
MAE 3780 Janis Song
November 3, 2021 jjs468

Individual Robot Final Project Report - RoboRamen©

I. Overview

Ramen is cheap and easy, but can still be time-consuming for a busy college student.
That is why I am creating RoboRamen© - a robot that can make ramen for you! All the
person needs to do is get a pot of water and put the soup powder in, place the ramen
noodles on the mount of the robot, and then turn on the heat. After that, the robot takes
care of the rest. A temperature sensor is placed in the pot of water to determine when it
reaches boiling point (about 100℃, this can be adjusted in the Arduino code to account
for different altitudes). Once that temperature is reached, it will trigger a slider-crank
mechanism connected to the continuous servo motor to push the ramen noodles into
the pot of water. That will also trigger a timer to be set (which can also be adjusted in
the code), and when the noodles are done, a tune will play from the piezo buzzer. The
robot also features an ultrasonic sensor that will also trigger the piezo buzzer to beep if
the robot is placed too close to the hot pot (I set a safe distance of 4 cm).

Fully Assembled Design (without and with ramen noodles)

II. Design Considerations

For someone attempting to replicate this project, I would suggest they 3D print the
slider-crank mechanism. Because of the $20 budget constraint, I was very hesitant to
utilize the 3D printing lab, since I assumed it would be very expensive to print the
mechanism required for my project and I already had to purchase additional materials
for my project. However, it proved to be more time-consuming to stabilize the cardboard

and manufacture the crank-mechanism by hand, and a lot less precise, which is
essential when operating a slider-crank. As it turns out, it would have been within
budget to utilize the 3D printer, and a lot more efficient and stable, which is what I would
do if I could do this project over again. I would also have incorporated an extra servo
motor in my design to reel in the temperature sensor in case it gets heat damage from
the boiling water. This would definitely be of importance if the robot undergoes repeated
usage.

If I had more time and money, I would 3D print the mount and the slider crank
mechanism and overlay it with a spray that can protect it from melting from the heat of
the boiling water and hot pot. I would also improve the overall aesthetics of the robot
design itself, incorporating the more aesthetically pleasing design I had originally made
in CAD, which proved to be difficult to replicate when utilizing flimsy cardboard and a lot
of tape. I would focus on increasing the stability and longevity of the device, and spend
more time on the overall look and feel of the robot itself.

III. Assembly Instructions

Building the Circuit for the RoboRamen©:

1. Build the circuit according to the circuit diagram (refer to Appendix B).
a. Test the circuit with the Arduino code to ensure it is working properly

before moving on to the next steps. Tape down or solder any wires that
are loose. Add a 3-wire extension to the prongs of the ultrasonic sensor so
it can extend to the front of the robot.

Building the Base Mount for the RoboRamen©:

2. Cut out the side base walls 1 & 2, front wall, and bottom base plate out of
cardboard according to the dimensions in the appendix (refer to Figures 1-4).

3. Construct the base of the RoboRamen© by taking the side base walls and front
base wall (refer to Figures 1-3) and super-gluing or hot gluing them to the
bottom base plate (refer to Figure 4).

a. Refer to Figure 5-6 for what the assembly should look like and specific
measurements.

4. To the front wall of the base, tape down the ultrasonic sensor so it looks like
Figure 7. Add foil to cover up the wires and secure the ends of it with tape (refer
to Figure 8).

a. The wires of the ultrasonic sensor should go through the hole in the base
front wall (refer to Figure 3).

5. Place the circuit and Arduino into the base mount with the A to B USB Cable
going through the hole in the base side wall (2) (refer to Figure 2). Place the

continuous servo motor and the temperature sensor outside of the base mount;
we will incorporate them later into the design.

a. Refer to Figure 9 (the yellow highlighted circle) for what this should look
like.

