Justina library
User Manual

2024, Herwig Taveirne

Justina User Manual just an Interpreter for Arduino

Justina interpreter library
Copyright 2024, Herwig Taveirne

The Justina interpreter library is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not,
see https://www.gnu.org/licenses.

The library is intended to work with 32-bit boards using the SAMD architecture ,
the Arduino nano RP2040 and Arduino nano ESP32 boards.

See GitHub for more information and documentation: https://github.com/Herwig9820/Justina interpreter

Developer contact: herwig.taveirne@gmail.com

Third-Party Tools Notice:

Any third-party tools or software mentioned in this manual are governed by their own licenses. Users are
responsible for understanding and complying with those licenses when downloading and using these tools.
Please refer to the respective licenses for more information.

Permission Notice:

The content of this manual is provided for informational purposes only, on an "as is" basis, without
warranties of any kind. While every effort has been made to ensure accuracy, no responsibility is taken for
any errors or omissions. You are free to copy, distribute, and adapt any part of this document for your own
use. No formal permission is needed, and no additional notices are required for reuse. However, it is kindly
asked that you acknowledge the source if you choose to share this material.

Publish date: 29/05/2024

Justina User Manual just an Interpreter for Arduino

Table of Contents

1 [[a dgeTo [V o1 n o] o PRSP T PO TSP O PO TP U PP OPRTPPPIN 1
2 (CT= [T~ =T =T o P UPRS 5
3 Statements: cOMMANAS AN EXPIrESSIONSeeiieerieeeeeriieeeeeieeeeesireeeeeeeteeeeesateeeesaaeeeeessaseeeessanseeesansssneeeesssseees 11
4 (D = TN 1Y/ o =L ST TP PPPTTO 12
5 THE CONSOIE. ...ttt ettt ettt s e e bttt et eab et e e bt e ae e b sabe s abe s abesabe e bt et e e et enaeenneenneenreen 13
6 JUSting Variables and CONSTANTScoiiiiiiieie ettt ettt et e be s bt e st e st e st e ebeesbeesaeesbeeeneeeneean 16
6.1 VATTADIES .ot e h e she e et st s eheeshe e eb e e saeeenrennneea 16
6.2 CONSTANT VAITADIES ...ttt st a e s te e be st e e bt e ebeesteeseeesseesaeesbeesenenne 17
6.3 PredefiNEd CONSTANTSeitiit ittt ettt et e et e bt e bt e s ae e s e st e st e et e s b e e abesabeeaesbeeaeesbeenes 18
7 (0] 1= - | o] 5O PP UPRPPPTRRRPRTPRY 19
8 Math, string, type conversion, test and [00KUP fUNCHONScccvvieeeiiiiiee e raaee e 21
8.1 MAth FUNCHIONS ..ottt ettt er et e ettt st s be e beebe e bt e nbeene 21
8.2 (oY) [0 o =T a T IR =E] A 101 s Vot n o o PSRN 22
8.3 Y ool 0\ VL= 63 o a1 (¥ Yot o o K3 SRS 24
8.4] g Ta Y= (0] 2T n (o] o T TP 24
8.5 INFOrMAtioN FUNCHIONS ...ttt et et e be bt et e b e 26
8.6 The 'eval()' function: parsing and executing expressions at FUNTIME.........covveeeieeeiieeecireeecreeereeereesreeeaees 29
9 PN o [U T aTo By o Y=Tol 13 (ol {01 a Tt u [o o 3PP SSRNS 32
9.1 Arduino-specific digital 1/0, timing and other fUNCHONScoccuiiiiiii e 32
9.2 Justina functions replacing Arduino-specific fUNCHIONS........cccuviieiei i e 33
9.3 Arduino-specific bit and byte manipulation fUNCHIONS........cccviiiiieiiie e 33
9.4 Additional Justina bit and byte manipulation fUNCHONScooiiiiii i eaaees 34
9.5 Direct memory location read and Write FUNCHIONS........uviiiiiiiieieccce et e e e s arae e e e 35
10 (10T oYU L= T oL o 101U SN 36
10.1 INEFOTUCTION L.ttt e eh e et e e st e e eab et esab e e eabe e e s be e e beeeasbee s abeeeabeeeeneeesaneeenees 36
10.2 Printing data tO @ SErEAM ..uiii ettt s st e e e s et e e s st ae e e e ate e e e e aseaeeeeasnteeeeaaaeeeaannes 37
1.2.10 Applying formatting to YOUr OULPULccccuiieiiieciiieciee ettt e et es e e ste e e aae e sateesreeeesaeeesesaesnteesnseesnsneenanes 41
10.3 REAAING FrOM @ SEMEAIM ...viiiiiiiiiiie et eeere e e et ee e e ebe e e e s e e e e e e saeeeeeettsaeeesnsaeeeesassaaeseassabeeesnsseeesnnnes 47
10.4 Other stream functions aNd COMMANGSoouiiiiiiiiii ettt ettt seeesbe e sbeeeateeneeeanens 51
11 WOPKING WIth SD CArdS.....uveeeuiieeiieeeiiiieiiieeeiteeeite s eteeetteeestteessteeessteeeseeessseessseesssseeantesasasassssesnssesnssaeassesessssennnns 54
11.1 Starting Justina with an SD card mounted in its SD card SIOt........cccciveevieiiiiieiree e 55
11.2 SD card fuNCHONS @Nd COMMANTSoiiiiiiiiiieiiet ettt sttt et e st e e st e et eeaeeesbeeueeesbeebeenseenens 56
12 Other fuNCtions aNd COMMANGScc..iiutieiiiiieer ettt ettt ettt st eb et b e ea bt esbeer b e e b saseenneens 62
13 [oY ={ =10 011 011 = PP PRSPPI 64

Justina User Manual just an Interpreter for Arduino

13.1 Program and program fUNCHONSc.iicciieciie ettt re e e et e e et e st e e s sbe e e stee e abe e e ssaaesasaeeenseesnsneesanes 64
13.2 Variable declarations in @ PrOZramMciuieiciieeiieeeiee et e e ettt e e rate e st e e s e e saeeeeaseeeasteeesteeensseessesenssaeasneanes 66
13.3 CONEIOL STIUCTUIES ...ttt ettt ettt et e e bt e st e sa e shbesate s bt et e sneenaeenseeneeenneeneeenne 68
13.4 Commands 10 INTEract With the USErcooui ittt s sbe e e 71
13.5 g o] (= o] o 11 V= PP PPPR RN 72
13.6 [DT=] o1 T= =T o V- PR PRt 75
13.7 Tracing variables and EXPrESSIONS.cccuiiiciiei et s e este e ere e e stte et ee e se e e e e e e tee e stseessaeeeteeesseeesseesnseeessseessenenns 79
13.8 (2T L<E1 o 112 £ RSP PEPROE 82
13.9 Executing a program while one or more programs are StOPPEAccccueeeiveeriieeeiieeeiieerieeeevreesreeesereeraeeenes 86
14 Y o] o1=1 Yo Lol XSS 87
Appendix A Creating a Justina object and choosing startup OPtiONSccvveeiiciieeececceee e 87
Appendix B Changing the size of memory allocated tO JUSTINGcccueeeviiieciieccieecee e 89
Appendix C EXQMPIE PrOSIAMS ooeuiiieiiieeiiee ettt e ettt eete e staeestteeeteesssaeeseeeesseeeasseeessasasssseensseennsaesssneessssenanseannes 90
Appendix D Running background tasks: system callbacksccccuvieiiiiiiiiinie e 96
Appendix E (o= Y| o= U T < oo i (U] Yot o -SSP 98
Appendix F Installing Notepad++ and the Justina language extensionccccveeeeecvieeeecceeeee e 102
Appendix G INSTAllING YAT tEIMINGL..c.uiii ittt ee et e e et ae e s e e e st teeesae e e easeeennteeenseeenseeens 104
Appendix H List of predefined CONSTANTSciieeeiiiiieeccieee e e e e e s b e e e s etaae e e eabe e e e e snraeaeens 107
Appendix | [o ol Yo [T PP 109
Appendix J Justina Command and FUNCHON INAEX......uueiiieiiiiieiciieieecree e e eee e e se e e 113

Justina User Manual just an Interpreter for Arduino

1 Introduction

Justina is both an easy-to-use programming language for Arduino and a capable interpreter.

It has been developed and built around a few objectives. On top of the list: simplicity for the user. Justina is a
structured language, but it’s non-object oriented (as opposed to the powerful but more complex c++ language). It has
some similarities with Basic, a language that has been around for quite some time. But (and this was, of course, a main
objective) it was built with Arduino in mind - more specifically, 32-bit Arduino’s: boards with a SAMD processor (like
the nano 33 IoT), nano ESP32 boards and nano RP2040 boards.

Justina does not impose any requirements or restrictions related to hardware (pin assignments, interrupts, timers,... -
it does not use any), nor does it need to have any knowledge about it for proper operation.

The Justina syntax has been kept as simple as possible. A program consists of statements. A statement either consists
of

e asingle expression (always yielding a result).
e acommand, starting with a keyword, optionally followed by a list of expressions (such a statement is called a
command, because it ‘does’ something without actually calculating a result)

Because Justina is an interpreted language, a Justina program is not compiled into machine language but it is parsed
into so called tokens before execution. Parsing is a fast process, which makes Justina the ideal tool for quick
prototyping. Once it is installed as an Arduino library, call Justina from within an Arduino c++ program and you will
have the Justina interpreter ready to receive commands, evaluate expressions and execute Justina programs.

As an added advantage, you can enter statements directly in the command line of the Arduino IDE (the Serial monitor
by default, a TCP IP client, ...) and they will immediately get executed, without any programming.

Example

In this first example, we will first set the console display width for calculation results to 40 characters wide (by default,
it's set to 64) and set the angle mode to Degrees. We'll then define Arduino pin 17 as an output and write a HIGH value
to the pin. Finally, we'll calculate the cosine of 60°.

In the command line of the Arduino IDE Serial Monitor, type these three lines (each time followed by ENTER):

dispWidth 40; angleMode DEGREES;

pinMode (17, OUTPUT); digitalWrite (17, HIGH);

cos (60) ;
Statements typed are echoed after the Justina prompt ("Justina>") and executed. Multiple statements can be entered
at the same time, separated by semicolons.

Justina> dispWidth 40; angleMode DEGREES - 2commapds
Justina> pinMode(17, OUTPUT); digitalvirite(17, HIGH) —T» 2expre55||0ns
1 result
Justina> cos(60) —1» expression
0.50 result
Justina>

The result of the last expression entered in the command line is printed on the next line. In this example: both
digitalWrite() and cos() are functions, digitalWrite returning the value written to the pin (1 is the value of predefined
constant HIGH). If the anode (+) of a led is connected to pin 17, and, via a proper resistor, the cathode (-) is connected
to GROUND, the led will be ON. Commands do not return any result.

1 Introduction Page 1

Justina User Manual just an Interpreter for Arduino

A few highlights

¢ More than 250 built-in functions, commands and operators, 70+ predefined symbolic constants.
< More than 30 functions directly targeting Arduino 10 ports and memory, including some new.

< Extended operator set includes relational, logical, bitwise operators, compound assignment operators, pre-
and postfix increment operators.

+» Two angle modes: radians and degrees.

++ Scalar and array variables.

% Floating-point, integer and string data types.

% Perform integer arithmetic and bitwise operations in decimal or hexadecimal number format.

¢+ Display settings define how to display calculation results: output width, number of digits / decimals to display,
alignment, base (decimal, hex), ...

¢ Input and output: Justina reads data from / writes data to multiple input and output devices (connected via
Serial, TCP IP, SPI, 12C...). You can even switch the console from the default (typically Serial) to another input
or output device (for instance, switch console output to an OLED screen).

Justina> listFiles
SD card: files (name, size in bytes):
System Volume Information/
¥iPSettings.dat 12
IndexerVolumeGuid 76
datat0l.log 13034
data002.log 13034
photo.JPG 2750731
Justina/
images/
Jus_icon.jpg 1464
Jus_logo.jpg 13034
start.jus 2932
web_calc.jus 19387
web_swit.jus 8458

List of SD card files, including Justina programs (.jus)

«*» With an SD card breakout board connected via SPI, Justina creates, reads and writes SD card files etc.

¢ InJustina, input and output commands work with argument lists: for instance, with only one statement, you
can read a properly formatted text line from a terminal or an SD card file and parse its contents into a series
of variables.

Programming

«*» Write program functions with mandatory and optional parameters, accepting scalar and array arguments.
When calling a function, variables (including arrays) are passed by reference. Constants and results of
expressions are passed by value.

** Variables or constants declared within a program are either global (accessible throughout the Justina
program), local (accessible within a Justina function) or static (accessible within one Justina function, value
preserved between calls)

«+ Variables not declared within a program but by a user from the command line, are called user variables (or
user constants)

1 Introduction Page 2

Justina User Manual

2
”n

just an Interpreter for Arduino

Programs have access to user variables and users have access to global program variables (from the command

line. User variables preserve their values when a program is cleared or another program is loaded.

Error trapping: if enabled, an error will not terminate

Parsing and execution errors are clearly indicated, with error numbers identifying the nature of the error.

a program, instead the error can be handled in code

(either in the procedure where the error occurred or in a 'caller' procedure). It’s even possible to trap an error

in the command line

Program editing

You can use any text editor to write and edit your programs. But you might consider using Notepad++ as text editor,
because a specific 'User Defined Language' (UDL) file for Justina is available in the Justina library, providing Justina
syntax highlighting as shown in the example below. See Appendix F: Installing Notepad++ and the Justina language

extension.
19 [Flfunction writeRecords():
20
21 var testFile = 0;
22 if (testFile = fileNum("people.txt")) > 0; close (testFile); end;
23
24 Eﬂ // using printList instead of printLine:
25 // - strings will be printed with surrounding quotes (safe for string
26 - // - numbers will be written with full accuracy
27 testFile = open("people.txt", WRITE | TRUNC | NEW_OK):
28 printList testFile, "John", "blue", "gray", 172, 78.3, 23;
29 t testFile, "Percy", "brown", "brown", 168, 75.7, 58;
30 3t testFile, "Tracy", "green", "gray", 175, 58.4, 42;
31 3t testFile, "Basil", "blue", "red", 177, 81.2, 51;
32 3t testFile, "Caroline"™, "green";
33 t testFile, "Irene", "brown", "gray", 169, 61.8, 75;
34 3t testFile, "no\\na\"me";
3 t testFile, "Charles™, "“green®", "blond", 172, 79.3, 48;
36
37 close (testFile):;
38
39 // read back and print to console:
40 testFile = open ("people.txt"”, READ);
41 = while (available (testFile) > 0);
42 cout readLine (testFile);
43 = end;
44 close (testFile);
45 -end;
ag

Excerpt of a Justina program, edited in Notepad++ with the Justina language extension installed. Distinct

colors highlight different language elements.

1 Introduction

Page 3

Justina User Manual just an Interpreter for Arduino

Debugging

When a program is stopped (either by execution of the ‘stop’ command, by user intervention or by an active
breakpoint) debug mode is entered. You can then single step the program, execute statements until the end
of a loop, a next breakpoint...

Breakpoints can be activated based on an optional trigger expression or a hit count. You can also include a list
of ‘view expressions’ for each breakpoint, and Justina will automatically trace specific variables or even
expressions, letting you watch their values change, as you single step through the program or a breakpoint is
hit.

Justina> listBP
Breakpoints are currently ON

source enabled view &

line trigger
77 X view : subTotal, total;
trigger: (n= < 10) || (n = last);
104 X view : temp - refTemp;
trigger: speed < 50;
121 X view : fx;

hit count: 100 (current is 0)

Justina>

List all defined breakpoints for a program

While a procedure is stopped in debug mode, you can also manually review the procedure’s local and static variable

contents or view the call stack.

Integration with c++

If enabled, system callbacks allow the Arduino program to perform periodic housekeeping tasks beyond the
control of Justina (e.g., maintaining a TCP connection, producing a beep when an error is encountered,
aborting, or stopping a Justina program...). For that purpose, a set of system flags passes information back
and forth between the main Arduino program and Justina at regular intervals (without the need for
interrupts).

2 See Appendix D: Running background tasks: system callbacks.

Built-in Justina functionality can be extended by writing specific functions in c++. Such 'user c++' functions
include time-critical user routines, functions targeting specific hardware, functions extending functionality in a
specific domain, etc. These functions are then 'registered' with Justina and given an alias.

From then onward, these C++ functions can be called just like any other Justina function, with the same
syntax, using the alias as function name and passing scalar or array variables as arguments.

You can even write complete Justina user c++ libraries, if desired.

2 See Appendix E: calling user c++ functions.

1 Introduction Page 4

Justina User Manual

2 Getting started

just an Interpreter for Arduino

Start by installing the Justina library, named ‘Justina interpreter’, from the Arduino library manager.

>
» Click 'Install', next to the library named 'Justina'.

Now let's immediately try a small Arduino program. It will simply call Justina and
the calling Arduino program).

In the Arduino IDE, select 'Tools -> Manage Libraries' and filter the library list by "Justina"

stay there (until we tell it to return to

#include "Justina.h"

// create Justina_interpreter object with default values
Justina justina;

void setup() {
Serial.begin(115200);
delay(5000);

justina.begin();

void loop() {
// empty loop()
}

// run interpreter (control will stay there until you quit) Justina)

A simple Arduino c++ program to launch the Justina interpreter

The Arduino program is provided as a sample sketch in Justina’s library 'examples' folder, named ‘Justina_easy.ino’.

Arduino IDE: File -> Examples -> Examples from custom libraries -> Justina interpreter -> Justina_easy.ino

Verify the baud rate; the Arduino IDE Serial Monitor should have status ‘connected’ (we will use this Serial Monitor, for

now).

Load and run the sketch. You should see:

FEFEEXFTEEEEEE FEExF FEFFEXFFEXXFEE FXEEXFTEEER

Justina: JUST an ﬁterpreter for Arduino
Copyright 2824, Herwig Taveirne

Version: 1.1.1
EXEEXEXEXEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEXEEREXESESE

Justina> |

2 Getting started

Page 5

Justina User Manual just an Interpreter for Arduino
The 'Justina>' prompt indicates that Justina is currently running. Each time you enter a statement (in the command
line), the statement will be echoed after the prompt and subsequently executed.

Let's start by typing in a simple expression in the command line: 3 + 5; (+ENTER)

Serial Monitor output:

Justina> 3 + S

Justina>

The result of the expression, '8', is displayed on the next line, right-aligned (output format and alighment can be
changed in Justina display settings).

Let's create a user variable now: In the command line, type var myFirstVar = 10; (+ENTER)

Serial Monitor output:

Justina> var myFirstVar = 18
Justina>

The characters var (all lowercase) form a keyword, indicating the start of a command. Commands 'do' something (in
this case, creating a variable and optionally initializing it with some constant value) but they don't produce a result, so
a result is not printed.

Let's now enter multiple statements together. Just make sure you separate statements with a semicolon.
Inthe command line,type 3 + 5; 7 + 8; myFirstVar += 12; (+ENTER)

Serial Monitor output:

Justina> 3 + S; 7 + 8; myFirstVar += 12
22

Justina>

As expected, the three expressions are echoed after the prompt, but only one result is printed: the result of the last
expression (the initial value of variable a was '10'). Because the first two expression results were not stored in a
variable, these results are lost.

The '+=' operator means 'add the result of the expression to the right (12) to the variable on the left'.

You could also have typed myFirstVar = myFirstVar + 12;

Finally, let's deliberately produce some errors and see what happens.

2 Getting started Page 6

Justina User Manual just an Interpreter for Arduino

Parsing errors
In the command line, type
myFirstVar = 20; myFirstVar += 3 + 5 + * 7-2; 20 + 21;

Serial Monitor output:

Justina>
3+5+%7-2;
A

Parsing error 1183
Justina>

Even before the result of the expression could be calculated, a parsing error occurred: the interpreter detected a
syntax error in the second expression (the '*' makes no sense there).

Nothing is echoed after the prompt, instead the expression containing the error is printed with a caret symbol
indicating the position of the error. Looking up the parsing error message number 1103 in the documentation reveals
that an invalid operator was detected.

Execution errors
In the command line, type 123 + asin(-2) + 789;

Serial monitor output:

Justina> 123 + asin(-2) + 789
123 + asin(-2) + 789
A

Exec error 3168
Justina>

As parsing went OK, your input is echoed after the prompt.

But there's still a problem: the domain for the inverse sine function asin() is [-1, 1]. So, an execution error occurs and
the position of the error is shown.

Error number 3100 indicates that an argument is out of range.

