to be sent to the PIC programmer

:1000000066298D0065300D02031800348A010D0841
:1000100082074134543444342B3434343934383442
:100020003934333432343934303435343234393489
:1000300032340D340A3400340034413454345A34E8
:100040000D340A34413454342B3443344D34473462
:1000500053343D34323436340D340A343034303491
:10006000313431343034303430343834383431345D
:100070003634393437343134393433343234383433
:100080003034303430343034463446343134303423
:1000900043343334423430343134433431343434FF
:1000A00036343434383437344534353436344434E3
:1000B00035343034373430343434433434344634E3
:1000C00044344234433442343034313432343334BF
:1000D0003434353436343734383439348D0083127F
:1000E000051001089300093092000D3093071308A2
:1000F00083120106031D7728920803198828031428
:100100008D0C8312031C0510031805149203752827
:1001100008008F018F1B902864300F0203189B2862
:1001200000000000000000000000000000000000CF
:1001300000008F0A8A2808008D018E018E1BAA28D4
:1001400001300E02031CAA28031DAF28F4300D0253
:100150000318AF2889208D0A03198E0A9E280800EB
:100160008D018E018E1BBB280E08031DC028FA309E
:100170000D020318C02889208D0A03198E0AB2289F
:100180000800FF0065307F02031C13297F08FF0071
:10019000FF010830FF00FF0DFF0D64307F02031CDC
:1001A000D4286430FF020314FF0DFF0BCB285B3013
:1001B0007F0701206E207F08FF00FF010830FF004D
:1001C000FF0DFF0D0A307F02031CE9280A30FF02F1
:1001D0000314FF0DFF0BE0287F08FF00FF0108302C
:1001E000FF00FF0DFF0D0A307F02031CF9280A30C3
:1001F000FF02FF0BF1285B307F0701206E207F0894
:10020000FF00FF010830FF00FF0DFF0D0A307F02E5
:10021000031C0C290A30FF02FF0B04295B307F0707
:1002200001206E2044290B307F02031C40297F08E7
:10023000FF00FF010830FF00FF0DFF0D0A307F02B5
:10024000031C25290A30FF020314FF0DFF0B1C2994
:100250005B307F0701206E207F08FF00FF01083020
:10026000FF00FF0DFF0D0A307F02031C39290A3001
:10027000FF02FF0B31295B307F0701206E204429EC
:100280005B307F0701206E280800FF01FF1B4C290F
:100290000C307F020318522919307F0701206E208D
:1002A000FF0A46299C20FF01FF1B5A2936307F0296
:1002B0000318602925307F0701206E20FF0A54298A
:1002C0001A306E200D306E200A306E2807308312EF
:1002D0008600FB3083168600013083128500F030E3
:1002E00083168500940102308100831285149C20BE
:1002F0008C0114300C02031882290C0801206E2096
:100300008C0A79299C209C209C209C209C209C204D
:100310009C209C209C209C209C209C209C209C20FD
:100320008C0103300C0203189B2914300C070120A8
:100330006E208C0A9129831285109C208312061A44
:0C03400075298514B0208510B0209E297E
:00000001FF

 33

	GSM alarm
	How to build your own GSM alarm
	3. The Accessory Connector of the Siemens Mobile Phones …………
	6. GSM Alarm Board Construction ………………………………………………………….. 14
	7. PIC microcontroller programmer ………………………………………………………. 16
	9. Motion detector as a sensor ………………………………………………………………. 19

	Simple application areas include
	The GSM alarm can be used in opposite direction as a world-
	Advanced applications
	The applications grouped by communication type
	The Accessory Connector of the Siemens Mobile Phones
	Name
	AT+CMGF=1
	AT+CMGL="ALL"
	GSM Alarm Board Construction
	PIC microcontroller programmer
	Software for our GSM Alarm
	Motion detector as a sensor
	CHAPTER 10

	A World-wide Microphone
	Tiny planet
	Serasidis Vasilis
	USB developer
	Active Experts
	Advanced Wireless Planet
	SMS-RC
	Switch on video recorder VCR for recording TV programme.
	Georg Traud Website
	Good explanation of AT commands.
	Wish you success in your own developments!