Building the Slider-Crank Mechanism for the RoboRamen©:

6. Cut out 10 pieces of cardboard to the dimensions of Figure 10 (the arc in the
piece is purely aesthetic and can be done without measurements). Layer five of
the pieces together and bound securely with duct tape, all around the piece until
it is covered by duct tape. Repeat with the other 5 pieces. These are the side
walls of the slider crank, which are reinforced by the multiple layers of cardboard.

7. Cut out 3 pieces of cardboard to the dimensions of Figure 11. Layer the pieces
together and bound securely with duct tape, all around the piece until it is
covered by duct tape. This is your slider crank pusher. Poke a hole only halfway
through the part as indicated in the drawing, big enough for the standoff to fit.

a. Overlay this part with foil so it has a smoother contact point with the walls
of the slider crank.

8. Cut out 2 pieces of cardboard to the dimensions of Figure 12. Layer the pieces
together and bound securely with duct tape, all around the piece until it is
covered by duct tape. This is your slider crank arm.

a. Poke holes near the top and bottom of the crank arm (as indicated in
Figure 12) so the standoff can fit through. Make sure it isn’t too close to
the edges.

9. Finally, cut a single piece of cardboard to the dimensions of Figures 13-14.
These are your slider crank base and wheel. Put a layer of duct tape over each
piece for increased stability. Poke a hole through the slider crank wheel as shown
in Figure 14 so that a standoff can fit through.

10.Tape the continuous servo motor down to the bottom of the slider crank base as
shown in Figure 15.

11. Place and duct tape the slider crank walls down onto the slider crank base as
shown in Figure 16. Make sure the slider crank pusher can move smoothly
between them.

a. Overlay the whole structure with foil (to make it a smoother surface so the
crank can operate easily) and secure it all down. Make sure to keep a
small opening for the servo motor to peek through.

12.Tape the servo motor attachment to the bottom of the slider crank wheel (refer to
Figure 17).

13.Attach the slider crank arm to the edge of the wheel using the pre-poked holes
and a standoff. Secure the male end of the standoff with a hex nut to ensure it
stays together. Secure the other end of the slider crank arm to the slider crank
pusher using the pre-poked holes and the standoff. Have the female end of the
standoff go first so you can secure the male end (that sticks out) with a hex nut.

a. Refer to Figure 18 for how the final assembly should look.

14.Attach the servo motor attachment to the servo motor on the slider crank base,
and adjust the slider crank pusher so it is aligned between the slider crank walls
(refer to Figure 19).

Putting the RoboRamen© all together:

15.Place the slider crank mechanism on top of the base mount of the RoboRamen©.
Tape the temperature sensor to the side of the slider crank wall, angling it
specifically so it would be submerged in the water for your pot. Refer to Figures
20-21 for how the finished assembly should look!

IV. Operation Instructions

1. Place the RoboRamen© on the stovetop, next to a pot filled with water.

2. Use the A to B USB Cable to connect the Arduino board to the computer.

3. Edit the RoboRamen© code to the boiling point temperature of your altitude, and
the buzzer timer to the cook time of your ramen. Upload the code.

4. Adjust the position of the robot if the buzzer starts beeping (the hot pot will be too
close to the robot otherwise!)

5. Place the noodles on top of the mount, add your soup base and flakes into the
pot, and place the temperature sensor into the pot.

6. Let the robot do its thing, walk away, and get some work done!

7. The buzzer will play a tune and your ramen is all ready. Enjoy!

Appendices

I. Appendix A: Bill of Materials (BoM)

Item Part Name Description Vendor/
Source

Part # Quantity Price
(Each/

Per Unit)