A simple loop
In the command line, type var i; for i = 1, 5; coutlLine "line = ", i; end;

Serial monitor output:

Justina> var i; for i = 1, 5; coutlLine "line = ", i; end
line = 1
line = 2
line = 3
line = 4
line = S
Justina>

2 Getting started Page 7

Justina User Manual just an Interpreter for Arduino
The words for, coutLine and end are all keywords, indicating the start of a command. We will discuss the complete
syntax later, but for now:

for and end form a loop structure. In this example, they instruct Justina to execute the statements in between 5 times,
each time augmenting the value of | by 1.
coutLine ('console out line') prints its arguments to the console and moves to the next line.

Note that command arguments, just as function arguments, are separated by a comma. But the command argument
list is not put between parentheses in contrast to function arguments.

Statements (commands or simple expressions) are separated by a semicolon.

Editing and saving your first program

On your computer, in notepad, create a text file with the following text (in next examples we'll switch to notepad++,

offering line numbering and Justina syntax highlighting).

program myFirstProgram; // this is a JUSTINA program
var i; // this is a global PROGRAM variable
function print5lines () : // this is a function
for i = 1, 5; // this is the start of a loop
coutLine "line = ", I; // this prints something
end; // this is the end of a loop
return I ** 2; // this returns the square of I
end; // this the end of a function

Save the program under a name, let's say 'myFirst.jus' .

Note: in a Justina program, line comments start with two slash characters. All text starting with '//' until the end of the
same line is simply discarded during parsing.
Line comments and multi-line comments will be discussed in chapter 13: Programming.

Now, we need to get this program into the Arduino (for the moment, let's assume an SD card reader is not attached to
your Arduino, so we cannot get it from there).

Installing a Terminal program on your computer

Unfortunately, we cannot use the Arduino IDE Serial Monitor to send files to the Arduino board (for those developing
with Visual Studio and the VisualMicro Arduino IDE: same issue).

Luckily enough, there are a few good free terminal programs out there. The one | prefer is YAT and we will use it
throughout this manual. A second one which works quite well is named Tera Term. These terminal programs are freely
downloadable on your PC. They allow for serial communication via USB as well as via TCP / IP connections.

In what follows, we'll stick to YAT because it has a couple of nice, useful features.

2 To download, install and setup YAT, please refer to Appendix G: Installing YAT .

Assuming that you installed YAT, you can now use YAT as your serial monitor to send Justina statements to your
Arduino: when you type a statement in the 'Send Text' textbox and press Enter, you’ll see your Arduino's response, as
you did in the preceding examples.

2 Getting started Page 8

Justina User Manual just an Interpreter for Arduino

Sending a Justina program to your Arduino

In Terminal Settings, verify that "Serial COM port" is selected as I/O type, the correct serial port is selected and the
baud rate is set.

Also, at the bottom of the terminal window, check that indicators RTS (request to send) and DTR (data terminal ready)
both show a green light. If not (showing red), click the indicators to set RTS and DTR ON (indicators should switch to
green).

Text: [loadProg v| [Send Text [F3]
File: ID:\herwig\OneDrive\Onedrive Docun... stina_language_examples\myFirst jus vl Send File [F4]

Serial port COM7 (115200, 8, None, 1, None) is open and connected || RTS @ |CTS @ |DTR @ DSR @ |DCD @ .

YAT terminal window (lower part)

To connect, click Terminal -> open/start or click the green ‘open/start terminal’ button.

A\ Remember to close the (Arduino, MS Visual Studio, ...) IDE Serial Monitor before connecting the Terminal app
to your Arduino.

You're ready to load your first program now. Referring to the figure above:

» Using the button with 3 dots to the left of YAT key 'send file', select the program you just saved
(note that this file is also available as part of the Justina language example programs, in library folder
‘libraries\Justina_interpreter\extras\Justina_language_examples\’, in your Arduino sketchbook location).

» Send the command loadProg to Arduino (type it in the 'Send text' textbox and press ENTER or click button 'Send
Text'). This will instruct Justina to start waiting for a Justina program, listening to the 'console input' device (Serial,
as defined in the Arduino program that started Justina — see chapter 2: Getting started).

» Send the file you just selected to Arduino (button 'Send File')

Notes
+ Command loadprog times out after 15 seconds if it’s not followed by a program.

+* You can load a Justina program from any input device, not only the device defined as 'console' - for instance a

TCP input stream, an SD card file (if connected) We'll discuss that in chapter 12: Other functions and
commands.

If Justina returns an error code: check your program (text file) and correct any typing errors.

If all is OK, YAT Terminal output will be:

Justina> loadProg

Waiting for program...
Receiving and parsing program... please wait

Program parsed without errors. 0 % of program memory used (84 of ¢

Justina>

Congratulations ! You just loaded your first program. It has been parsed and is ready for execution. Time to run it !

2 Getting started Page9

Justina User Manual just an Interpreter for Arduino

Now, execute function print5lines (it was defined in program myFirstProgram, in file 'myFirst.jus'):

Type print5lines () ; (+ ENTER, or click button Send Text) :

Send Text
printSlines() vil.. Send Text [F3]

YAT terminal output:

Justina> printSlines()
line
line
line
line
line

nwwnn
VW=

36

Justina>

Value 36 is the result returned by the program.

Printing calculation results can be switched off if desired.

Conventions used in this manual

Justina commands are printed in bold

Built-in functions are printed in italic.

Square brackets ([]) indicate optional parts of an argument list

Single quotes (' ') are used for clarification only, and are not part of commands, functions or expressions.
Sample code lines are shown with a fixed spacing font, with a gray background.

Justina console output is shown in a light-colored background.

Examples

const namel = literall [, name2 = literal2, name3 = literal3...] ;

digitalWrite (LED_BUILTIN, HIGH);

var n=0, 1i=0, fact=0; // init as integer
n=1; fact=1l; for i =2, n; fact=fact * i; end; // 1!
n=4; fact=1l; for i =2, n; fact=fact * i; end; // 4!
n=6; fact=1l; for i =2, n; fact=fact * i; end; // 6!

intFmt 8, DEC
Justina> 53
000OOOS3
Justina> intFmt 0
Justina> 123456

123456

2 Getting started Page 10

Justina User Manual just an Interpreter for Arduino

3 Statements: commands and expressions

A statement consists of either a single expression, or a Justina command.

Multiple statements entered together (on the command line or in a program) must be separated by a semicolon
character: statement ; statement ; statement...

Expressions

An expression is anything that consists of functions with arguments and operators acting upon operands (function
arguments and operands can be expressions themselves). Expressions always vyield a result, that is, expressions are
evaluated and make available a result.

Examples:

3 + sqgqrt(5) ;
name = firstName + " " + lastName ;
(name, firstName and LastName must be declared as variables)

Commands

A command always starts with a keyword, optionally followed by a list of expressions, being the arguments of the
command. Commands 'do' something (for example declaring and initializing a variable), but they do not return a
result.

If a command has arguments, at least one space must separate the command from the first argument.

Note that the argument list, if present, is not put within parentheses. Expressions used as command arguments are
separated by a comma, just like function arguments.

Command syntax:

keyword [expression [, expression, expression, expression]...];

Examples
stopSD ;
copyFile "source.txt", "myCopy.txt"
var myName = "John", total = 0 ;

cout 3 + 5 ;

In Justina, all identifier names (built-in command and function names, names of user-written functions, variable
names, ...) follow the same naming convention: names must start with a letter from a to z (or A to Z), and may be
followed by a sequence of letters, digits and underscore characters. The maximum name length is 20.

/A InJustina, all identifier names are case sensitive!

3 Statements: commands and expressions Page 11

Justina User Manual just an Interpreter for Arduino

4 Data types

Justina works with 3 types of values: signed integers, floating point numbers and variable-length strings.

Signed integers (called 'integers' from this point on) are implemented as c++ 32-bit signed integers; floating point
numbers (also called 'floats' from here on) as c++ 32-bit floating-point numbers and Justina strings as c++ variable-
length char array heap objects.

Integers and floats are two distinct data types with a different internal representation.

Integers are perfect for loop counters, working with binary numbers, logical and bitwise operators.

Integer and float literals

Any sequence of characters recognized as a number, but without a decimal point or an exponent, will be interpreted as
an integer, otherwise the character sequence will be interpreted as a floating-point number.

Integers are perfect to work with Boolean and bitwise operators, or to perform binary arithmetic (discussed in chapter
7: Operators)

Integer numbers can be typed in binary or hexadecimal format as well, by preceding the number by a prefix. Ob or 0B
indicates binary, Ox or 0X means hexadecimal.

enter 123; integer
123.; floating point number
12e2; floating point number: the 'e' is interpreted as 'exponent.’
0x12e2; integer (base 10 number 4834): the 'e' is a hexadecimal digit.

String literals

Any sequence of characters typed or read and delimited by double quotes (").

Use escape sequences to include special characters as part of a string. An escape sequence consists of a backslash (' \ ')
character followed by another character. Four escape sequences are available:

\\ Add a backslash character to a string

\" Add a double quote character to a string instead of interpreting it as a string delimiter)
\r Add a 'carriage return' control character (Ascii code 0x0D) to a string

\n Add a 'line feed' control character (Ascii code 0x0A) to a string

Good to know: in Justina, empty strings ("") do not create a heap object, which helps in conserving memory.

enter "abc"; store a string containing 3 characters: abc
"\"ab\\cd\"ef"; store a string containing 8 characters: ab\cd"ef
Ww g empty string (does not need character storage for the string)

"line 1\r\nline2" sameas "line 1" + line() + "line2"

Function 1ine () inthe last example is a Justina function returning a 2-character string with a CRLF (carriage return
line feed sequence.

4 Data types Page 12

Justina User Manual

5 The console

From the perspective of the user, the console is the input/output device sending commands to Justina and displaying
system output. Justina looks at it from the other side: Justina receives commands from the console and sends output

just an Interpreter for Arduino

to it. Right now, the console has been set to the device connected to the 'Serial' stream. Later, we will see how to
change the console, e.g., to a device connected to a TCP/IP terminal, an OLED or LCD display etc.

Output sent to the console includes calculation results, echo of user input, error messages etc.

& Note that input/output is not restricted to the console: several commands are available to read data from and
send data to any available input/output channel or SD card file (if an SD card board is connected). And as
mentioned, it's even possible to change the console itself to another I/0 device.

The following commands allow you to change the way data is displayed:

dispWidth width ;

dispMode promtAndEcho,
displayResults ;

Example

Changes the display width (for printing calculation results). Minimum is O,
maximum is 255 - even if larger values are entered.

Justina will try to fit values within the width set but will use more print space if
required.

By default, values are printed right aligned within a predefined display width.

Sets the display mode.

promptAndEcho: indicates whether the Justina prompt and user input echo
must be displayed. Using predefined constants:

NO_PROMPT 0 do not print prompt and do not echo user input
PROMPT 1 print prompt but no not echo user input

ECHO 2 print prompt and echo user input (default).

displayResults: indicates if and how calculation results must be displayed. Using

predefined constants:

NO_RESULTS 0 do not print results

RESULTS 1 print results (default)

QUOTE_RES 2 print string values surrounded by double quotes. Backslash
and double quote characters included in the string are
expanded to escape sequences - see 'quote()’ function.

Justina>

Justina> 3 + 5

Justina> "abc\"def"

Justina> disp¥idth 35

Justina> dispMode ECHO, QUOTE_RES
Justina= 3 + 5

Justina> "abc\"def"

abc"def

8

Strings shown surrounded with
double quote characters
T

"abc\"def"

With command displayMode NO_ PROMPT, RESULTS; ,Justina can be used asa programmable scientific
calculator, showing results not interrupted by prompts and user input echo.

5 The console

Page 13

Justina User Manual just an Interpreter for Arduino

The two commands below define how floating-point and integer values are formatted when printed in calculation
results and in echoed user input.

A\ Note that these two settings also define how numeric values are printed using commands to write data to any
input/output device or SD card file (if SD card connected). See chapter 10: Input and output.

floatFmt precision Sets display / print formatting for floating-point numbers. Arguments ‘notation’
[, notation] [, flags]]; and ‘flags’ can be entered as predefined constants.

Precision: With fixed point and exponential notation, specifies the number of
digits to be printed after the decimal point. With ‘shortest’ notation, specifies
the maximum number of significant digits to be printed.

Notation: display format for floating point numbers.

FIXED " fixed point notation

EXP "e" scientific notation

EXP_U "E" scientific notation, ‘E’ uppercase

SHORT "g" shortest notation (fixed or scientific)

SHORT_U "G" shortest notation (fixed or scientific), ‘E’ uppercase

Flags: used to finetune output. Flags are predefined constants. They can be
combined by adding their values together. Using predefined constants:

FMT_LEFT 1 align left
FMT_SIGN 2 always add a sign (- or +) preceding the value
FMT_SPACE 4 precede the value with a space if no sign
FMT_POINT 8 always add decimal point
FMT_000 16 pad the print field with zeros
FMT_NONE 0 clear all flags (see remark, below)
intFmt precision Sets display / print formatting for integers. Arguments ‘notation’ and ‘flags’ can
[, notation] [, flags]]; be entered as predefined constants.

Precision: specifies the minimum number of digits to be written. If the value has
less digits, the print field will be padded with leading zeros.

Notation:

DEC "d" decimal representation (base 10)

HEX "x" hexadecimal representation (base 16)

HEX_U X" idem (base 16), hexadecimal digits A-F uppercase

Flags: used to finetune output. Flags are predefined constants. They can be
combined by adding their values together.

FMT_LEFT 1 align left

FMT_SIGN 2 always add a sign (- or +) preceding the value

FMT_SPACE 4 precede the value with a space if no sign

FMT_OX 8 if hex. notation: precede non-zero values with
"Ox" or "0OX"

FMT_NONE 0 clear all flags (see remark, below)

5 The console Page 14

Justina User Manual just an Interpreter for Arduino

Notation and flag arguments are both optional; notation and flags last set remain in effect until explicitly entered as
argument a next time the command is executed. When flags are included as argument, all flags not included are reset.
To clear all flags explicitly, use value 0 (or use predefined flag FMT_NONE).

Note: to display string results left justified, set the display width to zero (or use the fmt() function - explained in
chapter 10: Input and output).

Example

Display floating point number '12.3456789' using different settings.

Justina> floatFmt 10, FIXED

Justina> 12.34567928
12.34567928

Justina>

Justina> floatFmt 10, FIXED

Justina> 12.34566975

Justina> floatFmt 2, FIXED
Justina> 12.35

Justina> floatFmt 2, EXP, FLAG_000
Justina> 1.23e+01

000OOOOOOOEOOLOOOLOLOLOLOLOOOLOLOLOLOLOLOLL.23e+01
Justina=

Example
Display integer 53 padded with leading zeros; then display integer 1234567 using different settings.

Note that the number base used for input can be binary, decimal or hexadecimal, this is unrelated to the output
format.

intFmt 8, DEC
Justina> 53
0000BD53
Justina> intFmt 0
Justina> 123456
123456
Justina> intFmt 8, HEX, FLAG_OX
Justina> 0x1e240
0x0001e240
Justina> -0x1e240
0xfffeldcO
Justina=

Example

Perform binary arithmetic and use bitwise operators (discussed in chapter 7: Operators)

Justina> intFmt 0x8, HEX, FLAG_OX
Justina> 0x45a9 + 0x6beS

0x0000b18e
Justina> (0x3039 & 0xd431) << 0x2

0x000040c4
Justina=

5 The console Page 15

Justina User Manual just an Interpreter for Arduino
6 Justina variables and constants

6.1 Variables

A variable can hold any of the three available data types: integer, float and string.

A variable is declared using the keyword var, the name of the variable and an optional initializer. A variable declared
from the command line is a user variable; any variable declared within a program is a program variable.

» Within a program function, variables can also be declared with the 'static' keyword - see chapter 13:
Programming.

Variables can be declared as scalars (holding one value) or arrays (holding multiple values).

< Scalar variables can receive values of any data type - they will adapt their value types accordingly.

< Arrays can have 1 to 3 dimensions. All values stored in an array have the same data type. Once initialized, an
array cannot change its data type anymore. If possible, values will be cast to the data type of the array.
Otherwise, an execution error will be produced.

var namel [(dim1 [, dim2 [, dim3]]])]=literall [, name2...,, name3...] ;

If a variable has an initializer literal, the data type is derived from it. Without an initializer, the variable is defined as a
float and is initialized to zero. String arrays can only be initialized with an empty string.

The var command is a non-executable command: it creates and initializes variables before execution starts (during
parsing).

Delete individual user variables with the delete command, followed by a list of variable names (arrays: without
dimensions).

delete namel, name2, ...;

The delete command is a non-executable command and it is not allowed within a program. It must be the first (or
only) statement typed in the command line. It deletes user variables before execution starts.

This will produce an error:

var hello;
delete hello; hello = "hi"; error (variable does not exist)

Program variables are deleted automatically when a program is deleted.

Examples
var monthlyDetail (12, 5) = 0, monthlyTotal (12) = 0, grandTotal = 0;
var birdNames (10) = "";

delete monthlyDetail, birdNames;

The array initializers are important here because they declare the two arrays as integer arrays. By default, they would
be declared as floats (and initialized to 0.)

The maximum for each dimension is 255 elements. But because of RAM memory constraints in microcontrollers, the
maximum number of array elements is set to 1000, occupying a 4-kilobyte block of data. This does not include

6 Justina variables and constants Page 16

Justina User Manual just an Interpreter for Arduino

character storage for non-empty strings stored as array elements. For the same reason, string arrays are always
initialized with empty strings.

Variable names

Variable names follow the same rules as names for constants and user function names: they must start with a letter
from a to z (or A to Z) and may be followed by a sequence of letters, digits and underscore characters. The maximum
name length is 20 by default. Names are case sensitive.

6.2 Constant variables

Just as normal variables, constant variables can hold any of the three available data types: integer, float and string.

A Justina constant variable is declared using the keyword 'const’ followed by the name of the constant, an equal sign
and a constant literal defining a value in any of the three defined data types. A constant declared from the command
line is a user constant; any constant declared within a program is a program constant.

Multiple constants can be declared in one 'const' statement:
const namel = literall [, name2 = literal2, name3 = literal3...] ;

The constant data type is derived from the initializer literal (which is mandatary for a constant). Once initialized (before
execution starts), the contents of a constant cannot be changed any more.

The const command is a non-executable command: it creates and initializes constant variables before execution starts

(during parsing).

Delete individual user (constant) variables with the delete command, followed by a list of user constant (and variable)
names.

delete namel, name?2, ...

Note: this is the same delete command used to delete non-constant variables. It’s a non-executable command and it is
not allowed within a program. It must be the first (or only) statement typed in the command line.

Note that program constants are only deleted when a program is deleted.

Examples
const animal = "dog" Justina string
const chairs = 3, height = 3.2, pet = "cat" 3 constants defined
delete tables, chairs; delete 2 constants

Constant names

Constant variable names follow the same rules as names for ordinary variables. Constant variables are always scalar,
containing one single value; they cannot be defined as arrays of values.

6 Justina variables and constants Page 17

Justina User Manual just an Interpreter for Arduino
6.3 Predefined constants

Constant variables are not to be confused with predefined constants, like:

e refers to 'Eulers Number' (2.718281...)
Pl 3.1415926535897932...
INPUT_PULLUP is used as argument of Justina function 'pinMode()'

During parsing, the symbolic name of a predefined constant is replaced by its value.

Using predefined constants as arguments to command or functions makes a program much more readable and
understandable.

Boolean values

Justina uses the integer data type to work with Boolean values: a zero value means 'false’, a non-zero value means
'true'. When Justina needs a Boolean value (e.g., as argument of a function), use a predefined constant instead
of '0' or '1' to enhance for readability:

'Boolean' constant Value
FALSE 0
TRUE 1
LOW 0
HIGH 1
OFF 0
ON 1

A complete list of predefined constants is available in Appendix H: List of predefined constants.

6 Justina variables and constants Page 18

Justina User Manual just an Interpreter for Arduino

/ Operators

Justina operators are listed below with precedence (1 is highest) and associativity.

> Associativity: if two or more successive operators in an expression have same precedence (asin1+2-5),
then associativity defines whether operations will be applied to the operands in right-to-left or left-to-right
order.
Most operators have left-to-right associativity. Assignment operators (including compound assignment
operators, like the '+=' operator), all prefix operators and exponentiation operator '**' have right-to-left
associativity.
As an example, the power operator “**’ has right-to-left associativity:

2¥%¥3*x2 & 2**(3**2) & 2**9=7512

Operators with right-to-left associativity are shown with a light gray background.

Precedence Operator Description

1 () Parentheses (function calls, array elements,
Highest simple parentheses)

2 ++ Postfix increment and decrement

3 ++ Prefix increment and decrement

4 o power

5 + Unary plus and minus

! Logical negation

~ Bitwise complement
6 * Multiplication, division
/
% Integer modulus
7 + Addition, | string concatenation
- Subtraction
8 << Bitwise shift left and right
>>
9 < Relational less than, less than or equal
<=
> Relational greater than, greater than or equal
>=
10 == Relational is equal, is not equal
!_
11 & Bitwise and
12 A Bitwise exclusive or
13 | Bitwise inclusive or
14 && Logical and
15 | Logical or

7 Operators Page 19

Justina User Manual just an Interpreter for Arduino

16 = Assignment
Compound assignments
*= Multiplication / division assignment
/=
+= Addition, | string concatenation|assignment
-= Subtraction assignment
%= Modulus assignment
&= Bitwise and, exclusive or, inclusive or assignment
A=
<<= Bitwise shift left and right assignment
>>=
17) Separator between expressions (arguments) within a
Lowest command or function
18 ; Separator between statements

Lowest

The precedence and associativity rules are almost identical to those in c++. If you are in doubt, or to enhance
readability: use parentheses!

Notes

in Justina, an expression containing an assignment is still an expression.

So, the following expressions are perfectly valid:

I
&
¢

a =

a=>, (
1 + (b+t=¢c); ©® a =1

b==c¢c);
a = +

All operators in the table above require numeric values as operands. Exception: the addition operators

(= +=)areused as ‘string concatenation operatorsl when the operands are strings.

Compound assignments first perform an operation on the two operands and then assign the result to the first
operand. Example: a+=2 adds two to the value of a (which must be a variable).

Bitwise operators (& | A ~ << >> &= |= A= <<= >>=)and the integer modulus operator (%) need integer
values as operands. Applying these operators to floating point operands will create a runtime error (execution error).

Note: to calculate the modulus of two floating point numbers, use the modulus function fmod() described in chapter 8:
Math, string, type conversion, test and lookup functions.

7 Operators Page 20

Justina User Manual just an Interpreter for Arduino

8 Math, string, type conversion, test and lookup functions

The Justina interpreter comes with many built-in (‘internal') functions. This chapter covers part of them. Arduino
specific functions will be discussed in the next chapter. Other functions are covered in specific chapters, e.g., input and
output functions.

& Note that Justina function names, like other identifiers in Justina, are case sensitive (variables, symbolic constants,
command names and function names whether they are built-in or written by yourself as in the last example).

In the remainder of this chapter, both the term 'value' and 'expression' refer to an expression that will be evaluated to
obtain a value, unless otherwise noted.

8.1 Math functions

angleMode mode ;

This is not a function but a command. It sets the angle mode for trigonometric
functions. Using predefined constants:

RADIANS 0 set angle mode radians

DEGREES 1 set angle mode degrees

Functions in this table always return a float. The argument(s) must be integer or floating-point numbers.

sqrt (value)
sin (value)
cos (value)
tan (value)
asin (value)
acos (value)
atan (value)
In (value)
Inp1 (value)
log10 (value)
exp (value)
expm1 (value)
round (value)
ceil (value)
floor (value)
trunc (value)

fmod (value)

square root

sine of an angle. Angle: radians or degrees (see angle setting)

cosine of an angle. Angle: radians or degrees (see angle setting)

tangent of an angle. Angle: radians or degrees (see angle setting)

inverse sine. Returns an angle in radians or degrees (see angle setting)
inverse cosine. Returns an angle in radians or degrees (see angle setting)
inverse tangent. Returns an angle in radians or degrees (see angle setting)
natural logarithm

In (value+1). Tends to be more accurate than In(value+1) for small values
common (base 10) logarithm

natural exponential. Same as e ** value

(e ** value) - 1. Tends to be more accurate than (e ** value) for small values
rounds value to the closest integer

rounds value to the closest integer not less than value

rounds value to the closest integer not greater than value

rounds value towards zero. Example: 'trunc(-5.7)' yields -5.

remainder of division (note: for integer division remainder, use operator '%'

8 Math, string, type conversion, test and lookup functions Page 21

Justina User Manual just an Interpreter for Arduino
The function below always returns an integer, even if the argument is a floating-point number.
The argument must be integer or floating-point numbers.

signBit (value) sign bit of numeric value (integer or floating-point number): the sign bit of negative
numbers is 1; for zero and positive numbers it will be 0.

Functions in this table return a float if the argument / at least one of the arguments is a floating-point number,
otherwise an integer is returned. The argument(s) must be integer or floating-point numbers.

min (valuel, value2) minimum of two values
max (valuel, value2) maximum of two values
abs (value) absolute value

A number of mathematical constants are predefined in Justina (e, T, ...), as well as conversion factors from radians to
degrees and vice versa. Please refer to Appendix H: List of predefined constants.

8.2 Lookup and test functions

ifte (test value, value if true, value if false)
ifte (test value 1, value if true, test value 2, value if true [, test value n, value if true ...] [value if false])

The first form corresponds to the classic if (...) function. The test expression is evaluated, if it is true (not equal to zero)
the 'value if true' is returned, otherwise the 'value if false' is returned.

The second form successively evaluates test values from left to right until a test result is true (not equal to zero). It
then returns the corresponding 'value if true'. If none of the test values evaluate to true, either a zero is returned or, if
provided, the 'value if false' is returned.

Test values must be numeric; other arguments can be any data type.
Note that all arguments of these functions are evaluated.

Maximum number of function arguments = 16.

8 Math, string, type conversion, test and lookup functions Page 22

Justina User Manual just an Interpreter for Arduino

switch (value, test 1, result 1 [, test 2, result 2 ...] [default result])

The first argument (‘value’) is successively compared with the test values ‘test 1’, ‘test 2/, ... and if a match is found,
the corresponding result value is returned. If no match is found, either zero is returned or the default result (if it is
provided).

All data types are accepted as function arguments.
Note that all arguments of this function are evaluated.

Maximum number of function arguments = 16.

choose (index value, value if 1, value if 2 [value if 3, value if 4, ...])

The index value is an integer not smaller than one. It determines which of the next values will be returned.
An error is produced if the index is not within range (1 to the number of return values provided).

Except for the index value, all data types are accepted as arguments.

Note that all arguments of this function are evaluated.

Maximum number of function arguments = 16.

index (test expression, expression 1, expression 2 [, expression 3 ...])

The test expression is successively compared with the other expressions provided as arguments until a match is found
and the index number of the match is returned. If no match is found, zero is returned.

All data types are accepted as function arguments. The data type of the function result is integer.
Note that all arguments of this function are evaluated.

Maximum of function arguments = 16.

8 Math, string, type conversion, test and lookup functions Page 23

Justina User Manual

just an Interpreter for Arduino

8.3 Type conversion functions

cint (value)

Attempts to convert a value in any data type to an integer value.

if the argument is a string, characters will be taken into account as long as the
resulting value is a valid integer. If none, zero will be returned.

CFloat (value)

Attempts to convert a value in any data type to a floating-point value.

if the argument is a string, characters will be taken into account as long as the
resulting value is a valid floating-point number. If none, zero will be returned.

cStr (value)

Converts a value in any data type to a string. No specific formatting will be applied (to

format a value into a string, use the fmt(...) function.

8.4 String functions

Functions within these tables all deal with strings (a sequence of characters).

Functions referring to a position within a string use 1 as the first character. The position of the last character indicates
the length of a string. An empty string has 0 characters.

If character positions or other arguments are outside the valid range, an error will be produced.

char (asciiCode)

len (string)
line ()

asc (string [, charPos])

rtrim (string)
Itrim (string)
trim (string)
left (string, n)

mid (string, start, n)

right (string, n)

toUpper (string [, start [, end]])
toLower (string [, start [, end]])
space (n)

repeatChar (string, n)

findStr (string, substring,
[, start])

Returns a one-character string with the character represented by
asciiCode (0 <= asciiCode <= OxFE). OxFF is not considered a valid ASCII
code.

Returns string length
Returns a 2-character string with a Carriage Return Line Feed Sequence

Returns the ascii code for string character indicated by charPos (1 to n).
Default charPos =1

Returns a string with trailing spaces removed
Returns a string with leading spaces removed
Returns a string with leading and trailing spaces removed
Returns a string containing only the n leftmost characters

Returns a string containing the n characters starting at position start of
the original string

Returns a string containing only the n rightmost characters

Returns a string with (part of) the original string converted to uppercase
Returns a string with (part of) the original string converted to lowercase
Returns a string containing n spaces

Returns a string with character 1 from a string repeated n times

Returns the position of a substring in a string. If a start position for the
search is not given, the search starts at the first character. Returns 0 if
substring not found

8 Math, string, type conversion, test and lookup functions Page 24

Justina User Manual

replaceStr (string, substring,
replaceWith [, start])

replaceChar (string variable, ASCII
code [, character position])

strCmp (stringl, string2)

strCaseCmp (stringl, string2)

ascToHexStr (ASCIl code)

hexStrToAsc(string [, start position])

quote (expression)

just an Interpreter for Arduino

Returns a string with a given substring substituted by a replacement
string. If a start position for the search is not given, the search starts at
the first character. Returns the original string if substring is not found.
If start is a variable, its value will be set to the first position in the
returned string after the replacement string. Returns 0 if the substring
was not found, 1 + new string length if substring contained last
characters of string

Replaces a single character in a string variable with a character specified
by its ASCII code. If 'character position' is not specified, the first
character is replaced.

As this changes the original string object and no new string is created,
this speeds up execution.

This function always returns zero.

Performs a binary comparison between two strings.

Returns 0 if the two strings are equal. Returns a negative integer if the
first non-matching character has a lower value in string 1 than in string2
and a positive integer if it has a greater value

Performs a case insensitive comparison between two strings.

Returns 0 if the two strings are equal. Returns a negative integer if the
first non-matching character has a lower value in string 1 than in string2
and a positive integer if it has a greater value

Returns a two-character string encoding a given ASCII code into two
characters, representing the two hexadecimal digits of the ASCII code.

Examples:
ascToHexStr(0x61) -> "61" (ASCIl code of 'a')
ascToHexStr(98) -> "62" (ASCIl code of 'b')

ascToHexStr(asc("c")) -> "63" (ASCIl code of 'c')

Decodes two characters of a string, starting at 'character position' and
representing the two hexadecimal digits of an ASCII code, into that ASCII
code. If 'start position' is omitted, the first two characters are decoded.
If the characters do not represent hexadecimal digits, the function
returns -1. Examples:
hexStrToAsc ("62") -> 98 (ASCIl code of 'b')
char(hexStrToAsc ("63")) -> "

If the argument is a number, converts it to a string (same as cStr()
function).
If the argument is a string:
e add surrounding double quotes
e replaceall '\' (backslash) characters in the string with a
sequence of two '\' characters
e replaceall '"'(double quote) characters with a sequence
consisting of a '\' character and a character
Note: quote() is most useful when used with the eval() function (further
down in this chapter).

8 Math, string, type conversion, test and lookup functions Page 25

Justina User Manual just an Interpreter for Arduino

In the following table, the default for argument 'charPos' is 1.

isAlpha (string [, charPos]) Returns a non-zero value if the character indicated by charPos is a
letter
isAlohaNumeric (string [, charPos]) Returns a non-zero value if the character indicated by charPos is a

letter or a digit

isAscii (string [, charPos]) Returns a non-zero value if the character indicated by charPos is an
ASCII character

isControl (string [, charPos]) Returns a non-zero value if the character indicated by charPos is a
control character (ASCIl codes O to Ox1f; Ox7f)

isDigit (string [, charPos]) Returns a non-zero value if the character indicated by charPos is a
digit
isGraph (string [, charPos]) Returns a non-zero value if the character indicated by charPos has

a graphical representation. Same as isPrintable() function, but
without the space character

isHexDigit (string [, charPos]) Returns a non-zero value if the character indicated by charPos is a
hexadecimal digit (0to 9, Ato F)

isLowerCase (string [, charPos]) Returns a non-zero value if the character indicated by charPos is a
lowercase character (a to z)

isUpperCase (string [, charPos]) Returns a non-zero value if the character indicated by charPos is an
uppercase character (A to Z)

isPrintable (string [, charPos]) Returns a non-zero value if the character indicated by charPos is a
printable character (it's not a control character): all ASCII codes
greater than 0x1f, except ASCIl code 0x7f

isPunct (string, [, charPos]) Returns a non-zero value if the character indicated by charPos has
a graphical representation (as in isGraph() function) but is not
alphanumeric

isWhitespace (string [, charPos]) Returns a non-zero value if the character indicated by charPos is a
space, a horizontal tab (0x09), a vertical tab (0x0b), a form feed
(0x0c), a carriage return (0x0d) or a new line (0x0a) character

8.5 Information functions
ubound (array variable name, Array variables only: returns the upper bound of a dimension (an
dimension) array can be defined with 1 to 3 dimensions).

If the variable is not an array, or the dimension specified does not
exist, an error is returned

dims(array variable name) Array variables only: returns the number of dimensions (an array
can be defined with 1 to 3 dimensions).
If the variable is not an array, or the dimension specified does not
exist, an error is returned

type (expression) Returns the variable (scalar or array element) data type. Use
following constants to test the data type of a value:
INTEGER 1 integer data type

8 Math, string, type conversion, test and lookup functions Page 26

Justina User Manual

r([index])

isColdStart()

just an Interpreter for Arduino

FLOAT 2 floating point data type

STRING 3 string data type

Note: although all elements of an array have the same data type,
you must specify an array element

If 'index" is 1 or index is not provided, returns the last result of a
calculation.
If 'index' is between 2 to 10, return previous results.

Returns 1 if Justina went through a cold start; returns 0 if not

(please refer to the quit command)

sysVal (index)

Returns a system value maintained by Justina.

Index Description

Display settings

0 display width (calculation results only)

1 floating point number formatting: precision

2 floating point number formatting flags

3 floating point number formatting: notation

4 integer number formatting: precision

5 integer number formatting flags

6 integer numbers formatting notation

7 prompt and echo setting (none, prompt only, prompt +
echo)

8 print last calculation results: yes/no

9 angle mode: 0 is radians, 1 is degrees

fmt() function settings

10 print field width

11 numeric values: precision

12 numeric values: formatting flags

13 numeric values: notation

14 string values: number of characters to print

other

15 Current count of ‘last values’ stored in ‘last values fifo’

16 open SD file count

17 number of defined external 10 devices

18 loaded program name (or empty string)

19 trace string (if defined, otherwise empty string)

product info

31 product name

32 legal copyright

33 product version

34 build date

technical data (normally not relevant for the user)

36 evaluation stack: element count

37 flow control stack: element count (call stack depth +
open block count)

38 call stack depth

39 number of stopped programs

40 parsed programs stack: element count (number of
stopped programs + open eval() strings

41 created linked list object count (since startup)

8 Math, string, type conversion, test and lookup functions

Page 27

Justina User Manual just an Interpreter for Arduino

42 currently active (created, not yet deleted) objects:
count per object type

43 currently active (created, not yet deleted) objects:
errors per object type

44 returns processor board type:
BOARD_OTHER 0 none of the following
BOARD_SAMD 1 SAMD arch.: nano 33 lofT,...
BOARD_RP2040 2 nano RP2040
BOARD_ESP32 3 nano ESP32

8 Math, string, type conversion, test and lookup functions Page 28

Justina User Manual just an Interpreter for Arduino
8.6 The 'eval()' function: parsing and executing expressions at runtime

When an eval() function is executed, it stops execution, then parses a list of expressions stored in its string argument
(using the same parser that parses Justina statements) and executes them. When done, normal execution continues.

eval (string) String: a list of expressions, stored as text and separated by semicolons, and contained
within double quotes.
The string cannot contain command statements (expressions only) but no other
restrictions apply: you may use variables and constants, operators, call built-in functions,
functions in a Justina program, 'external' functions you write in c++, and even other
(nested) eval functions.

Function eval() returns the result of the last expression in its expression list as function
result.

To include a string constant within ‘string’, use escape sequences (see chapter 4: Data types), like in this example (extra
spaces for clarity): eval (" \"abc\" + \"def\" "); returns string "abcdef".

Uses of the eval() function

1. Store much-used expressions as a string in a variable. You can then perform 'eval(variable)' to obtain the result
without having to write a Justina function.

2. Parse and evaluate an expression only known at runtime. Typical use: in conjunction with the input statement (see
chapter 10: Input and output), allow the user to type in an expression (not just a value) when a program requests
input from the user.

3. During debugging, access local variables of a program stopped for debugging, from within another program.
Please refer to chapter 13: Programming for an example.

4. Use eval() as a (very simple) form of indirection (although in most cases, a better way is using an array).

Example: store much-used expressions as a string in a variable

In this example, a simple formula 'age * 12' is stored in variable ' yearsToMonths '.

Executing ' eval(yearsToMonths) 'returns the value stored in variable age, multiplied by 12.

Justina> var age, yearsToMonths = "age * 12"
Justina> age = 17; eval(yearsToMonths)

204
Justina>

8 Math, string, type conversion, test and lookup functions Page 29

Justina User Manual just an Interpreter for Arduino

Example: evaluate an expression only known at runtime

One of the programs in the Justina library 'Examples' collection is stored in file ‘input.jus’. We will not study this
program here; we'll merely use it to demonstrate the use of the ‘eval()' function.

Starting the program (function evallnput()), this is what you'll see:

Justina> evallInput()

===== Input (\c to cancel): =====
Please specify amount in metric ton

Apparently, the program has stopped, asking you to enter an amount in metric tons (the 'input' statement taking care
of this will be discussed in chapter 13: Programming).

Ifyouenter 2 + 5 + 1; and press ENTER, then you'll see this:

Justina> evalInput()

===== Input (\c to cancel): =====
Please specify amount in metric ton
amount entered = 8000 kg

===== Input (\c to cancel)}: =====
Please specify amount in metric ton

Within the program, an 'eval()' function (see code line below) parses and executes expression '2 + 5 + 1, yielding 8,
which is then multiplies by 1000 and stored in a program variable 'amount'. This amount is then added to variable
'totalAmount' (assignment operators have right-to-left associativity).

totalAmount += amount = eval(answer) * 1000;

Then, the program continues, first printing the amount in kg, and then asking for a new amount.
After a few entries, we exit the loop by typing '\c' (cancel) + ENTER.

The program then prints the total amount entered and exits.

Justina> evalInput()

===== Input (\c to cancel): =====
Please specify amount in metric ton
amount entered = 8000 kg

===== Input (\c to cancel): =====
Please specify amount in metric ton
amount entered = 14000 kg

===== Input (\c to cancel): =====
Please specify amount in metric ton
amount entered = 6000 kg

Please specify amount in metric ton

#** total amount = 28000 kg

Justina>

8 Math, string, type conversion, test and lookup functions Page 30

Justina User Manual just an Interpreter for Arduino

Example: use eval() as a way to obtain indirection

This example uses two variables:

e variable 'ref' contains the name of another variable, in this example named 'value'
e variable 'value' contains value 7

Justina> var value = 7
Justina> var ref = "value"
Justina> eval(ref)

Justina>

Executing 'ref' would return string "value", whereas 'eval(ref)' returns numeric value 7.

Please note that this is not a very elegant way of ‘calculating” which value you want to obtain (‘7’).
A much better method is storing values in an array and then simply indexing the array.

8 Math, string, type conversion, test and lookup functions Page 31

Justina User Manual just an Interpreter for Arduino

9 Arduino-specific functions

The functions below are, in most cases, the Justina equivalent of corresponding Arduino functions. Use them in your
Justina programs or type them in from the command line of the Serial Monitor for quick prototyping or testing.

9.1 Arduino-specific digital I/O, timing and other functions

To refer to built-in LED pins, use these predefined constants:

Arduino constant Value

LED_BUILTIN 13

LED_RED 14 (Arduino nano ESP32 only)
LED_GREEN 15 (Arduino nano ESP32 only)
LED BLUE 16 (Arduino nano ESP32 only)

The following Justina functions implement the corresponding Arduino functions. Please visit the Arduino Language
Reference for accurate descriptions.

millis ()

micros ()

delay (time in milliseconds) In Justina, this function is replaced by the wait () function,

described below this table.

digitalRead (pin) returns 0 (pin value is low) or 1 (high)

digitalWrite (pin, value) value: for readability, use these predefined constants:
LOW or OFF or FALSE O
HIGH or ON or TRUE 1

pinMode (pin, mode) mode: for readability, use predefined Arduino constants
INPUT 1
OUTPUT 3
INPUT_PULLUP 5
INPUT_PULLDOWN 9

analogRead (pin)

analogReference (type) Not for nano RP2040
analogWrite (pin, value)

analogReadResolution (bits)

analogWriteResolution (bits)

noTone (pin)

pulseln (pin, value [, timeout]) value: use predefined constants LOW (0), HIGH (1)
shiftin (dataPin, clockPin, bitOrder) bitOrder: for readability, use predefined constants
LSBFIRST 0
MSBFIRST 1
shiftOut (dataPin, clockPin, bitOrder, value) bitOrder: use predefined constants LSBFIRST, MSBFIRST

9 Arduino-specific functions Page 32

Justina User Manual

tone (pin, frequency [, duration])

random ([min,] max)

randomSeed (seed)

just an Interpreter for Arduino

9.2 Justina functions replacing Arduino-specific functions

wait (time in milliseconds)

This is the Justina replacement of the Arduino delay(..)
function. It does exactly the same thing (waiting for a number
of milliseconds), but without suspending Justina background
tasks (e.g. maintaining a TCP connection) while waiting. More
information is available in Appendix D: 'Running background
tasks: system callbacks'.