Sub
Total

1 Arduino Board Standard Arduino board Digi-Key 1050-1024-ND 1 $20.90 $20.90

2 USB Cable USB Cable A to B Monoprice 39918 1 $1.09 $1.09

3 Breadboard Standard Breadboard Newark 79X3922 1 $2.71 $2.71

4 Servo Motor Continuous micro servo
motor

DFRobot SER-0043 1 $3.90 $3.90

5 Electrical Wire Assorted lengths and
colors, Wire Kit

Amazon:
Austor

B07PQKNQ22 1 $2.17 $2.17

6 3-Wire Extension Wire extension with pin
holes

Digi-Key 1568-1930-ND 2 $1.35 $1.35

7 Resistor 4.7k ohm Digi-Key 4.7kQBK-ND 1 $0.01 $0.01

8 Resistor 100 ohm Digi-Key 100QBK-ND 1 $0.01 $0.01

9 Ultrasonic Sensor Ultrasonic distance
sensor

Amazon B07RGB4W8V 1 $1.66 $1.66

10 Temperature
Sensor

Waterproof Amazon TSDS18B20-1
M

1 $3.80 $3.80

11 Buzzer Piezo buzzer (3V) Digi-Key 445-2525-1-ND 1 $0.61 $0.61

12 Cardboard 8.5" x 11" 22Pt
Cardstock

Lab
Section

7 $0.15 $1.05

13 Aluminum Foil Standard kitchen foil Scavenged 1 $0.50 $0.50

14 Duct Tape Duct tape Scavenged 1 $0.50 $0.50

15 Scotch Tape Scotch tape Scavenged 1 $0.01 $0.01

16 Hex Nut M2 hex nut Scavenged 2 $0.02 $0.04

17 Standoff M2 brass, M-F, cylindrical Scavenged 2 $0.01 $0.02

Total Including Kit Items: $40.33

Total Without Kit Items: $8.19

II. Appendix B: Circuit Diagram

III. Appendix C: CAD files and drawings

Initial CAD Design (with initial slider-crank design):

Assembly Instruction Supplemental Images:

Figure 1: Cardboard Base Side Wall (1) Figure 2: Cardboard Base Side Wall (2)

Figure 3: Cardboard Base Front Wall Figure 4: Cardboard Base Bottom Plate

Figure 5: Assembly of base of robot Figure 6: Other side of Assembly of robot

Figure 8: Front Wall Assembly w/ Ultrasonic Sensor

Figure 7: Ultrasonic Sensor Wire Taped Down

Figure 10: Cardboard Slider Crank Wall

Figure 11: Cardboard Slider Crank Pusher

Figure 9: Circuitry with Finished Base Mount Figure 12: Cardboard Slider Crank Arm

Figure 13: Cardboard Slider Crank Base Figure 14: Cardboard Slider Crank Wheel

Figure 15: Servo Motor Attachment to Base

Figure 16: Slider Crank Wall Attachment, Foil Overlay

Figure 17: Bottom of Slider Crank Mechanism Figure 18: Top of Slider Crank Mechanism

Figure 19: Finished Slider Crank Mechanism

Figure 20: Finished RoboRamen© Figure 21: Finished RoboRamen© with Ramen

IV. Appendix D: Commented Arduino Code

// C++ code
//This code is for my RoboRamen. The ultrasonic sensor senses how far it is from the
//hot pot and causes the red LED light to turn on if it is closer than 4 cm to the hot pot.
//The temperature sensor, when it senses 100 degrees Celsius or the water boiling,
//causes the servo motor to turn (which operates a slider-crank mechanism) that pushes
//the ramen noodles into the pot. A timer is set from there with the delay function and
//after it is done, the alarm goes off to alert that the ramen is done. The loop for the code
//stops after that as well.

#include <Servo.h>
#define NOTE_B0 31
#define NOTE_C1 33
#define NOTE_CS1 35
#define NOTE_D1 37
#define NOTE_DS1 39
#define NOTE_E1 41
#define NOTE_F1 44
#define NOTE_FS1 46
#define NOTE_G1 49
#define NOTE_GS1 52
#define NOTE_A1 55
#define NOTE_AS1 58