9.3 Arduino-specific bit and byte manipulation functions

The following functions implement the corresponding Arduino functions. Please visit the Arduino Lanquage Reference

for accurate descriptions.

x: value to be read or changed, n: bit number (0 to 31); b: bit value to write (0 or 1).

X, n data type must be integers.

Note that in the standard Arduino functions, the value to be changed, x, must be a variable. In Justina, a constant is
allowed too (constants are not modified, of course).

bit (n)

bitRead (x, n)
bitClear (x, n)
bitSet (x, n)
bitWrite (x, n, b)
highByte (x)

lowByte (x)

9 Arduino-specific functions

Justina addition: x can also be an integer constant
Justina addition: x can also be an integer constant
Justina addition: x can also be an integer constant
replaced by Justina function byteRead (see below)

replaced by Justina function byteRead (see below)

Page 33

Justina User Manual just an Interpreter for Arduino

9.4 Additional Justina bit and byte manipulation functions

These functions provide some useful additions to the Arduino-specific functions implemented in Justina.

In the tables underneath, x represents the value to be read or changed. Data type: integer.

Byte read and write functions

Reads or writes 1 byte of a 32-bit integer value (constant or variable).

Note: use byteRead() instead of Arduino lowByte and highByte functions, which are not supported.
x: value. Data type: integer

n: byte number (from 0 to 3; O is low order byte). Data type: integer.

b: value to write (0 to 255). Data type: integer.

byteRead (x, n) returns byte n of an integer value (humber between 0 and 255)

byteWrite (x, n, b) returns x, with byte n of x changed to the lowest 8 bits of b. Other bits of x
are unchanged.
If x is a variable, its value will be set to the returned function result as well.
This can be avoided by putting x between parentheses
Example: fmt(byteWrite (0xFOFO, 1, 0x66), "x") -> 0x66F0

Masked word read and write functions

Reads a masked 32-bit value; writes, sets or clears bits in a 32-bit value, specified by mask.

All arguments must have an integer data type.

maskedWordRead (x, mask) Returns value x with mask applied

maskedWordClear (x, mask) Returns value x with the bits indicated by mask cleared.
If x is a variable, its value will be set to the returned function result as well.
This can be avoided by putting x between parentheses

maskedWordSet (x, mask) Returns value x with the bits indicated by mask set.
If x is a variable, its value will be set to the returned function result as well.
This can be avoided by putting x between parentheses

maskedWordWrite (x, mask, v) Returns x with bits indicated by mask changed to same bits in v.
If x is a variable, its value will be set to the returned function result as well.
This can be avoided by putting x between parentheses

9 Arduino-specific functions Page 34

Justina User Manual just an Interpreter for Arduino
9.5 Direct memory location read and write functions

Useful to read specific memory locations, for instance peripheral registers (input / output, timers, ...), if you have good
reasons not to use the Arduino functions provided or if there is no Arduino function available.

WARNING

Only use these functions if you really know what you're doing.
If not, disaster will be lurking around the corner.

a: memory address as a 32-bit integer value (e.g., 0xa0f52804). The functions below will align the address with the
start of a 32-bit word before executing the function.

n: byte number in a word (0 to 3; O is low order byte).
v: value to read or write.

All arguments must have an integer data type.

mem32Read (a) returns the 32-bit word stored at memory address a as an integer

mem32Write (a, v) writes a 32-bit integer value v to memory address a. The function returns 0

mem8Read (a, n) returns the 8 bits stored at memory address a, byte n as an integer

mem8Write (a, n, v) writes an 8-bit integer value v to memory address a, byte n. The function
returns 0

9 Arduino-specific functions Page 35

Justina User Manual just an Interpreter for Arduino
10 Input and output

10.1 Introduction

By default, Justina uses the Arduino Serial monitor (or any serial terminal program or device) as its only 10 device.
However, when the Arduino program creates the Justina object, it can pass a reference to all 'external 10' stream
objects it wants to make available as 10 devices to Justina. These can be Serial ports, a TCP IP client, an LCD or OLED
display... (for more information, see Appendix A: Creating a Justina object and choosing startup options). The
maximum number of 10 devices that can be defined in Justina is 4.

Note: typing 'sysVal(17)' will return the number of 10 devices defined.

Justina handles input and output from/to 1/O devices and (if an SD card board is connected) SD card files in the same
way, using a set of common commands and functions (SD card commands and functions which are not applicable to 10
devices will be discussed in next chapter: Working with SD cards).

» 10 devices are referred to by an assigned ‘device number’: a negative number from minus 1 to minus 'the

number of 10 devices' in the order the stream references are passed to Justina.

» SD card open files are referred to by an assigned ‘open file number’: a positive number from 1 to the number
of currently open SD card open files.

Generically, 10 devices and open files are referred to as streams and are referred to by stream numbers.
Various Justina functions and commands require a device number or open SD file number as argument.

Predefined constants are available to represent 10 devices and open files in Justina (use them to make a program more

readable):
constant 10 device number constant open file number
101 -1 FILE1 1
102 -2 FILE2 2
103 -3 FILE3 3
104 -4 FILE4 4
CONSOLE 0 (see below) FILES 5

A\ You should also read next chapter: Working with SD cards, if you plan to use SD card functionality

The console

The console is defined as the only 10 device capable of sending Justina commands, typed in the command line of the
Arduino IDE Serial monitor (or a suitable Terminal application on your PC or even on your smartphone) to Justina. It is
also the 10 device where system messages, the echo of statements, results of calculations, ... and the Justina>’ prompt
are sent to.

At startup, the |0 device referred to by device number -1 (101) is set as the console. The user can change the console
to another 10 device (if available).

You can read from, and write to, the console without having to bother about its device number in 2 ways:

% several functions and commands always read from / write to the console. Example: cin() function, cout
commands.

< use predefined constant CONSOLE as device number with commands and functions requiring a device

number.

10 Input and output Page 36

Justina User Manual just an Interpreter for Arduino

During debugging and tracing, Justina writes specific information (e.g., the source line where a program was stopped)
to either a designated 10 device or a designated SD file (if an SD card board is connected). This IO device or file is
simply named ‘debug out’ (files will be discussed in next chapter: Working with SD cards, debugging and tracing in
chapter 13: Programming).

In addition, you can write to ‘debug out’ with two specific commands, dbout and dboutLine.
The debug out device (or file) is especially useful while debugging a Justina program.

At startup, 10 device -1 (101) is set as the debug out device: because 101 is also the (default) console, messages sent in
the context of debugging and tracing will appear on the console in between other system messages, your program
output etc.

If this is not wanted, ‘debug out’ can be set to a different 10 device or even an open SD card file (if an SD card board is
connected).

10.2 Printing data to a stream

The commands in the tables below will print all arguments, one by one, to the designated output device (or open SD
card file).

» Two commands, vprint and vprintLine, do not print to an 10 device or open file but to a variable.

Functions fmt(), tab(), col() and pos() can be used to format individual arguments (see section 1.2.10: Applying
formatting to your output).

If no formatting is applied, floats and integers will be printed according to their respective display settings (see
floatFmt, intFmt commands in chapter 5: The console), but without taking into account any formatting flags set there:

e integers printed in hex format will be preceded by '0x'
e floats will always print with decimal point
e strings will print without any truncating

Note: any external 10 device can be set as console (see further).

cout argl [, arg2, arg3, ...]; Print all arguments to the console

coutlLine [argl, arg2, arg3, ...]; Same as cout, but advance to a new line when done

In the command line, type

coutLine "an integer: ", 3 * 5, line(), "a float: ", 3. * 5.;

10 Input and output Page 37

Justina User Manual just an Interpreter for Arduino

Serial monitor output:

Justina> coutlLine "an integer: ", 3 * 5, line(), "a float: ", 3.00 * 5.00
an integer: 15

a float: 15.00

Justina>

The ‘line ()’ function (third argument) advances the print position to the start of a new line. When all arguments are
printed, the print position moves to the next line (coutLine command) and the prompt is printed.

In this case, using cout instead of coutLine would have had the same effect, because before printing its prompt, Justina
always goes to a new line.

Print to debug out

The syntax of these commands is identical to the syntax of the console print commands.

Note: any ‘stream’ (external 10 device or open SD file) can be set to ‘debug out’.

dbout argl [, arg2, arg3, ...]; Print all arguments to debug out

dboutLine [argl , arg2, arg3, ...] ; Same as dbout, but advance to a new line when done

Print to any output device

These commands take one additional argument: a ‘stream’ number. Negative ‘stream’ numbers (or constants 101 to
104) refer to an external |0 device (Serial port, TCP IP client, LCD screen...), positive numbers to an open SD file.

Apart from the ‘stream’ number (first argument) the syntax of these commands is identical to the syntax of the console
print commands.

print streamNumber, argl [, arg2, arg3, ...] ; Print all arguments to a stream
printLine streamNumber [, argl, arg2, arg3, ...] ; Same as print command, but advance to new line
when done
Example

In the command line, type

printLine IO1, "name ", col(10), "John", line(), " 2 4 6 8 0";

Serial monitor output:

Justina> printLine I01l, "name ", col(10)}, "John", line(}, " 2 46 8 0"
name John

24680

Justina>

The predefined constant 101 refers to 10 device -1, which is set as the console, so print output is sent to the console
(we could also have used predefined constant CONSOLE, or simply ‘-1" or ‘0’).

The col() function moves the print column to column 10 before printing "John" (see further).

10 Input and output Page 38

Justina User Manual just an Interpreter for Arduino

Print to a variable

These commands do not print to a stream but to a variable.
This allows you to create a string containing formatted data without actually printing it.

The variable must be able to accept 'string' as data type: if an array element, the array should be defined as string
array (arrays cannot change their data type).

vprint variable, argl [, arg2, arg3, ...] ; Print all arguments to a variable
vprintLine variable [, argl, arg2, arg3, ...] ; Same as vprint, but add CR and LF characters
Example

In the command line, type these 3 commands (variable 'test' should not exist yet):

var test = "before";
vprint test, "after:", tab(), "Pi =", PI;
cout test;

Serial monitor output (assuming that fixed point notation with 2 digits after the decimal point is set for floating point
numbers):

var test = "before"

Justina> vprint test, "after: ", tab(), "PI =", 3.14
Justina> cout test

after: PI = 3.14

Justina>

The tab() function moves the print position to the start of the next group of print columns. See further down in this
chapter.

10 Input and output Page 39

Justina User Manual just an Interpreter for Arduino

Printing comma-separated argument lists to a stream or variable

These commands print a comma separated list that can later be parsed again into separate variables (with functions
cinlList(), readList() and vreadList()).

o floats will be printed with all significant digits, integers in decimal format (base 10)
e strings will be printed with surrounding quotes.
o backslash (\) characters found will be replaced by a sequence of two backslash characters (\\)
(spaces added here for clarity)
o double quote (") characters found will be replaced by a sequence of a backslash and double quote
character (\") (spaces added here for clarity)

At the end, an end of line sequence is added (CR and LF characters).

When printing comma-separated argument lists, display settings for integers and floats (intFmt, floatFmt commands)
are not considered.

Although the primary use of these commands is writing data to SD files in a format that allows to easily retrieve it later
(SD card and files will be treated in a separate chapter), these commands write to any valid stream.

coutlList argl [, arg2, arg3, ...]; prints a comma separated list to the console.

printList streamNumber, argl [, arg2, arg3, ...] ; Same as coutlist, but prints to any stream (external 10
or open SD file).

vprintList listVariable, argl [, arg2, arg3, ...] ; Same as coutlist, but prints to a variable.

Examples
In the command line, type these 3 commands:

var nl= 123, tl = "abcdef", n2=456.789e10;
coutLine line(), nl, tl, n2, line();
outList nl, tl, n2;

Serial monitor output:

Justina> var nl = 123, tl = "abcdef", n2 = 4567890132992.00
Justina> coutLine line(), nl, t1l, n2, line()

123abcdef4567890132992.00
Justina> coutlList nl, tl, n2

123, "abcdef", 4.56789E+12
Justina=

Extra 'line()' arguments have been included to improve clarity in this example.

Now, let's include a backslash and a double quote in variable t1.

10 Input and output Page 40

Justina User Manual just an Interpreter for Arduino

tl = "ab\\cd\"ef";
coutLine line(), nl, tl, n2, line();
coutList nl, tl, n2;

Remember, when entering text, precede a quote with a backslash and enter a backslash as a sequence of two
backslash characters.

Serial monitor output:

Justina> t1 = "ab\\cd\"ef"
ab\cd"ef
Justina> coutLine 1line(), nl, t1, n2, line()

123ab\cd"ef4567890132992.00
Justina> coutList nl, t1, n2

123, "ab\\cd\"ef", 4.56789E+12
Justina>

1.2.10 Applying formatting to your output

The various print commands, described during the previous chapter, output data using default formatting.

The fmt() function is used to format the data the way you want before printing. It is most useful when it is used as an
argument of a print command.

The meaning of arguments 'field width', 'precision’, 'notation' and 'flags' corresponds to the definition of the same
arguments used in the c++ printf function.

The function result is always a string, containing the formatted value.

fmt (expression [, field width [, precision [, notation] [, flags [, character count]]]]

fmt(expression [, precision], notation [, flags [, character count]]
expression: the value to be formatted (numeric or string)
field width: the minimum print field width (formatted values will never be truncated). If less space is needed,

the output will be padded with spaces.

precision: a) 'expression' evaluates to a string: the maximum number of characters to print if the string is
longer.

b) 'expression’ evaluates to a number and 'notation' (see below) is DEC, HEX or HEX_U: if the
value to be formatted is a float point number, it is first truncated (rounded towards zero) to an
integer. 'precision’ specifies the minimum number of digits of the integer value to be written. If
the value has less digits, it will be padded with leading zeros.

c) 'expression' evaluates to a number and 'notation' (see below) is FIXED, EXP, EXP_U, SHORT or
SHORT_U: if the value to be formatted is an integer, it is converted first to a float. 'precision’
specifies the number of digits to be printed after the decimal point (fixed point, exponential
notation) or the maximum number of significant digits to be printed (shortest notation).

10 Input and output Page 41

Justina User Manual

notation:

flags:

Character count:

All arguments following the value to be printed are optional (please see 'fmt' function syntax to check out the allowed

just an Interpreter for Arduino

a) 'expression' evaluates to a number: specifies how numbers should be represented.

e As a floating-point number In fixed point notation, scientific notation or in the shortest
e Asaninteger: in decimal or hexadecimal representation.

Use the following constants to set a notation (same constants used in commands intFmt and

FloatFmt):

FIXED " fixed point notation

EXP "e" scientific notation

EXP_U "E" scientific notation, ‘E’ uppercase

SHORT "g" shortest notation (fixed or scientific)

SHORT_U "G" shortest notation (fixed or scientific), ‘E’ uppercase
DEC "d" decimal representation (base 10)

HEX "x" hexadecimal representation (base 16)

HEX_U "X" idem (base 16), hexadecimal digits A-F uppercase

b) 'expression' evaluates to a string:
CHARS "s" character string

Use the following flags to finetune the output (same constants used in commands intFmt and
FloatFmt):

FMT_LEFT
FMT_SIGN
FMT_SPACE
FMT_POINT
FMT_OX
FMT_000 16

00 00~ N

FMT_NONE 0

align output left within the print field

always add a sign (- or +) preceding numeric values

precede numeric values with a space if no sign is written

print floating point numbers: always add decimal point

print in hexadecimal notation: precede non-zero values with '0x' or '0X'
print floating point numbers: pad print field with zeros.

clear all flags

variable, will be updated with length of the formatted string returned. Combined with the pos()
function, the current print column can be calculated. This can be useful to allow overlapping of

print fields (see pos() and col() functions). An example is included in the Justina library.

combinations of arguments).

The width, precision, notation and flags arguments remain in effect during next fmt() calls until explicitly changed by
next calls to this function. When flags are included as argument, all flags not included are reset. To clear all flags
explicitly, use value 0 (or use predefined flag FMT_NONE).

10 Input and output

Page 42

Justina User Manual just an Interpreter for Arduino

Examples

The following examples direct their output to the console. The "==" fields are printed to indicate the start and end of
the formatted print field.

This first example (below) prints numbers in decimal and hexadecimal notation. The print width is set to 8 characters.
Hexadecimal numbers are printed with at least 4 digits, the last number (a float) is first truncated to an integer and is
printed left aligned.

Justina> cout "==", fmt(12, 8, 1, DEC), "=="

== 12==

Justina> cout "==", fmt(1234, HEX), "=="

== 4d2==

Justina> cout "==", fmt(1234, 4, HEX), "=="

== 04d2==

Justina> cout "==", fmt(1234, HEX, FLAG_0X), "=="
== 0x04d2==

Justina> cout "==", fmt(1234, HEX_U, FLAG_OX | FLAG_LEFT), "=="
==0X04D2 ==

Justina>

Print floating point numbers (integers are first converted). The print field width (10 characters) is extended if not wide
enough to print all characters. 'FMT_NONE' resets all flags.

Justina> cout "==", fmt(12, 10, 3, EXP, FLAG_NONE)}, "=="
== 1.200e+01==

Justina> cout "==", fmt(12, 6, EXP), "=="
==1.200000e+01==

Justina» cout "==", fmt(12, 3, FIXED}, "=="
- 12.000==

Justina> cout "==", fmt(12, 6, FIXED), "=="
== 12.000000==

Justina> cout "==", fmt(12.90, FIXED)}, "=="
== 12.900000==

Justina> cout "==", fmt(12.90, SHORT), "=="
== 12.9==

Justina>

Output a string (the notation is ignored if provided).

Justina>

Justina> cout "==", fmt("abc", 10, 4), "=="

== abc==

Justina> cout "==", fmt("abcdef"), "=="

o= abcd==

Justina> cout "==", fmt("abcdef", CHARS, FLAG_LEFT), "=="
==abcd ==

Justina> cout "==", fmt("abcdefABCDEF", 4, 6), "=="
==abcdef==

Justina> cout "==", fmt("abc"}, "=="

==abc ==

Justina=

10 Input and output Page 43

Justina User Manual just an Interpreter for Arduino

The following functions are useful to help formatting output.

tab ([n]) 1. As argument of a print command: starting at the current column
position, the tab() function inserts enough spaces to move to the next tab
stop. If 'n' is specified, moves to the n-th next tab stop instead (starting
from the current position).
Do not include the tab() function in an expression.

2. Outside a print command, the tab() function returns the set tab size
(optionally multiplied by 'n', if entered as argument).

col (n) 1. As argument of a print command: starting at the current column
position, the col() function inserts enough spaces to move the print
position to column 'n'. No spaces will be inserted if 'n' is less than or equal
to the current print position.
Do not include the col() function in an expression.

2. Outside a print command, col(n) simply returns 'n'.
pos () 1. Within a print command: returns the column number where the print

command started printing its first argument. The pos() function is useful
when it is part of an expression. See the last example below.

2. Outside a print command: pos() returns the column number where the
next print command for the stream last printed to, will start printing.

Change the tab size with this command:

tabSize n ; Sets the distance between tab stops. Tab size is limited to a number
between 2 and 30. Entering a number outside this range will set the tab
size to one of these values without producing an error.

Notes

9

The leftmost column is numbered '1'.
Justina maintains current column positions separately for each individual external 10 device and any open SD
card file.

9

& The tab() and col() functions work only if entered as direct arguments of print commands - not if entered as
part of an expression and not outside print commands.
& The pos() function is not affected by printing to variables.

Examples

Use of tab() function

Justina> cout "one", tab(), "two"; cout tab(), "three"
one two three
Justina>

The three words are printed at each tab stop.

10 Input and output Page 44

Justina User Manual just an Interpreter for Arduino

Use of fmt() function together with col() function

Justina> coutLine fmt(12, 8, 2, FIXED), col(12), fmt(65.43)
12.00 65.43
Justina>

The second value ("+++") starts printing at column 10, with the same formatting as the first number.

A more complicated example

In this example, we'll use the fmt() and pos() functions to obtain overlapping print fields.

Locate file ‘overlap.jus’ in folder ‘libraries\Justina_interpreter\extras\Justina_language_examples’ (residing in your
Arduino sketchbook location), and load the Justina program this file contains, using the procedure that was explained
in chapter 2: Getting started.

We will not study this program here (programming will be discussed in chapter 13: Programming), but it may be
interesting to have a look at the output.

The program contains two small functions (see next page); they both produce the same result. The purpose is to print
10 lines with each time two numbers of variable length, after each number a separator, and to fill up the remaining
columns until column 15 with '+' characters.

Run the first function: type ovlapl () ; (+Enter).
Then, run the second function: type ovlap2 (); (+Enter).

Result:

Justina> ovlapl()
2.72---118 ++++
7.39---69 +++++
20.09---41 ++++
54.60---24 ++++
148.41---14 +++
403.43---8 ++++
1096.63---4 +++
2980.96---2 +++
8103.08---1 +++
22026.46---1 ++

0
Justina> ovlap2()
2.72---118 ++++
7.39---69 +++++
20.09---41 ++++
54.60---24 ++++
148.41---14 +++
403.43---8 ++++
1096.63---4 +++
2980.96---2 +++
B8103.08---1 +++
22026.46---1 ++
0

Justina>

Both functions contain 2 print commands (cout and coutLine) each printing a part of each line.

10 Input and output Page 45

Justina User Manual

just an Interpreter for Arduino

Function ovlap1(): the cout command prints the two variable length numbers. The coutLine command then uses

function pos() to determine how many '+' characters need to be printed.

33 Eﬂfunctlon overlapl():

34 var i=0, count=0, atColumn=0;

3 Eﬂ for i =1, 12;

3 cout exp(i), "---", cInt(1.7 ** (10-i)), " ";
38 coutLine repeatChar("+", max(l, 16 - pos())):
39 - end;

40 —-end;

Extract of Justina program ‘overlap.jus’, edited in Notepad++ with the Justina language

extension installed.

Function ovlap2(): the cout command only prints the first variable length number on each line. The coutLine command

prints the second number, so, the length of the second number printed, which is stored in variable 'count' needs to be

added to pos() to determine how many '+' characters need to be printed.

[Flfunction overlap2():

47 var i=0, count=0;

49 = for i = 1, 12;

SC cout exp(i), "---%;

51 coutLine fmt (1.7 ** (10-i), O, 1, "d4d-,
52 I repeatChar("+", max(l, 15 -

< - end;

54 “-end;

o,

count), "

(pos() + count))):

n
r

Extract of Justina program ‘overlap.jus’, edited in Notepad++ with the Justina language extension

installed.

Note: function ‘repeatChar();' (repeat character) is used in both examples to print the required number of '+'

characters.

Also note that the '0' value displayed in the output is the Justina function result. Because no result was explicitly
returned by the function (using the ‘return expression’ command statement) zero was returned.

10 Input and output

Page 46

Justina User Manual just an Interpreter for Arduino
10.3 Reading from a stream

The functions below read one or multiple characters from a stream (external 10 or SD card file if an SD card is
available).

Most of the functions described in this chapter time out after a period that can be set by the user (see function
setTimeOut(). During execution of these functions, system callbacks (if enabled — see Appendix D: 'Running background
tasks: system callbacks') continue to be executed regularly (e.g., to maintain a TCP connection), so these functions can
safely be used, for instance when reading a line of text from a remote TCP IP device.

Reading from the console

Note: any external 10 device can be set as console stream (see further).

cin () Form 1: reads one character from the console. Returns the ASCII code of
the character received as an integer. If no character is available,
immediately exits, returning OxFF (255).

cin ([terminator,] length) Form 2: reads characters from console until 'length' characters are read
or terminator character (first character of a terminator string passed) is
encountered or a timeout occurs. Returns a string with the characters
read, or an empty string if nothing was read.
The terminator character is not stored.

cinlLine () Reads characters from console until the internal buffer is full or a
newline character (0x0A) is encountered or a timeout occurs. Returns a
string with the characters read or an empty string if nothing was read.
The newline character, if encountered, is added to the string.

Example

In this example, cin() reads characters the user inputs and displays the corresponding ASCII codes. It does so until a 'q'
is encountered.

We don't need to write a program to test this: create 2 variables, cand i (var c, i; +ENTER)
Then copy the line of code below, paste it into the command line and press ENTER.

i=1; while i; c= cin(); if (c<255); cout ¢, ", "; end; if (c == asc("g"));..
...i=0; end; end;
Now, type abc (+ ENTER)

Result:

Justina> i1 = 1; while i; ¢ = cin(); if (c < 255); cout c., ", ": end; if (c == asc(
97, 98, 99, 13, 10,

The ASCII codes for characters a, b and c are printed (97, 98, 99), followed the ASCII codes for the carriage return /
line feed sequence (13, 10) as a result of pressing ENTER.

Press ‘g’ to quit and return to the Justina prompt.

10 Input and output Page 47

Justina User Manual just an Interpreter for Arduino

These functions take one additional argument: a stream number. Constants 101 to 104 (or negative numbers -1 to
-4) refer to an external 10 device (Serial, TCP, LCD screen...), positive numbers to an open SD file.

Apart from the stream number (first argument) the syntax of these functions is identical to the syntax of the console
read functions.

read (streamNumber) Form 1: reads one character from the indicated stream. Returns the
ASCII code of the character received as an integer. If no character is
available, returns immediately, returning OxFF (255).

read (streamNumber, Form 2: reads characters from the indicated stream until 'length’
[terminator,] length) characters are read or terminator character (first character of a
terminator string passed) is encountered or a timeout occurs. Returns a
string with the characters read, or an empty string if nothing was read.
The terminator character is not returned.

readLine (streamNumber) Reads characters from the indicated stream until the internal buffer is
full OR a newline character (0x0A) is encountered or a timeout occurs.
Returns a string with the characters read or an empty string if nothing
was read. The newline character, if encountered, is added to the string.

These functions read and parse a comma separated list of values (numbers and strings) from a stream or a string
variable into a series of variables.

This offers a convenient way to safely read back and parse comma separated lists, created earlier with commands
coutlist, printList and vprintList, especially when working with SD files (although this works for any stream).

cinlList (variablel [, variable2, ...]) Reads a string from the console and parses the contents
of that string into a list of variables. Reading stops when a
newline character (ox0A) is encountered or a timeout

occurs.
Returns the number of variables that successfully received
a value.
readList (streamNumber, variablel Reads a string from the indicated stream and parses the
[, variable2, ...]) contents of that string into a list of variables. Reading

stops when a newline character (ox0A) is encountered or
a timeout occurs.

Returns the number of variables that successfully received
a value.

vreadlList (listVariable, variablel [, variable2, ...]) Parses a string stored in 'listVariable' into a list of
variables.
Returns the number of variables that successfully received
a value.

10 Input and output Page 48

Justina User Manual just an Interpreter for Arduino

Notes:

& Receiving scalar variables will always store parsed values with the correct type (integer, float, string). Array
variables have a fixed type and an execution error will occur if the value cannot be converted to the type of
the array. Exception: floats will be converted to integers if required and vice versa.

& |f the variable list does not contain enough receiving variables to store all values read, the rest of the values
will be discarded. If the list contains more variables than required, then the extra variables will be left
unchanged.

Example
Create scalar variables s, a, b, c and d first. Then, execute these statements:

s = "123, 456, \"abc\", 789";

vreadList (s, a = 0, b =0, ¢ =0, d= 0);
ajy

vprintList s="hello", a, b, c, d;

S;

Result:

Justina> s = "123, 456, \"abc\", 789"
123, 456, "abc", 789
Justina> vreadList(s, a =0, b=0, c =0, d = 0)
4
Justina> a
123
Justina> vprintList s = "hello", a, b, c, d
Justina> s
123, 456, "abc", 789
Justina>

This back-and-forth mechanism is safe for strings too, even if strings contain backslash or double quote characters.

Look for a character sequence ('target string') within a stream

These functions read characters from a stream (external 10 or SD card file if an SD card is available) until a specific
character sequence is found.

find (streamNumber, target string) Reads characters from the indicated stream until the target string is
found or a timeout occurs. The characters read are not returned: the
function returns 1 if the target string was found, otherwise the
function returns zero.

findUntil (streamNumber, target string, | Reads characters from the indicated stream until the target string is
terminator string)) found or terminator string is encountered or a timeout occurs. The
characters read are not returned: the function returns 1 if the target
string was found, otherwise the function returns zero.

10 Input and output Page 49

Justina User Manual just an Interpreter for Arduino

Example
Execute this statement from the command line.
while 'available (CONSOLE); end; find (CONSOLE, "abc"); coutLine cinLine();

The command is echoed next to the Justina prompt, but a new prompt is not printed. This is because of the

"I 'available(CONSOLE) ' expression: it checks whether characters sent from the console are waiting to be read, and as
long as there aren't, it keeps waiting (returning FALSE, changed to TRUE by the negation operator).

Finally, the 'coutLine cinLine()' function at the end will capture any remaining characters and print them.

Now, you have the time to enter whatever text, press ENTER and check out the result.

Enterthis: I like Justina very much and press ENTER

Result:

Justina> while !available(CONSOLE)}; end; find(CONSOLE, "abc")}; coutLine cinLine()

0
Justina>

The function result is 0, meaning the string did not contain the target string "abc". Note that this function times out
when the target string ("abc") is not found in the input: the Justina prompt will only appear after a short delay (that
can be set).

Now, do this exercise again, but with a different text:

while !available (CONSOLE); end; find (CONSOLE, "abc"); coutLine cinLine();
Here you'll find the abc of Justina

Result:

Justina> while 'available(CONSOLE); end; find(CONSOLE, "abc"); coutlLine cinLine()
of Justina

Justina>

The remaining text is printed and the function returns 1, indicating the target string was found.

10 Input and output Page 50

Justina User Manual just an Interpreter for Arduino
10.4 Other stream functions and commands

The functions in the next table are mainly Justina wrappers to make the corresponding Arduino functions available to
Justina. Console is the default device (in case no device number is specified).

peek ([streamNumber]) reads one character from a stream but does not advance to the next
character. Function returns OxFF (255) if no characters are waiting to
be read

available (streamNumber) Returns the number of characters waiting to be read.

flush (streamNumber) Waits until all characters in output buffer have been sent. For instance,

when writing to an SD card file, wait until all characters have been
physically saved on the SD card (see next chapter).

setTimeout (streamNumber, timeout) Sets the maximum time to wait for incoming characters, in
milliseconds. When Justina starts, the default is set to 200
milliseconds.
Note that all functions reading data from external 10 streams are
impacted by this setting, with only two exceptions: cin() and
read(stream), called without arguments.

getTimeOut (streamNumber) Returns the timeout set for a stream, in milliseconds.

availableForWrite (streamNumber) Returns the number of characters that can be written to the output
buffer for a stream without introducing delays.

getWriteError (streamNumber) Returns the last error generated by a stream write operation.

clearWriteError (streamNumber) Clears any write error.

10 Input and output Page 51

Justina User Manual just an Interpreter for Arduino

Commands to change streams designated as console and debug out streams

The following commands let you set the console or the ‘debug out’ stream to another 1/O device or(‘debug out’ only)
open file number.

@ The console refers to the input/output device sending user input (user commands, ...) to Justina and / or
receiving standard Justina output (calculation results, error messages...). Example: the Arduino IDE serial

monitor.

setConsole streamNumber ; Changes the console to another external 10 device.
use: command line only.

setConsoleln streamNumber ; Changes the console to another external device for input but keeps
the currently assigned device for console output.
use: command line only.

setConsoleOut streamNumber ; Changes the console to another external device for output but keeps
the currently assigned device for console input.
use: command line only.

setDebugOut streamNumber ; Changes the debug output stream to any external 10 device or open

file number (see next chapter).
use: command line only.

/A Avoid changing the console to a stream which is currently unavailable (for instance a TCP terminal that is
currently offline). Appendix D: 'Running background tasks: system callbacks' discusses a method to recover
from such a situation.

Print a list all variables

Sometimes it’s handy to get an overview of all created variables with their type and current value:

listVars [streamNumber]; | Print a list of all user and global program variables to the indicated device number
or open file number. The ‘streamNumber’ argument can refer to any available
external 10 device and to any open file. If no device number is specified, prints to
console.

The variables (and constants) are listed in the order created but in two groups: user variables first. In each group
constants are printed on top.

Information printed includes variable name, type, constant or variable ad value.

User variables have an extra column 'U' (used): an 'x' is printed if a user variable is referenced by the currently loaded
program (because the program didn't define a variable with this name). This is quite useful to retain specific data after
the program has been cleared (or replaced by another program).

Notes

& A user variable in use by a program cannot be deleted as long as the program is loaded.
& aprogram cannot be loaded if variables it references are not defined (not as program variable and not as user
variable).

10 Input and output Page 52

Justina User Manual just an Interpreter for Arduino

Example
Justina> listVars
user variable U type qual value
il float const 2.72
t12345 x float 0.00
abcde string "hello"
pl2 float (array 10 elem)
pl3 float (array 20 elem)
global prog variable type qual value
factors string (array 3x5 = 15 elem)
abcde integer 123
Justina>

In this example, the program currently loaded has a variable named 'abcde’. A user variable with the same name exists
as well. They live together peacefully; however, the Justina program can only access its own (integer) variable, which
makes the user variable inaccessible. Vice versa, the user can only access the (string) user variable.

But, except for these two variables named 'abcde’, the program can access all user variables and a user can access all
global program variables.

The 'x" in the 'U' (Used by program) column tells us that the user variable 't12345' is being referenced in the current
program (the program uses this variable because it hasn't defined a program variable with that name).

10 Input and output Page 53

Justina User Manual just an Interpreter for Arduino

11 Working with SD cards

Connecting a micro-SD card reader to the Arduino opens up a whole new world: you can

» create files on your SD card, write data to / read data from files

» receive and send files from / to your computer or any other device (possibly another Arduino)

» load programs from an SD card instead of loading them from your computer via USB

» enable an AutoStart function: automatically load and execute a startup file as soon as Justina is launched (for
instance to select specific display settings, angle mode etc.)

>

Justina works internally with the Arduino SD card library but this is completely transparent to the user.

This library uses the older 8.3 file format (max. 8 characters for the file name, 3 characters for the extension, filenames
are not case-sensitive) which is more than sufficient for our needs.

Only SD cards with a maximum size of 32 Giga Byte are supported. The Arduino SD card library only supports SD cards
formatted for FAT16 and FAT32 file systems (or with a partition formatted as FAT16 or FAT32).

Note for users working with the Arduino nano ESP32 board

The nano ESP32 does not use the standard Arduino SD library, but an SD library specific for this ESP32 board.

Although the command set and functions are more or less identical, the nano ESP32 library has a few restrictions as
compared to the standard Arduino SD library. In a nutshell:

e you cannot open a file in a combined read/write (or read/append) mode. After writing (or appending) to a file, you
need to close it and reopen it for reading

e when opening a file for writing (not for appending), the file is automatically truncated before you start writing to
it.

e in write mode, the size() function does not return the current size; as soon as you start writing it will return 0.

Connecting an SD card breakout board to your Arduino

Micro SD card readers use a standardized interface, requiring only 5 connections between Arduino and card reader:
GND (ground), Vcc, Clock (CLK), Data In (DI), Data Out (DO) and Chip Select (CS).

Within Arduino, communication is handled by means of the SPI library. This requires the use of specific Arduino pins to
connect to the SD card breakout box pins, with one exception: by default, when the Justina object is created, the Chip
Select pin is set to Arduino pin 10. To select another pin as CS pin: please refer to Appendix A: Creating a Justina
object and choosing startup options.

Detailed instructions on how to connect and test an SD card are outside the scope of this manual, but if not yet
familiar with the process of hooking up an SD card to your Arduino, this might be a good time to familiarize yourself
with it. You'll find a good introduction in this article: https://learn.adafruit.com/adafruit-micro-sd-breakout-board-
card-tutorial . You'll also find there how to test whether your card is working.

An example of a Micro SD card breakout board: https://www.adafruit.com/product/254 .

11 Working with SD cards Page 54

Justina User Manual just an Interpreter for Arduino
11.1 Starting Justina with an SD card mounted in its SD card slot.

By default, when the Justina object is created, SD card functionality is enabled but the SD card (if present) is not yet
started, or 'mounted' (to mount the SD card automatically, and even run a Justina autostart program file if desired, or
to disable starting the SD card all together, please refer to Appendix A: Creating a Justina object and choosing startup
options).

Example

e Ifrequired: on your computer, if needed, format an SD card (maximum size 32 GB, FAT16 or FAT32 format).
e insert the SD card in the SD card slot (preferably when the power is off) and start Justina.

Now, type in these statements (each time pressing ENTER)

startSD ; (this command does nothing if the SD card was started already)
listFiles ;

Result (in this example, the SD card contains data):

Justina> startSD
Justina> listFiles

SD card: files (name, size in bytes):
System Volume Information/

WPSettings.dat 12
IndexerVolumeGuid 76
factorial.jus 1714
input.jus 2488
SD_parse.jus 5141
SD test.dus 4474

11 Working with SD cards Page 55

Justina User Manual just an Interpreter for Arduino
11.2 SD card functions and commands

This chapter describes all functions and commands dedicated to working with files and directories.

To read or write a file, you must first open it. Open files (and directories) are referred to by a file number assigned to
the file when opening the file.

File and directory names always include the full file path. Use '/' (slash) characters as separators in file paths. The
leading "/" is optional.

Open files represent streams; file numbers are associated with open files. The maximum number of open files is 5; the
file numbers are always in the range 1 to 5 (predefined constants FILE1 to FILE5 — see previous chapter: Input and
output).

Most commands and functions with a device number as one of the arguments (e.g., 'printLine') accept file numbers as
well as device numbers, as indicated in the documentation for these respective commands and functions (see previous
chapter: Input and output).

Referring to a file number without an associated open file will always produce an error.

1. Open files are referred to by file number, closed files are referred to by file name.

Functions for working with SD cards and files:
open (filename, mode) Opens the file with the specified filename and returns a file number
assigned to the open file.

filename: name in 8.3 file format: 8 characters maximum and a 3-character
extension, preceded by the full path.

mode: specifies the access mode by using the predefined constants listed
below. Constants may be combined using the bitwise ‘or’ operator (|).

READ 1 open file for reading (this is the default)
WRITE 2 open file for writing
APPEND 6 open file for writing; data will be appended to the

end of the file

Note: combining WRITE and APPEND constants will set APPEND mode

NEW_OK 16 if file doesn't exist, create and open a new file
NEW_ONLY 48 only create and open new files, do not allow
opening existing files

TRUNC 9 64 on opening, delete all existing file content
(empty the file)

SYNC () 8 synchronous writes: send data physically to the card
after each write (minimize data loss after a crash)

** Notes for users of the nano ESP32 board: files will always be
truncated when opening a file for WRITE. Because of restrictions of the
underlying SD library for ESP32, constants TRUNC and SYNC have no
effect when working with the nano ESP32 board.

11 Working with SD cards Page 56

Justina User Manual

close (fileNumber)

position (fileNumber)

size (fileNumber)

seek (fileNumber, position)

name (fileNumber)
fullName (file number)

isDirectory (fileNumber)

rewindDirectory (dirFileNumber)

openNext (dirFileNumber)

isinUse (fileNumber)

closeAll ()

exists (fileName)

createDirectory (dirName)

removeDirectory (dirName)

11 Working with SD cards

just an Interpreter for Arduino

Close the file associated with the file number. If the file is not open, an error
is produced.

Returns the current position in the open file: the location in the file where
the next byte will be read or written. The first byte in the file has position 0.

Returns the file size (in bytes) of an open file

Note for users of the nano ESP32 board: when afile is opened in
WRITE or APPEND mode, size() does not return the actual size of the
file.

move to a specific position in the file.
Position argument: zero will move to beginning of file; constant EOF will
move to end of file (after the last byte in the file).

Note for users of the nano ESP32 board: use seek() in READ mode. In
WRITE or APPEND mode, this function does not allow you to freely
move the insertion point (only sequential writing).

returns the filename of the file, without path
returns the name of the file, including the full path
returns 1 if the open file is a directory, otherwise returns zero

Used together with function openNextFile(), to go back to the first file in a
directory. returns 0.

opens the next file in the open directory associated with dirFileNumber and
returns the file number of the open file. When all files in the directory have
been opened, the next call to function openNext() will return zero (no error
will be produced).

Note that the previously opened file won't be closed automatically when
you open the next one: it must be closed explicitly (either before or after
opening the next file)

Returns 1 if a file associated with this file number is open, otherwise
returns zero.

Close all open files. Always returns zero.

The function returns 1 if a file (or directory) with the specified name
(including full path) exists and returns zero otherwise.
If the name is not a valid name, an error will be produced.

Create a directory with the specified name (including full path). If the
parent directory is not the root ("/") directory, then any missing
subdirectories along the path will be created as well.