#define NOTE_B1 62
#define NOTE_C2 65
#define NOTE_CS2 69
#define NOTE_D2 73
#define NOTE_DS2 78
#define NOTE_E2 82
#define NOTE_F2 87
#define NOTE_FS2 93
#define NOTE_G2 98
#define NOTE_GS2 104
#define NOTE_A2 110
#define NOTE_AS2 117
#define NOTE_B2 123
#define NOTE_C3 131
#define NOTE_CS3 139
#define NOTE_D3 147
#define NOTE_DS3 156
#define NOTE_E3 165
#define NOTE_F3 175
#define NOTE_FS3 185
#define NOTE_G3 196
#define NOTE_GS3 208
#define NOTE_A3 220
#define NOTE_AS3 233
#define NOTE_B3 247
#define NOTE_C4 262
#define NOTE_CS4 277
#define NOTE_D4 294
#define NOTE_DS4 311
#define NOTE_E4 330
#define NOTE_F4 349
#define NOTE_FS4 370
#define NOTE_G4 392
#define NOTE_GS4 415
#define NOTE_A4 440
#define NOTE_AS4 466
#define NOTE_B4 494
#define NOTE_C5 523
#define NOTE_CS5 554
#define NOTE_D5 587
#define NOTE_DS5 622
#define NOTE_E5 659
#define NOTE_F5 698
#define NOTE_FS5 740
#define NOTE_G5 784
#define NOTE_GS5 831

#define NOTE_A5 880
#define NOTE_AS5 932
#define NOTE_B5 988
#define NOTE_C6 1047
#define NOTE_CS6 1109
#define NOTE_D6 1175
#define NOTE_DS6 1245
#define NOTE_E6 1319
#define NOTE_F6 1397
#define NOTE_FS6 1480
#define NOTE_G6 1568
#define NOTE_GS6 1661
#define NOTE_A6 1760
#define NOTE_AS6 1865
#define NOTE_B6 1976
#define NOTE_C7 2093
#define NOTE_CS7 2217
#define NOTE_D7 2349
#define NOTE_DS7 2489
#define NOTE_E7 2637
#define NOTE_F7 2794
#define NOTE_FS7 2960
#define NOTE_G7 3136
#define NOTE_GS7 3322
#define NOTE_A7 3520
#define NOTE_AS7 3729
#define NOTE_B7 3951
#define NOTE_C8 4186
#define NOTE_CS8 4435
#define NOTE_D8 4699
#define NOTE_DS8 4978
#define REST 0
#include <OneWire.h>
#include <DallasTemperature.h>
#define ONE_WIRE_BUS 9

// Setup a oneWire instance to communicate with any OneWire device (for temperature
sensor)
OneWire oneWire(ONE_WIRE_BUS);

// Pass oneWire reference to DallasTemperature library (for temperature sensor)
DallasTemperature sensors(&oneWire);

int cm = 0; // variable to store measured distance (in cm) for ultrasonic sensor

// Code to get distance from the ultrasonic sensor

long readUltrasonicDistance(int triggerPin, int echoPin)
{
pinMode(triggerPin, OUTPUT); // Clear the trigger
digitalWrite(triggerPin, LOW);
delayMicroseconds(2);
// Sets the trigger pin to HIGH state for 10 microseconds
digitalWrite(triggerPin, HIGH);
delayMicroseconds(10);
digitalWrite(triggerPin, LOW);
pinMode(echoPin, INPUT);
// Reads the echo pin, and returns the sound wave travel time in microseconds
return pulseIn(echoPin, HIGH);

}

int celsius = 0; // variable to store celsius temperature from sensor

int pos = 0; // variable to store the servo position

Servo myservo; // create servo object to control servo reeling in temperature probe and
pushing crank

int x = 1; //variable to stop the loop when the ramen is done

// for buzzer melody:
int tempo = 114; // set tempo of buzzer song

// set melody for the buzzer alarm

int melody[] = {

// Never Gonna Give You Up - Rick Astley
// Arranged by Chlorondria
NOTE_A4,16, NOTE_B4,16, NOTE_D5,16, NOTE_B4,16,
NOTE_FS5,-8, NOTE_FS5,-8, NOTE_E5,-4, NOTE_A4,16, NOTE_B4,16,