The function will return 1 if success and will return zero if the directory
cannot be created (e.g., because the directory already exists).

If the name is not a valid name, an error will be produced.

Remove the directory with the specified name (including full path). The
parent directory will not be removed, even if becoming empty.

The function will return 1 if success and will return zero if the directory
cannot be removed (e.g., because the directory does not exist).

If the name is not a valid name, an error will be produced.

Page 57

Justina User Manual just an Interpreter for Arduino

remove (filename) Remove the file with the specified filename (including the full path). The
function will return 1 if success and will return zero if the file cannot be
removed (e.g., because it's currently open).

fileNum (filename) If the file with the specified filename is open, return its file number,
otherwise return zero.
If the name is not a valid name, an error will be produced.

Commands available for working with SD cards and files:

startSD ; Initialize the SD card. When creating the Justina object in your Arduino
sketch, you can select this to happen automatically when Justina is
started, or not.

stopSD ; Send all data not yet physically sent to the SD card (including updating file
structure etc.), close all open files and 'stop' the SD card. Note that this
action is always performed automatically when quitting Justina.
Before removing or inserting a card while Justina is running, always
execute command 'stopSD'. If not, you do not only risk losing data but
your Arduino may hang.

receiveFile streamNumber, Receive a file from an 10 device and save it on the SD card, with the
filename [, verbose] ; specified filename. The default device number is CONSOLE. If verbose is
FALSE (‘off’), overwrite existing files without warning and do not print any
other messages (e.g., when using this command from within a program).
The default is TRUE (verbose ‘on’).
-or- -or-

receiveFile fileName ; Receive file from the console and save it on the SD card with the specified

filename. Verbose is ‘on’.

Upon execution of this command, Justina will wait 10 seconds for the first
character to arrive, giving you time to start transmission at the other end
(e.g., your computer). It will stop receiving characters after a set timeout
is reached (see setTimeout() function.

Note: Justina can not only receive text files (e.g., Justina program files,
data files organized as records with text fields, ...) but binary files as well
(e.g., an image file).

sendFile filename Sends the file with the specified filename to an 10 device. The default
[, streamNumber [, verbose]] ; device number is CONSOLE.
Verbose: if FALSE, output no messages (e.g., when using this command
from within a program. The default is TRUE.

copyFile sourceName, Copy a source file to a destination file.
destName, [, verbose] ; Verbose: if FALSE, overwrite existing files without warning and do not
print any other messages (e.g., when using this command from within a
program). The default is TRUE.

listFiles [streamNumber] ; Print a list of all files and directories on the SD card and send the output
to the indicated device number. For each file, the filename and the size
are printed.
The device number can refer to any available external 10 device and to
any open file.
If the device number is not specified, the list is printed to the console.

11 Working with SD cards Page 58

Justina User Manual just an Interpreter for Arduino

listFilesToSerial ; This is simply a 'wrapper' around the SD library method to print a list of
files. This always prints to Serial (even if Serial is not the console) but it
includes a 'date and time' field (which is only helpful if a real time clock is
present to supply the correct time - which is not implemented in the
current version).

|Note for users of the nano ESP32 board: this command is not available.|

Example

In this example we'll open a file with filename 'myFile' for writing data to it. If the file doesn't exist yet, it must be
created, but if the file does exist, its current contents must be deleted upon opening.

Create a variable myFileNum and then type in this statement (+ ENTER)

myFileNum = open ("myFile", WRITE + NEW OK + TRUNC) ;
This will open file "myFile" for WRITE, truncating its contents. If the file does not exist, it will be created.
The file number assigned to the now open file is stored in variable 'myFileNum'

Now let’s add 3 text lines to the file, with the same 'printLine' statements we used earlier to send characters to the
console (or any other external 10 device) and close the file:

Type in these statements (each time pressing ENTER)

printLine myFileNum, "this is line one";
printLine myFileNum, "this is line two";
printLine myFileNum, "this is line three";
close (myFileNum)

Result

Justina> myFileNum = open{("myFile", VIRITE + NEVW_OK + TRUNC)
1

Justina> printLine myFileNum, "this is line one"

Justina> printLine myFileNum, "this is line two"

Justina> printLine myFileNum, "this is line three"

Justina> close(myFileNum)

0

The file number assigned to the file is 1.

11 Working with SD cards Page 59

Justina User Manual

Example

just an Interpreter for Arduino

We’'ll reopen the file we just created for reading, read some of its contents, use the position() and seek() functions and
finally close the file again.

Type in these statements (each time pressing ENTER)

Result:

Example

myFileNum = open ("myFile", READ);
readLine (myFileNum) ;

position (myFileNum) ;

read (myFileNum, 13);

position (myFileNum) ;

read (myFileNum, "1", 20);

readLine (myFileNum) ;
seek (myFileNum, 18);
readLine (myFileNum) ;
close (myFileNum) ;

read 13 characters

read until an ‘I’ is found in next 20 characters.
(The ‘I’ itself is not returned.)

Justina> readLine(myFileNum)

Justina> position{myFileNum)
Justina> read(myFileNum, 13)
Justina> position{myFileNum)
Justina> read(myFileNum, "1", 20)
this is

Justina> readLine(myFileNum)
Justina> seek(myFileNum, 18)

Justina> readLine(myFileNum)

Justina> close(myFileNum)

Justina>

Justina> myFileNum = open{"myFile", READ)

this is line one

this 1is line

two

ine three

this is line two

18

31

Let’s now send the contents of this SD card file to the console. Type sendFile "myFile", CONSOLE; (+ENTER)

Justina> sendFile "myFile", CONSOLE
Sending file... please wait

this is line one

this is line two

this is line three

+++ File sent, 56 bytes +++

Justina>

11 Working with SD cards

Page 60

Justina User Manual just an Interpreter for Arduino

Example

In chapter 2: Getting started we created a small Justina program and saved it on the computer. Then, using YAT as
Terminal Application, we sent this file to the Arduino, where it was parsed immediately ('loadProg' command), ready
to run. But now, we have an SD card. So, why not directly load a program straight from the SD card ?

Of course, on the computer, we could copy the file to the SD card and then place the card in the Arduino SD card slot.
But it's much easier to send the file straight from the computer to the SD card.

We will again use YAT Terminal:

» Using the button with 3 dots to the left of YAT key 'send file', select file 'myFirst.jus' (but don't send it yet).

» Type and execute statement ' receiveFile CONSOLE, "myFirst.jus"; 'inthe command line (as
CONSOLE is the default, this argument is optional). This instructs Justina to start waiting for a file, listening to the
‘console input' stream (make sure to choose a file name complying with the 8.3 file format, if not, you'll get an
error).

» Send the file you just selected to Arduino (YAT button 'Send File'). It will be saved on the SD card.

Text: [receiveFie CONSOLE. "myFirst jus” v [Send Text [F3]

File: [D:\herwig\OneDrive\Onedrive Docur...istina_language_examples\myFirst jus v‘ Send File [F4]

Serial port COM7 (115200, 8, None, 1, None) is open and connected |{@||RTS @ CTS @ DTR @ DSR @ |DCD @ e

Now, load the program straight from the SD card: type and execute 1oadProg "myFirst.jus";
(The complete syntax of loadProg is discussed in next chapter: Other functions and commands).

Finally, execute the only function contained in the program: print5lines () ;

The console output now looks like this:

Justina> receiveFile CONSOLE, "myFirst.jus"

Maiting for file...
Receiving file... please wait

+++ File received, 1402 bytes +++

Justina> loadProg "myFirst.jus"

Loading program...

Program parsed without errors. % of program memor
Justina> printSlines()

line
line
line

line
line

nwnnn
nnpepwn -

36.00
Justina>=

Notes:
» the filename on the SD card is unrelated to the filename on the computer.
» if afile with that filename exists already on the SD card, Justina will ask your permission to overwrite it.

11 Working with SD cards Page 61

Justina User Manual just an Interpreter for Arduino

12 Other functions and commands

Loading and clearing a program, clearing all of memory

Before you can execute a program, you must load it into memory.

Loading a program is the process of reading a source file, parsing it into a sequence of tokens, storing tokens in
program memory and creating and initializing program variables. When a program is launched, tokens will then be
read by Justina and executed.

When an execution error occurs and for debugging purposes, statements can be ‘unparsed’ with the help of extra
information stored separately in order to give meaningful messages to the user.

When a program is loaded, any previous program, with associated program variables, is first removed. This does not
affect user variables, which remain available and keep their values.

loadProg [streamNumber] ; Receive a Justina source file from an external 10 device (if no argument is
provided, receive from console)
-or- -or-
loadProg fileName ; read a Justina source file with the specified filename from the SD card.

Parse the source file into tokens.

If receiving the Justina source file from an external 10 device (e.g., the
console), Justina will wait 10 seconds for the first character to arrive,
giving you time to start transmission at the other end (e.g., your
computer). It will stop receiving characters after a set timeout is reached
(see setTimeout() function).

Use: command line only.

Commands for clearing (part of) memory:

clearProg ; Remove a parsed program from program memory (with associated
program variables).
This command is non-executable (it is parsed but is skipped during
execution), however it will take effect only after execution has ended.
Use: command line only.

clearMem ; Clear all: same as clearProg but remove all user variables as well.
This command is non-executable (it is parsed but is skipped during
execution), however it will take effect only after execution has ended.
Use: command line only.

12 Other functions and commands Page 62

Justina User Manual just an Interpreter for Arduino

Quitting Justina

quit ; Quit Justina and return to the calling Arduino program (right after the
begin() method).
On quitting, Justina is kept in memory (including the currently parsed
program, program and user variables, settings etc.).
If the Justina begin() method is called again at a later moment, you can
continue your work, right where you left off, without any loss of data.
To completely remove Justina from memory, delete the Justina object (in
your Arduino program).

12 Other functions and commands Page 63

Justina User Manual just an Interpreter for Arduino
13 Programming

To write and execute Justina programs, you’ll need a text editor on your computer. It’s highly recommended to use
notepad++ (free): it displays line numbers (important once you start debugging a Justina program) and it has Justina
syntax highlighting, which is invaluable when editing larger Justina programs. A Justina ‘User Defined Language file’ is
available in the Justina library for that purpose.

Second, you’ll need a terminal program to send your program to your Arduino. Unfortunately, the Serial Monitor of the
standard Arduino IDE is not capable to send files to the Arduino. As already mentioned, a good choice is YAT (free).

As you may have noticed in previous chapters, notepad++ and YAT are used throughout this manual in examples.

So, if not already done so, you might want to install these two applications right now. For installation instructions,
please refer to Appendix F: Installing Notepad++ and the Justina language extension, and Appendix G: Installing YAT
terminal.

Within a program, all statements must be separated by a semicolon (;). A source line can contain multiple statements
and statements can span multiple lines.

13.1 Program and program functions

Preliminary note: all identifier names (program name, function names, variable names) must follow the same naming
convention: names must start with a letter from a to z (or A to Z), and may be followed by a sequence of letters, digits
and underscore characters. The maximum name length is 20 characters. Names are case sensitive.

Every program must start with a program statement, giving the program a name. This should be the first statement in
your program file (excluding comments).

Program programName ; Marks the start of the program and gives the program a name.
Must be the first statement in the program file (only to be preceded by
comment lines).
Please note that the name is not used to start a program, only to label it.

To be meaningful, a program must contain at least one function. A function starts with a function statement, and it
ends with an end statement. These two statements mark the ‘physical’ start and end of the function.

The function statement specifies the function parameters (values that can be passed to the function or returned to the
calling function) and attributes a function name to the function.

function functionName ([param name [()], paramname [()], ...] , [param name = literal, ...]) ;
[statement; statement; ...]
end ;

13 Programming Page 64

Justina User Manual just an Interpreter for Arduino

A function may receive scalar values as arguments as well as complete arrays.

» A parameter name followed by empty parentheses indicates that an array is expected as argument. Without
the parentheses a scalar is expected.

Function parameters can be either mandatory or optional.

» Optional parameters are followed by an equal sign and a literal, forming an initializer which serves as default
value for the function parameter in case the calling function does not supply an argument. Optional
parameters always expect scalars as arguments. All mandatory parameters must precede the optional
parameters.

Function volumes (length, manyWidths (), height, id="zzz", unit=2);
(function body)
end;

Function 'volumes' has three mandatory parameters (the second one being an array), followed by two optional
parameters. If optional arguments are not provided, the function parameters will receive the initial values "zzz" and 2,
respectively.

To call a Justina user function, use the syntax used for calling an internal Justina function, like ‘sin()’ etc.

The function name to call is followed by a list of arguments corresponding to the list of function parameters in the
definition. Where an array is expected, enter the array name (without parentheses), where a scalar is expected, enter
an expression, variable or constant.

function name ([expression or array name, expression or array name, ...])

Supply all mandatory arguments. Optional arguments can be left out, as desired. If an optional argument is left out,
next optional arguments must be left out as well.

Variables (scalars and arrays) are always passed by reference. That means that the called function will not make local
copies of passed variable values but will store a reference to the variables instead (scalar, array element or array). Any
changes made within the called function will be reflected in the original variables.

Constants and the results of expressions are passed by value.

If the constant is a string constant, the ‘value’ passed will be a reference to the character array where the string is
stored - individual characters are never passed (for a string variable, a reference to this ‘value’ is passed).

var length=5, widths (10)=2, height=10;
widths (8)=6;
volumes (length, widths, (height), "abc"); call function volumes()

Scalar variable 'length' and array 'widths' will be passed by reference, expressions ' (height) ' and "abc" will be passed
by value.

13 Programming Page 65

Justina User Manual just an Interpreter for Arduino

e if you don’t want a called function to alter a variable, put the variable between parentheses (creating an
expression)
e anarray is always passed by reference

Functions may call other functions and they may even call themselves (this is called recursion; an example program is
included in the library and we’ll discuss it in a moment).

The function called from the command line (by the user) is the function where program execution starts, or main
function (the program name itself is not used to start a program).

Returning control to the caller

return Exit the current function and return control to the caller (the function that was calling
[expression] ; the current function, or the command line if it was directly called from there).
If ‘expression’ is present, it is evaluated and the result (integer, float, string) is returned
to the caller as function result. If not present, zero is returned (integer value).

end; Exit the current function and return control to the caller (the function that was calling
the current function, or the command line if it was directly called from there).
Return integer value zero to the caller.

13.2 Variable declarations in a program

We already encountered the var and const commands when we discussed user variables and user constants. Within a
program, they serve the same purpose, which is to create program variables and constants.

But the syntax is still the same:

var namel [(dim1 [, dim2 [, dim3]]])] = literall [, name2 ...] ;

const name 1= literall [,name 2= literal2,...] ;

In a program, outside a function, var and const declare global program variables and constants

Global program variables can be referenced (used in equations, as arguments of a function, ...) anywhere in a program,
with one restriction: a variable can only be referenced (e.g. used in an expression) within a program once it has been
declared (after the declaration, further down the program), because the parser makes only one pass (it reads the
source program file only once, from top to bottom) and it needs to know where memory has been allocated for a
variable when it encounters a reference to that variable.

A global program variable / constant can be used in immediate mode as well (from the command line) unless it’s
‘shadowed’ by a user variable / constant having the same name (scope).

Memory is allocated to global program variables (and constants) during parsing. It remains allocated until the program
is deleted or overwritten by another program (lifetime).

Commands var and const are the only statements that may appear outside a function’s body.

13 Programming Page 66

Justina User Manual just an Interpreter for Arduino

Within a function, var and const declare local function variables

Local function variables, as their name implies, are only ‘known’ inside the function where they have been defined.
Also here, the rule applies that they can only be referenced (in the function) once they have been declared (further
down the program file).

Memory for local variables (or local constant variables) is allocated - and variables receive their initial values - when a
function is called, and before the function starts executing. Memory is deallocated when a function ends (control
returns to the caller).

Within a function, static declares static function variables

Just like local variables, static variables are only accessible within the function where they are defined. And also here,
the rule applies that they can only be referenced once they have been defined (further down the program file).

However, memory for these variables is not allocated when a function is called, but during program parsing (and that’s
also when these variables receive their initial values). Static variables are destroyed when a program is deleted or a
new program is loaded (same lifetime as global program variables).

The syntax is identical to the var command syntax:

static namel [(dim1 [, dim2 [, dim3]]])] = literall [, name2 ...] ;

Static function variables retain their values between successive calls of the function.

Notes

e Alllocal and static variables without initializer are defined as float and initialized to zero during parsing. Same
applies to all array elements of arrays without initializer.

e \Variable declaration commands are non-executable commands, as their only purpose is to inform Justina of
the existence of these variables / constants in order to reserve memory for them (during parsing or, for local
variables, before a function is called). They are never executed. That means you can put them inside a loop for
example (which is not necessarily good programming practice), they will then be available from that point
onward until the end of the function.

e During the lifetime of global program variables (and constants), they are accessible from the command line by
the user (except when ‘shadowed’ by user variables / constants with the same name).

e Vice versa, a program has access to user variables (unless shadowed by program variables).

e Within one function, a variable name can only reference one variable, be it a user or global program variable,
a local function variable or a static function variable. Local and static function variables ‘shadow’ global
variables with the same name.

A comment is any text that you add to your source file for documentation purposes and that should be ignored by the
Justina interpreter. Two forms exist:

» Single line comment: anything between ‘//’ (two slash characters in a row) and the end of a source line.
» Multiline comments anything between ‘/*’ (slash and asterisk) and ‘*/" character sequences.

Comments do not need to start at the beginning of a line. Note that multiline comment blocks cannot be nested.

13 Programming Page 67

Justina User Manual just an Interpreter for Arduino

13.3 Control structures

Control structures are defined by specific statements controlling how execution should proceed. They decide how the
flow of executed statements should be altered at certain moments.

In Justina, control structures always start with a specific control statement and they always end with a control
statement (in Justina, that’s always an end command). The statements in between form a statement block.

Control structures may contain other (nested) control structures. This is what makes a program structured, making a
program much easier to develop and maintain with less possibilities to introduce program errors.

if...end structure

The ‘if’ control structure starts with the if command and ends with the end command. Optionally elseif and else
commands can occur in between, creating multiple statement blocks.

if test expression ; [statement; statement; ...]
[elseif test expression ; [statement; statement; ...]]
[elseif test expression ; [statement; statement; ...]]
[else; [statement; statement; ...]]
[statement; statement; ...]]

end ;

Test expressions are evaluated one by one until a test expression returns a non-zero result (interpreted as TRUE). If
that happens, the corresponding statement block is executed after which execution continues after the end statement.
If all test expressions return zero (false), and an else clause is present, the statement block following the else clause is
executed.

If a test expression returns a non-numeric result, an execution error is produced and execution stops.

for...end loop

Using the ‘for...end’ control structure, the statement block in between can be executed multiple times: it defines a
for...end loop. This is controlled by ‘control variable’ (a scalar or an array element).

for control variable [= start], end [, step];
[statement; statement; ...] ;
end ;

‘Start’, ‘end’ and ‘step’ : numeric expressions yielding a numeric result (the default step = 1).
First, ‘control variable’ receives the value ‘start’ (if a start value is not specified, it maintains its current value).

Then the statement block is executed repeatedly. At the end of each iteration, the value of ‘control variable’ is
incremented by ‘step’. If this new value is still in the range between ‘start’ and ‘end’ values, a new iteration starts.
Otherwise, the loop ends and execution continues after the end statement.

13 Programming Page 68

Justina User Manual just an Interpreter for Arduino

Notes
e totest the current value of ‘control variable’ after each iteration, ‘end’ and ‘step’ values will be converted to
the type of ‘control variable’
e if ‘end’ is higher than ‘start’ but ‘step’ is negative, then the loop will not be executed (and same if ‘end’ is less
than ‘start’ but ‘step’ is positive)
e the value of ‘control variable’ should not be changed within the statement block
e two nested for...end blocks can not share the same control variable

Using the ‘while...end’ control structure, the statement block in between can be executed multiple times: it defines a
while...end loop.

while test expression ;
[statement; statement; ...];
end ;

First, ‘test expression’ is evaluated. If its result is not equal to zero (TRUE), the statement block is executed. At the end
of each iteration, the test expression is evaluated again and if the result is still not equal to zero, the next iteration
starts.

When the test expression result becomes zero (FALSE), the loop ends and execution continues after the end

statement.
break ; This command ends execution of a loop. Execution continues after the loop end
statement.
continue ; The remainder of the currently executed loop is skipped, moving on immediately with
the test at the end of the iteration. The test result determines whether a next iteration
starts or the loop is ended.
Notes

e control structures can be used in immediate mode as well

e In Notepad++, using the Justina Language extension, the function...end structure, the return statement, the
control structures and the break and continue commands are displayed in a bold and slightly darker color to
distinguish them from other (non-control structure) commands

13 Programming Page 69

Justina User Manual just an Interpreter for Arduino

Example: Justina program ‘factorial’

Locate file ‘fact.jus’ in folder “libraries\Justina_interpreter\extras\Justina_language_examples\’, residing in your
sketchbook location, and open it in Notepad++.