NOTE_D5,16, NOTE_B4,16,

NOTE_E5,-8, NOTE_E5,-8, NOTE_D5,-8, NOTE_CS5,16, NOTE_B4,-8,
NOTE_A4,16, NOTE_B4,16, NOTE_D5,16, NOTE_B4,16, //18
NOTE_D5,4, NOTE_E5,8, NOTE_CS5,-8, NOTE_B4,16, NOTE_A4,8, NOTE_A4,8,

NOTE_A4,8,
NOTE_E5,4, NOTE_D5,2, NOTE_A4,16, NOTE_B4,16, NOTE_D5,16, NOTE_B4,16,
NOTE_FS5,-8, NOTE_FS5,-8, NOTE_E5,-4, NOTE_A4,16, NOTE_B4,16,

NOTE_D5,16, NOTE_B4,16,
NOTE_A5,4, NOTE_CS5,8, NOTE_D5,-8, NOTE_CS5,16, NOTE_B4,8, NOTE_A4,16,

NOTE_B4,16, NOTE_D5,16, NOTE_B4,16,

NOTE_D5,4, NOTE_E5,8, NOTE_CS5,-8, NOTE_B4,16, NOTE_A4,4, NOTE_A4,8,
//23
NOTE_E5,4, NOTE_D5,2, REST,4,

};

// more buzzer melody semantics
int notes = sizeof(melody) / sizeof(melody[0]) / 2;

// this calculates the duration of a whole note in ms
int wholenote = (60000 * 4) / tempo;

int divider = 0, noteDuration = 0;

void setup()
{
// attach led to pin 13
pinMode(11, OUTPUT);

sensors.begin(); // Start up the library for temperature sensor
Serial.begin(9600);

// initialize serial communication for buzzer and attaches it to pin 7
Serial.begin(9600);
pinMode(7, OUTPUT);

// attaches the servo for reeling in the temp probe on pin 12 to the servo object
myservo.attach(12); // attach servo to pin 12

}

void loop()
{
if (x==1) {
// Set distance variable (in cm) for ultrasonic sensor
cm = 0.01723 * readUltrasonicDistance(8, A1);
delay(10); // Delay a little bit to improve simulation performance
Serial.print(cm);
Serial.print("cm, ");

// alarm if the object is too close:
if(cm <= 4) {
tone(7, 1000, 100);
tone(7, 1000, 100);
tone(7, 1000, 100);

}

// Send the command to get temperatures

sensors.requestTemperatures();

//print the temperature in Celsius
Serial.print("Temperature: ");
Serial.print(sensors.getTempCByIndex(0));
Serial.print(" C | ");

// if boiling point is reached, trigger the servo mount to rotate
// and push the ramen noodles into the pot and reel the temp probe in
if (sensors.getTempCByIndex(0) >= 25) {
myservo.write(120); // tell servo to rotate and push in ramen
delay(2650);
myservo.write(90); // stop the servo rotation
delay(270000); // set 4.5 min timer for the ramen noodles to cook
for (int thisNote = 0; thisNote < notes * 2; thisNote = thisNote + 2) {

// calculates the duration of each note
divider = melody[thisNote + 1];
if (divider > 0) {

// regular note, just proceed
noteDuration = (wholenote) / divider;

} else if (divider < 0) {
// dotted notes are represented with negative durations!!
noteDuration = (wholenote) / abs(divider);
noteDuration *= 1.5; // increases the duration in half for dotted notes

}

// we only play the note for 90% of the duration, leaving 10% as a pause
tone(7, melody[thisNote], noteDuration * 0.9);

// Wait for the specific duration before playing the next note.
delay(noteDuration);

// stop the waveform generation before the next note.
noTone(7);

}
x = 0; //cause if statement to be false so the loop stops running

}
}

}