The program calculates the factorial of a positive integer, using a recursive mechanism: the program repeatedly calls
itself, until a final result is calculated.

—TOTTAT

28 program factorial; // this is a JUSTINA program

Hfunctlon fact (n):

31 | var fact_ n = 0; local variable

3 n = ciInt(n); // do nothing if int
35 = if (n > 2);

: f- fact n = n * fact(n-1):; // recursive call: ¢
37 B else;

: fact_ n = n;

3 - end;

41 return fact_n; // return n!

42 -end;

We will execute this program when we discuss debugging, a little bit further down. But let’s try to find out how it
works now.

This program has only one function, named fact. It has one parameter ‘n’, without initializer, which means that an
argument has to be supplied when this function is called. It also has a local variable ‘fact_n’ which will store calculated
factorials.

When function fact() is called from the command line with value ‘3’ as argument:

e |ocal storage for variables ‘fact_n’ and ‘n’ (which receives value 3) is created and fact() starts executing

e tocalculate 3'as 3 * 2!, 21 must be calculated first (if clause, line 22)

e to calculate 2!, fact() calls function fact() again, with ‘2" as argument, creating a second independent instance of
fact()

e |ocal storage for variables ‘fact_n’ and ‘n’ (which receives value 2) is created and fact() starts executing

e fact() calculates 2! as 2 (else clause, line 24) and returns 2!

e instance 1 of fact() resumes and can now multiply 3 with 2! : it returns 3!

Note that this is not a very efficient way to calculate factorials. The higher the input value, the more instances of
‘fact()’ we need concurrently. At a certain moment RAM memory will be completely used (remember that Arduino is
still a microprocessor, with a relatively small amount of memory and no means of effectively managing memory —
notably the ‘heap’, where all local variables are stored) and the processor will simply hang before it could start
releasing memory as function instances end.

The following lines of code do exactly the same thing, and we’re not even writing a program. You can do this from the
command line:

var n=0, 1i=0, fact=0; // init as integer
n=1; fact=1l; for i =2, n; fact=fact * i; end; // 1!
n=4; fact=1l; for i =2, n; fact=fact * i; end; // 4!
n=6; fact=1; for i =2, n; fact=fact * i; end; // 6!

13 Programming Page 70

Justina User Manual just an Interpreter for Arduino

A few commands allow the user to interact with a running program without stopping Justina background tasks (e.g.
maintaining a TCP connection — see Appendix D: 'Running background tasks: system callbacks').

input prompt, value, flag; Halts the program, displays a message on the console and waits for an answer
from the user before proceeding.

prompt character string expression, which will be displayed as a message on the console.

value must be a variable. On entry, optionally contains a default answer (a string). On exit, will contain
the answer entered by the user in response to the message. The answer is always stored a string.
To cancel the input operation, type (or include) '\c' in the answer.
In order to select the default answer, type (or include) '\d' in the answer.

flag This mandatory argument must be a variable. Supplying a constant or an expression instead of a
variable will lead to a runtime error. Possible values on entry:

NO_DEFAULT 0 selecting a provided default answer is not allowed.
ALLOW_DEFAULT 1 selecting a provided default answer is allowed.

on exit, argument 'flag' (a variable), will contain:

CANCELED 0 the user canceled the operation
OK 1 the user confirmed by pressing ENTER, or entered 'Y' as a valid

Note: all characters typed to form an answer are stored, including ‘\’ characters (escape sequences are not processed).
You don’t need to type surrounding quote, because a string is what is expected.

info prompt [, flag] ; Halts the program, displays a message on the console and waits for the user to choose
between a few options before proceeding.

prompt character string expression, which will be displayed as a message on the console.

flag Optionally, supply a value for this argument. Note: if this argument is provided, it must be a
variable. Supplying a constant or an expression instead of a variable will lead to a runtime error.
Possible values on entry:

ENTER 0 confirmation required by pressing ENTER (other characters are
ignored). This is the default.

ENTER_CANCEL 1 idem, but ' \c' (cancel) is allowed as well in the input.

YES_NO 2 Only 'Y' or 'N' (yes or no) are accepted as answetr.

YN_CANCEL 3 Only 'Y' or 'N' (yes or no) and ' \c ' (cancel) are accepted as input.

on exit, argument 'flag' (which must be a variable), if supplied, will contain the user answer:

CANCELED 0 the user entered 'cancel’

OK 1 the user confirmed by pressing ENTER, or entered 'Y' as a valid
answer

NOK -1 the user entered 'N' as a valid answer

Two other commands to interact with the user are useful as well.

13 Programming Page 71

Justina User Manual just an Interpreter for Arduino

pause seconds ; Pause for a whole number of seconds.
Pressing ENTER on the console keyboard will immediately resume execution.
Minimum is 1 second. A floating-point argument will always be converted to integer
first.

halt; Displays a message on the console ("Press ENTER to continue") and halts the program
until ENTER is pressed on the console keyboard.
Note: this command should not be confused with the ‘stop’ command (see section
13.6: Debugging, below).

13.5 Error trapping

Normally, when an execution error occurs, Justina will display an error message and execution will end.

Example: if in a program, a statement asin (-2); isexecuted, execution will terminate and an error will be
produced (-2 is not within the domain of the arc sine function):

asin(-2)

Exec error 3100 in user function fact, source line 11
Justina>

» Remark that the error message also indicates the Justina function and source line.

But there can be situations where, if an error occurs, we don’t want the program to terminate. Instead, we want to
test for errors and take appropriate action. Two commands and a function are provided for this.

trapErrors trap ; trap: numeric argument. If trap is not equal to zero, clear the last error and set error
trapping on. If zero, set error trapping off (but do not clear the last error).

clearError ; clear the last error

err([evalParseError]) | If error trapping is enabled, err() returns the last execution error that occurred. If no
error present, returns 0.
Special case: if the execution error signals a runtime parsing error during execution of
an eval() function or a list parsing function (cinList(), ...), the parsing error is returned
to the 'evalParseError' argument (if provided), which must be a variable capable of
storing an integer value.

The following command is not directly linked to error trapping, but we’ll put it here:

raiseError number ; "produce" an error with the specified number. Justina will behave as if the error actually
occurred.

13 Programming Page 72

Justina User Manual just an Interpreter for Arduino

Example: program ‘input’

In this example, we will use the input command together with the eval() function and error trapping.

Locate file ‘input.jus’ in folder Tibraries\Justina_interpreter\extras\Justina_language_examples' (residing in your
Arduino sketchbook location) and open it in Notepad++.

2 rogram evallInput; this is a JUSTINA program

3 [Flfunction evalInput():

31 rar question, answer, flag;

2 ar amount = 0, totalAmount = 0;

35 =] while 1;

36 // initialize °'

37 input question (an expression is allowed)"”,
38 answer = ""

39 if flag == CANCELED

41 trapErrors TRUE;

42 tot

44 Please enter a valid amount !!!", line():
45 = ", amount, " kg", line():;end;

46 -

48 coutLine line(), " total amount = ", totalAmount, " kg", line():

49 “end;

Using a while...end structure and an input statement, this program repeatedly asks to enter an amount in metric tons
and subsequently prints out this amount in kilograms. All amounts entered are summed up and when the user finally
cancels the last input, the loop ends and the total amount entered is printed.

But the user can enter multiple amounts in one go, by entering an expression (like 2+3*4 ;) when the program stops
to request input. The eval(...) function will then parse and execute the expression the user entered.

But if the user makes an error in one of his entries, we don’t want the program to end execution with an error. We
merely want to display an error message, indicating that the user entered an incorrect amount and let him try again.

We accomplish that by setting error trapping ‘on’ just before the eval() function, setting it ‘off’ again just after, and
then testing for an error, using the err() function.

Now, load the program.

If we type this:

evalInput () ;

2 .39

2 + 2.1;
"abc";
5

\ejs

13 Programming

start the program

enter an amount

enter two amounts, using an expression
an incorrect entry

enter an amount

exit the program

Page 73

Justina User Manual just an Interpreter for Arduino

The output will be

Justina>= evalInput()

Please specify amount in metric ton
amount entered = 2300.00 kg

===== Input (\c to cancel}: =====
Please specify amount in metric ton
< 2 + 2.1 metric ton

amount entered = 4100.00 kg

===== Input (\c to cancel}: =====
Please specify amount in metric ton

111 Please enter a valid amount !!!

5
(]
o
s
=
(1]
(o]
—+
QU
3
]
c
=]
—
s
o
o,

Input (\c to cancel): =====
Please specify amount in metric ton
amount entered = 5000 kg

===== Input (\c to cancel): =====
Please specify amount in metric ton

**¥* total amount = 11400.00 kg <tota|amount

Justina>

If an error occurs and error trapping is not ‘on’ in the function where the error occurs, the function is ended and
control returns to the calling function. If error trapping is ‘on’ in the calling function, the error can be trapped there
(using the err() function to determine the nature of the error). If not ‘on’, the calling function is also ended and control
passes to the caller of that function.

This goes on until a function with error trapping enabled is found in the call stack. The error can then be trapped in
that function (note that an error can even be trapped in the command line).

An execution error will only be produced if no function in the call stack was found with error trapping ‘on’.

13 Programming Page 74

Justina User Manual just an Interpreter for Arduino
13.6 Debugging

Stopping a program for debugging

A running program can be stopped for debugging in 4 ways: start a program in debug mode, insert stop commands in
your program, set breakpoints or use Justina system callbacks.

Using system callbacks and a simple pushbutton, a program can be ‘forced’ to stop and enter debug mode (e.g., while
in an endless loop). This will be discussed in Appendix D: 'Running background tasks: system callbacks'.

Setting breakpoints is by far the most powerful method: you don’t need to alter and reload your program, you can set
breakpoints anytime, not only before you start a program but also when it’s currently stopped, you can specify
breakpoint triggers and enter ‘trace’ expressions to view variable contents etc.

For now, let’s start with the easiest ways to stop a program and see how we then can execute one statement at a time.

debug ; If followed by a call to a program function; the program will enter debug mode,
stopping the program before it executes its first statement.
Use: command line only.

stop ; Insert this statement where you want a program to stop, entering debug mode. The
program will enter debug mode before it executes its next statement.

nop ; no operation. Placeholder for stop (instead of removing stop, you could replace it by
nop; this will not change program memory used nor will it change source line
numbering).

Each time a program stops and enters debug mode, Justina will print two extra lines before the prompt: a ‘STOP’ line
clearly signaling debug mode, and a line showing the next statement to execute, together with source line number
and currently active function. These lines are printed to the ‘debug out’ stream.

» The debug out stream can be set to any stream, be it an 10 device or an open SD card file (the latter is useful for
logging debugging messages). See setDebugOut command, chapter 10: Input and output.
On startup, the debug out stream is set to the same (default) 10 device as the console.

Example

Locate file ‘myFirst.jus’ in folder ‘libraries\Justina_interpreter\extras\Justina_language_examples’ (residing in your
Arduino sketchbook location) and load the Justina program it contains.

14 program myFirstProgram; // this is a JUS

25 [Flfunction printSlines(): this is a function
27 r i; this is a LOCAL variable
1 c
2 Hfor i = 1, s;
coutLi "line = %. 1
31 I end;
32 | return i ** 2;
‘
“end;

Now type:

13 Programming Page 75

Justina User Manual just an Interpreter for Arduino

debug; printS5lines();
The program will immediately enter debug mode.
The console will first print a ‘STOP’ line to clearly indicate that the program has stopped and is in debug mode now.

On the next line it will print the line number of the next statement to execute, the function (between square brackets)
and the source statement ("for | = 1, 5", which you can verify in Notepad++).

Justina> debug; printSlines()

== STOP =----e-ceecceecceecceeceacaaan-
line 17: [printSlines] for i = 1, & <stopped in function print5lines() at line 17

Justina>

Stepping through a program

Now, enter command step a few times. Each time, Justina executes one statement and prints out the statement to be
executed next.

Justina> step

== STOP ~--c-ecccceccccccceccccmeacncmsacacaeannan
line 18: [printS5lines] coutLine "line = ", 1
Justina> step

line = 1 < program output

== STOP ==---e-ceecceecceccceecceeceecceeeaaa-

line 19: [printSlines] end

Justina> step

w= STOP ==---eceeecceecceecceecceecceecceeceaaa-
line 18: [printSlines] coutLine "line = ", 1
Justina> step

Line = 2 __===:::J program output

R - 1T

line 19: [printSlines] end

Justina>

As you have seen in the previous example, when the system enters debug mode, the command line is ready to accept
input again. But because a program is stopped, we call this the ‘debug command line’, because a number of debugging
commands become available.

Command step is part of a series of commands to execute one, or a few, program statements, staying in debug mode.
There is also a command to exit debug mode and resume execution.

Note that these commands will produce an error if no program is stopped in debug mode.

13 Programming Page 76

Justina User Manual just an Interpreter for Arduino

step ; Execute one statement and enter debug mode again before the next statement is
executed.
If a statement contains a call to another function, Justina will step into that function and
stop there.
Use: command line only.

loop ; If currently stopped inside a control structure, executes statements until the end
statement is reached: Justina will execute one iteration of a loop (for...end; ...) or the
statements within an if...end structure, and will stop and enter debug mode again
before the control structure end statement, making this the next statement.
If not currently within a control structure, then loop behaves like step.
Use: command line only.

bStepOut ; ‘block step out’ - command line only. If currently stopped inside a control structure,
continue execution until all statements of the control structure have been executed. The
program will stop and enter debug mode again at the first statement after the control
structure end statement.
If not currently within a control structure, then bStepOut behaves like step.
Use: command line only.

stepOut ; Continues execution until all statements of the current function have been executed.
The program will stop and enter debug mode again in the calling function, after the
statement with the function call. If the function was called directly from the command
line, then execution will continue there (Justina stops only if within a program).
Use: command line only.

stepOver ; Execute one statement and enter debug mode again before the next statement is
executed.
If a statement contains a call to another function, Justina will not step into that function
(it will not stop and enter debug mode there).
Use: command line only.

go; continue execution again when a program was stopped in debug mode.
use: command line only.

Sometimes it is useful to manually skip execution of part of a program that is being debugged, because that part is not
relevant in the context of debugging. This is accomplished by the setNextLine command.

setNextLine line ; Change the ‘next statement’ (where execution will resume) to the (first) statement
starting on the indicated source line.
The statement must be part of the function where the program is currently stopped and
it is not possible to move control into a currently uninitialized block structure (a loop or
if...end structure). You can always move control out of a block structure, however.
Note that this command will produce an error if no program is stopped in debug mode.
Use: command line only.

13 Programming Page 77

Justina User Manual just an Interpreter for Arduino

When a program is stopped in debug mode, the user has access to the stopped function’s local variables from the
command line: a user can examine variables and even change their values, in the same way he accesses user variables
or global program variables.

But if multiple variables (or constants) with the same name exist, the parser will first look for a user variable with that
name, then for a global program variable with that name and, only if none of these two exist, for a local variable of the
stopped function. So, we need a way to tell the parser to look for that function’s local variable immediately.

This is a prefix (not an operator), optionally placed in front of a variable name, to force
the parser to interpret the variable as a local variable of a stopped function in case a
user variable or a global program variable with the same name would exist as well.

Notes:

» Assoon as one of the above commands executes, the parsed command line is deleted and command line
execution will terminate: for instance, if you type
1 + 2; step; 3 + 4; lJustina will execute a statement from the stopped program but the remaining
expression 3 + 4; will never get executed — which is quite logical, because there’s no way control could still
return to there.

» Instead, If a stopped program finally ends (terminates), the original command line (containing the call to the
program) will continue execution: although the original command line text in the serial monitor or terminal may
have been overwritten by debugging commands, it’s parsed statements were saved and execution will continue
there, just as if the program was executed without debugging — which is as it should be.

A program stopped in debug mode can be aborted by using the abort command.

abort ; Terminate a currently stopped program, releasing all memory it occupied for local
function variables. This doesn’t influence global program variables (as they are created
during program parsing) or user variables.
Use: command line only.

Note that a user can also abort running code by using system callbacks. See Appendix D: 'Running background tasks:
system callbacks'.

13 Programming Page 78

Justina User Manual just an Interpreter for Arduino
13.7 Tracing variables and expressions

Tracing provides a way to automatically review the contents of variables, and even the result of expressions, during
debugging.

To inform Justina about the variables or expressions you would like to review, using the trace command. During
debugging, you’ll then see the evolution of selected variable contents or expression results.

trace traceString ; | This command stores a ‘traceString’: a list of expressions, stored as a single string. The
expressions within the string are separated by semicolons.
A trace string is used to automatically ‘trace’ the values of specific variables - including the
stopped function’s local variables - while you execute statements during debugging: the
expressions stored in the trace string will be automatically parsed and evaluated, and the
results printed, each time control returns to the command line while in debug mode.
Tracing is not active if ‘traceString’ is set to an empty string ("") or a program is not in
debug mode.
The string cannot contain command statements, eval() functions and calls to program
functions. No other restrictions apply: you may use variables and constants, operators, call
built-in functions and 'external' functions you write in c++.

To include a string constant within ‘string’, use escape sequences (see chapter 4: Data
types), or use the quote() function.

viewExprOn ; While tracing, precede each value traced by the corresponding expression text and a colon

viewExprOff ; While tracing, print values traced only - without the corresponding expression text

Traced variable values and expression results are printed to the ‘debug out’ stream and will appear in a separate
‘TRACE’, line in between the ‘STOP’ line and the line showing the next statement.

» On startup, the debug out stream is set to the 10 device also designated as default console. If this is not wanted,
the debug out stream can be set to any stream, be it another 10 device or an open SD card file (the latter is useful
for logging debugging and tracing messages).

The ‘TRACE’ line starts with a <TRACE> label, followed by a comma-separated list of values. Depending on the current
setting (see table above), each value may be preceded by the corresponding expression text and a colon.

If parsing and evaluation of an expression in the trace string produces an error:

e parsing error: ‘ErrP’ followed by the parsing error number is printed instead of the respective expression and
value (even if viewing expressions is currently Off)

e evaluation error; the respective expression is printed, followed by a colon and ‘ErrE’ plus the execution error
number

We discussed this program earlier in this chapter. Let’s now execute it step by step, while reviewing the contents of
local variable ‘n” and ‘“fact_n’ in function fact().

Locate file ‘fact.jus’ in folder Yibraries\Justina_interpreter\extras\Justina_language_examples\’, residing in your
Arduino sketchbook location) and load the Justina program it contains.

Open the file in notepad++ as well, to be able to follow execution of the program.

First, set the trace string: trace "n; fact n";

13 Programming Page 79

Justina User Manual just an Interpreter for Arduino

While tracing, view expressions (text) as well, not only values: viewExprOn

Now let’s calculate the factorial of 3 (3!) and trace the evolution of the variables.
Start debugging: debug; fact(3);

Then step through the program until the result, 6, is printed.

Remember that the function and var commands are non-executable statements; these statements are skipped during
execution.

Justina> trace "n; fact_n"
Justina> debug; fact(3) calculate 3!

R T e
<TRACE> n: 3, fact_n: 0
line 21: [fact] if (n > 2)

Justina> step
<= STOP === m e mm e

<TRACE> n: 3, fact_n: 0
line 22: [fact] fact_n = n * fact(n - 1) | calculate 3 x 2!

Justina> ste 3
. [Flfunction fact (n):

30
== STOP scesmiccomerarERitinos sok siosRE el 31 var fact n = 0;
<TRACE> n: 2, fact_n: 0 - -
line 21: [fact] if (n > 2) Ee

3 n = cInt(n);

Justina> step

W w ww
o

T 1) 5 = if (m > 2)2
<TRACE> n: 2, fact_n: 0 6 fact n = n * fact(n-1):
line 23: [fact] else . =
3 = else;
Justina> step 38 fact n = n;
su SR sassessvssusmbasdonsss ses veeETE RS sETew e 39 = end;
<TRACE> n: 2, fact_n: 0 40

line 24: [fact] fact_n =n return fact n;

-end;

Justina> step 4

-e STOP E . 1. H 1
Rl Bl e o 2 xcerpt of source file 'fact.jus

line 25: [fact] end

Justina> step

<= STOP === - m e eeeeeeeeoaeoeaaao
<TRACE> n: 2, fact_n: 2 ; ; i
line 27: [fact] return fact_n return 2! Each ime Justina stops in

debug mode, the console will

Justina> step now print an extra line: it

- STOP e - = - = - sssecssceseseccee- starts with label “<TRACE>"
<TRACE> ne 39 fact _n: .
line 25: [fact] end followed by all variables (or

even expressions) in the trace

Justina> step
string with their value.

e- STOP =-=-ocececececscccsncnscecacanacananananes
<TRACE> n: 3, fact_n: 6
line 27: [fact] return fact_n return 3!

Justina> step

Justina>

Step-by-step execution of function fact(3)

If a global program variable or a user variable exists with the same variable name as the local variable, precede the
variable name with the ‘#' character to force the parser to select the stopped function’s local variable.

Example: trace #n.

13 Programming Page 80

Justina User Manual just an Interpreter for Arduino

Printing the call stack

During debugging, sometimes it helps to ‘see’ how deep functions calling each other are currently nested. We can
visualize this by printing the ‘call stack’. This is especially useful when dealing with recursive function calls.

listCallStack [streamNumber] ; This command prints the current call stack. If a program is stopped for
debugging, this shows us what function was initially called from the
command line, and the tree of functions called when the program was
stopped. The function that was executing instructions (the 'deepest’
instruction in the call stack) is shown first.
The ‘streamNumber’ argument can refer to any available external 10 device
and to any open file. If no device number is specified, prints to console.

Example

Referring to the previous example, let’s now calculate the factorial of 5.
Start debugging: debug; fact (5);

Execute 'step; ' 5times.

Then execute command 1istCallStack CONSOLE; (the argument is optional; CONSOLE is the default)

Justina> listCallStack CONSOLE

fact()
| __ fact() <:|
|__ fact()
|_ command line
== STOP -------ccccceccnccnccncccccccccccnccccnccn"

<TRACE> n: 3, fact_n: 0
line 22: [fact] fact_n = n * fact(n - 1)

Justina>

This shows that control is currently 3 levels deep in function ‘fact’ and the next line to execute is line 22.

13 Programming Page 81

Justina User Manual just an Interpreter for Arduino
13.8 Breakpoints

Breakpoints allow you to ‘mark’ specific program statements where you want the program to stop and enter debug
mode. Breakpoints are not inserted in your program; they are maintained separately in a breakpoint table and they
don’t change your program in any way. You can enter a maximum of 10 breakpoints.

Breakpoints are extremely helpful while debugging a program. You can

» enter and change breakpoints dynamically
» add a separate trace string for each breakpoint, specifying multiple variables or expressions to be traced
» add a separate trigger (optional) for each breakpoint, specifying a condition for stopping the program

Breakpoints are set using the setBP commands, which has two forms

setBP line [, ling, ...] ; Set breakpoints for specific source lines, forcing the program to stop if the
statement starting on one of these source lines is reached while the
program was running.
This does not change previously set breakpoint attributes (see next).

-or- -or-

setBP line, traceString [, trigger] ; Set a breakpoint for a source line, forcing the program to stop if the first
statement starting on that source line is reached while the program is
running.
At the same time, this second form stores a trace string (same format and
restrictions as trace command), but only applicable to this breakpoint. If
‘traceString’ is set to an empty string (""

are traced when this breakpoint is hit.

), no variables (or expressions)

If the optional trigger is specified, it’s stored as well. The trigger can either

be a hit count or a condition:

e condition: a string, containing one expression. Each time the source
line is reached, the expression is parsed and evaluated. If the result is
numeric and not equal to zero (TRUE), the program will stop and
enter debug mode. Otherwise, execution will continue.

e hit count: a number indicating the number of times this source line
must be reached before the program stops. An internal counter keeps
track of this. This counter is reset each time the breakpoint is hit and
when the setBP statement sets a new hit count.

Use: command line only.

Each time a program stops and enters debug mode because a breakpoint was encountered, Justina will print a ‘BREAK’
line instead of a ‘STOP’ line to indicate that a breakpoint was hit, and (as with a normal stop) a line showing the next
statement to execute. Output is printed to the ‘debug out’ stream.

Traced variable values and expression results are printed to the ‘debug out’ stream as well, on a separate line, starting
with the label <BP TR> (breakpoint trace) and in between the ‘STOP’ line and the line showing the next statement.
» The debug out stream can be set to any stream, be it an 10 device or an open SD card file (the latter is useful for
logging debugging messages). See setDebugOut command, chapter 10: Input and output.
On startup, the debug out stream is set to the same (default) 10 device as the console.

Notes

e viewExprOn and viewExprOff commands affect printing of expressions during BP tracing as well.

13 Programming Page 82

Justina User Manual just an Interpreter for Arduino

e Errors during parsing and evaluation of trace string expressions when a breakpoint is hit, are reported in the
same way as when parsing global trace string expressions (see trace command).

e An error during parsing and evaluation of a trigger condition (a string expression), as well as a non-numeric
result is interpreted as a FALSE condition: the program will not stop at the respective breakpoint.

e When a new program is loaded or a program is cleared, all breakpoints set are deleted.

We already executed this program step by step, to illustrate how debugging and tracing works.
Now we will ‘debug’ this program again, but by using breakpoints.

Load program ‘fact.jus‘ again (loadProg command). And, again, open it in Notepad++ as well, to be able to follow
where control is during debugging.

It’s important to place breakpoints ‘strategically’, in order to have a good understanding of what the program does,
based on the contents of variables used in the program (‘n’ and ‘fact_n’).

e we'll place breakpoints at the two lines containing an expression: these are lines 22 and 24. Here, we're
interested in the value of variable ‘n’ (variable ‘fact_n’ is zero at this point: ‘fact_n’ is a local variable, it has
just been initialized — see line 19)

e the return statement returns the result of these expressions, so here we’ll put a breakpoint to trace variable
‘fact_n’.

Set the breakpoints now. Enter these lines:

setBP 22, "n"; argument of the active ‘fact’ function (for n > 2)
setBP 24, "n"; argument of the active ‘fact’ function (for n <= 2)
setBP 27, "fact n"; return value of the active ‘fact’ function

We’ll not set a trigger for these breakpoints at this time.
While tracing, view expressions (text) as well, not only values: viewExprOn

Now let’s calculate the factorial of 3 (3!) again and trace the evolution of the variables.

Start the program: fact (3) ;
Then continue execution, using go instead of step, and do that until the program ends and the result, 6, is printed.

» You don’t need to start the program in debug mode, nor do you need to insert STOP statements: you have set
breakpoints instead.

Now, the program only stops where you want it to stop — and without inserting stop commands that need to be
removed again afterwards.

13 Programming Page 83

Justina User Manual

just an Interpreter for Arduino

Justina= fact(3)

<BP TR> n: 3

line 22: [fact] fact_n
Justina>= go

<BP TR> n: 2

line 24: [fact] fact_n
Justina>= go

-- BREAK
<BP TR> fact_n: 2

line 27: [fact] return
Justina> go

-- BREAK
<BP TR> fact n: 6

line 27: [fact] return

Justina> go

Justina=

calculate 3!

n * fact(n - 1) l calculate 3 x 2!

function fact(n):

var fact_n = 0;
= nl calculate 2!] =
n = cInt(n);
if o > 2):
"""""""""""""" fact n = n * fact(n-1):;
fact_ n = n;
end;

return fact n;
end;

Excerpt of source file 'fact.jus'

Executing function fact(3) with breakpoints set

Other breakpoint commands:

clearBP line [, line, ...] ;

enableBP line [, ling, ...] ;

disableBP line [, line, ...];

BPon ;

BPoff ;

13 Programming

Clear breakpoints for specific source lines and clear associated breakpoint trace
strings and conditions if set.
Use: command line only.

Enable breakpoints for specific source lines. This requires that the respective
breakpoints are set. If not, this command will produce an error.

Note: when a breakpoint is initially set, it is enabled by default.

Use: command line only.

Disable breakpoints for specific source lines. These breakpoints will be inactive
until they are enabled again.

This command requires that the respective breakpoints are set. If not, this
command will produce an error.

Use: command line only.

Enable breakpoints. This is a global setting and does not influence any of the
defined breakpoint settings. This is the default status.
Use: command line only.

Disable breakpoints. This is a global setting and does not influence any of the
defined breakpoint settings.
Use: command line only.

Page 84

Justina User Manual just an Interpreter for Arduino

To get an overview of all current breakpoints, use the listBP command.

listBP [streamNumber] ; Print a list of all currently defined breakpoints with their attributes. The list is
sorted by source line number.
The ‘device number’ argument can refer to any available external IO device and to
any open file. If no device number is specified, prints to console.

Referring to the previous example, this is the output of the listBP command:

Justina> 1istBP CONSOLE
Breakpoints are currently ON

source enabled view &

line trigger
22 X view : n;
always trigger
24 X view : n;
always trigger
27 X view : fact_n;

always trigger

Justina>

Now, let’s adapt the trace string for line 22, to display not only the value of ‘n’, but also a random number between 0
and 999. In addition, we'll disable the breakpoint for line 24, set a condition for line 22 and a hitcount for line 27.

To make sure that the parser selects local variable 'n' and not a global or user variable with the same name , we'll use
'#n'in trace and trigger expressions.

setBP 22, "#n; random(1000)" , "#n<=4" break when n is less than or equal to 4
setBP 27, "fact n", 3 break every three times the line gets executed
disableBP 24

Calculate the factorial of a few numbers and see what happens.

13 Programming Page 85

Justina User Manual just an Interpreter for Arduino
13.9 Executing a program while one or more programs are stopped

While a program is stopped for debugging, you can start another program ‘instance’ . You can even stop that second
running program as well, debug it, trace its variables etc. But you cannot switch to a previously stopped program and
continue execution there before all newer program ‘instances’ were ended (or aborted). If more than one program is
stopped, Justina will indicate that in the 'STOP' line while debugging.

Note: only one program file can be loaded and parsed in program memory at any one time. So, starting a new
program ‘instance’ means calling one of the functions available in the parsed program and executing it — possibly the
same function that started the currently stopped program(s). The only thing to take into account is that global program
variables and user variables are shared.

From inside a running program, you can access the local variables of the function where the last program instance was
stopped. To do this from inside a running program, use the eval() function and add prefix ‘# to the stopped function’s
variable names (same prefix as you would use from the command line or from within a trace string).

Example: if the stopped function has a local variable ‘count’, then you could do this from inside a running program:

eval (" #count "); to return the value of variable ‘count’
eval (" #count += 7 "); toadd 7 to ‘count’ and return the new total

Printing the call stack (listCallStack command) will print a separate function tree for each stopped program.

13 Programming Page 86

Justina User Manual just an Interpreter for Arduino

14 Appendices

Appendix A Creating a Justina object and choosing startup options

Creating a Justina_interpreter object using default values
The simplest way to create a Justina object is by using this statement:
Justina justina;

This sets Serial as the single 10 'channel' available for Justina and assumes that the Arduino Serial Monitor (or another
serial terminal program or device) will act as console. Moreover, if an SD card board is connected, Justina is allowed to
access SD cards to create, read and write files, etc. The SD card chip select pin is set to pin 10 by default.

Creating a Justina object, specifying an SD card mode and chip select pin
Justina justina (cardMode [, CSpin]);
cardMode: use one of the following public Justina constants (precede by ' Justina::'):

Justina::SD notAllowed card reader not present or card operations not allowed (maybe, SDcard
is in use by the calling Arduino program)

Justina::SD allowed card reader is allowed but SD card will not be started (mounted)
automatically (maybe no SD card is inserted). This is the default

Justina::SD init start (mount) SD card when calling Justina begin()

Justina::SD runStart when calling Justina begin(): start (mount) SD card, load Justina
program "SD_start.jus" from SD card if present and execute user
function start() if found

CSpin: SD card chip select pin (optional). Connect this Arduino pin to the SD card reader Chip Select pin. The default is
Arduino pin 10.

Creating a Justina object connecting to multiple 10 devices
Justina can handle up to 4 input and output devices, represented by Stream objects and Print objects, respectively.

Justina justina (inputs, outputs, count [, cardMode , CSpin]);

inputs: a Stream * array with pointers to input streams (Serial, a TCP IP client, an ASCII keyboard...)
outputs: a Print * array with pointers to output streams (Serial, a TCP IP client, an OLED or LCD screen,)
count: the number of inputs and outputs defined (minimum 1, maximum 4)

SDcardMode: as described above (optional)

CSpin: as described above (optional)

Example

For example, if you're using a Serial monitor and an lcd display (number of devices = 2):

Stream* pExtInput[2]{ &Serial, nullpr};
Print* pExtOutput[2]{ &Serial, &lcd};
Justina justina (pExtInput, pExtInput, 2);
(assuming an 'lcd' object has been created - see for instance the Arduino IDE example ' LiquidCrystal ')

14 Appendices Page 87

Justina User Manual just an Interpreter for Arduino

@ If an output device has no corresponding input device (e.g., the Icd display in this example), enter a 'nullptr' in
the corresponding position within the input stream array. The same logic applies if an input device has no
corresponding output device.

& Justina uses the input and output devices referenced in the first array position as default console input and
output, respectively. None of these can be a nullptr.

& Typically, Serial will be entered in the first array position (default console). However, any capable 10 device can
be set as default console.

Example

Stream* pExtInput[l]{ &Serial };

Print* pExtOutput[l]{ & lcd};

Justina justina (pExtInput, pExtInput, 1);
In this example (assuming an 'lcd' object has been created), the Arduino Serial monitor will be used as console input
only; console output will be sent to an LCD display (which is probably not very useful).

Example programs

The Justina library contains two sketches demonstrating the use of additional 10 devices, next to Serial.
e Justina_OLED.ino adding OLED displays as extra Justina output devices
e Justina_TCPIP.ino adding a TCP IP terminal as extra Justina output device

Arduino IDE: File -> Examples -> Examples from custom libraries -> Justina interpreter -> Justina_OLED
File -> Examples -> Examples from custom libraries -> Justina interpreter -> Justina_TCPIP

14 Appendices Page 88

Justina User Manual just an Interpreter for Arduino

Appendix B Changing the size of memory allocated to Justina

By default, Justina sets the size of specific memory areas, taking into account the available RAM of the Arduino board
used.

maximum Arduino RP2040 and Arduino SAMD boards
allowable Arduino ESP32 boards

program memory size in bytes (*) 65536 65536 4000
max. program variable names (**) 255 255 64
max. user variables 255 255 64
max. static variables 255 255 32
max. program functions 255 255 32

(*): Minimum is 2000 bytes. This includes 500 bytes of program memory for parsed immediate mode (user)
commands, leaving 1500 bytes (which is sufficient for a tiny program).

(**): Program variable names are shared between global, local and static program variables: names are stored only
once (but a global, a local and a static program variable using the same variable name are all distinct variables, of
course).

Depending on your specific requirements, these values can be increased or decreased by editing a specific
'constants.h' file, but this WITHOUT CHANGING ANY OF THE FILES IN THE JUSTINA LIBRARY. Changes you make in a
library file would be overwritten each time the library is updated.

The constants.h file

e Locate folder 'libraries\Justina_interpreter\extras\Justina_constants' in your sketchbook location.
e Copy this folder ("Justina_constants') to folder 'libraries’. You have now a library folder "Justina_constants' within
the 'libraries' folder, next to the Justina_interpreter' library folder.

Change the size of specific memory areas

e Openfile libraries\Justina_constants\Justina_constants.h' for editing
e Change the values next to the preprocessor #DEFINE directives. For example:

#define PROGMEM SIZE 2000
#define MAXVAR USER 100
#define MAXVAR PROG 100
#define MAXVAR_STAT 100
#define MAXFUNC 50

e Savethefile

& if you don't want to change the default for a specific value (as in the table above), comment out the
respective line (' //').

14 Appendices Page 89

Justina User Manual just an Interpreter for Arduino

Appendix C Example programs

The Justina interpreter library contains a number of c++ examples, which can be selected from the Arduino IDE menu:
File -> Examples -> Examples from custom libraries -> Justina interpreter -> (select an example from the list)

Each of these sketches will start Justina, but (apart from the first sketch, which is basic) they demonstrate specific
features built-in into Justina (e.g., adding extra 10 channels to Justina, next to the console).

Example Scenario

Justina_easy As the name suggests, this example is straightforward. It demonstrates how to start
Justina. When the program is executed, you should see the Justina prompt appearing
on the console.

You can then start typing user commands in the command line, load and execute
Justina programs, etc.

Hardware required: none.

Justina_systemCallback Demonstrates the use of system callbacks to detect Justina stop, abort, console reset
and kill requests, retrieve the current Justina status (e.g., to signal that a user error
occurred) and blink a heartbeat led.

Hardware required: 5 LEDs, 2 pushbuttons, resistors.
More information: Appendix D: 'Running background tasks: system callbacks'.

Justina_userCPP Demonstrates how to extend Justina functionality by writing 'user c++' functions. You
can then call these user c++ functions from the Justina command line, just like any
other Justina function, with the same syntax, using an alias as function name and
passing scalar or array variables as arguments.

Hardware required: none.
More information: Appendix E: calling user c++ functions.

Justina_userCPP_lib Demonstrates how to create a Justina 'user c++ library' file. It also shows how to pass
arrays (by reference) to a user c++ function.

Hardware required: none.
More information: Appendix E: calling user c++ functions.

Justina_OLED Demonstrates how to set up OLED displays as additional Justina output devices, next
to Serial.

You can then print data to the OLED displays in the same way you print to the Justina
console. You can change the console (in this case, for output only) to an OLED display.

Hardware required: OLED display with SH1106 controller communicating over
SW SPI and/or OLED display with SSD1306 controller communicating over 12C.

The sketch sets up the OLED displays as additional output devices 102 and / or 103,
next to Serial (101, CONSOLE).

14 Appendices Page 90

Justina User Manual just an Interpreter for Arduino

Justina_TCPIP This is probably the most 'complex' of the examples provided. The program
demonstrates the setup needed for various Justina features, namely

e setting up Arduino as a TCP/IP server in order to use a TCP/IP client terminal as
an additional output device, or to build a Justina HTTP server on top of it (see
Justina language examples, below).

e using Justina system callback functions to maintain the TCP/IP connection, to
blink a heartbeat LED and to set status LEDs indicating the TCP/IP connection
state.

e using Justina user c++ functions (user callback functions) to let Justina control
the TCP/IP connection.

Hardware required: 4 LEDs, 4 x 220 Ohm resistor.

More information:

- next paragraph ('The Justina_TCPIP sketch in some more detail')
- Appendix D: 'Running background tasks: system callbacks'

- Appendix E: calling user c++ functions

- Appendix G: Installing YAT terminal

The 'Justina_TCPIP' sketch in some more detail

The sketch sets up a TCP/IP server communicating over a second 10 channel (102), next to Serial (101, CONSOLE).
Before running this sketch, you'll have to prepare a couple of things:

First, enter the data that you need to keep private in the secrets.h file:

e SERVER_SSID "mySSID"
ne SERVER_PASS "myPassword"

Also set the static IP address for the server (your Arduino), and set gateway address, subnet mask and DNS address to
correspond to your local network settings. Also enter the server port. Example:

const IPAddress serverAddress(192, 168, 1, 45);
const IPAddress gatewayAddress(192, 168, 1, 254);
const IPA s subnetMask(255, 255, 255, ©);
const IPAddress DNSaddress(8,8,8,8);

const int serverPort = 8085;

As the server address is static, it won't change over time, which makes it easier for clients to connect.
In your router settings:

(1) set the static IP address for your Arduino (same that you entered in secrets.h)
(2) if you want access from outside your LAN: enable port forwarding

A\ If not familiar with this topic, it is suggested that you study and run a few of the standard Arduino WiFi
examples available in the Arduino IDE first.

In the sketch, 4 Arduino pins are defined as outputs. Connect each output pin to the anode of a LED (refer to the
sketch for the output pin numbers) and connect each cathode to one terminal of a resistor. Wire the other terminal to
ground.

14 Appendices Page 91

Justina User Manual just an Interpreter for Arduino

LEDs connected to pins:

HEARTBEAT_PIN when blinking, signals that your sketch is running

DATA_IO_PIN blinks while Justina is sending or receiving data to/from any defined 10 device
WiFi_CONNECTED_PIN ON when WiFi is connected

TCP_CONNECTED_PIN blinking when waiting for a TCP/IP client, ON when a TCP/IP client is connected

Testing your sketch

To test proper operation of the TCP/IP server, you'll need a TCP/IP client to connect to it. This TCP/IP client can then
read and write data from/to Justina (you could even change the console to the TCP/IP client).

A convenient way to setup a TCP/IP client, is to use YAT (see Appendix G: Installing YAT terminal).

To configure YAT as a TCP client, follow the steps in Appendix G: Installing YAT terminal, but select TCP/IP as 10 type, fill
in the static server address ('Remote Host') and port (as setup in your sketch) and deselect the check boxes beneath.

Terminal Settings [TCP client.yat] X

"_/‘A‘ Teminal Type: Text v Text Settings...
- 1/0 Type: TCP/IP Client v Cancel
1/0 Settings
Remote Host: m Defauts...
Remote TCP Port: (8085 v
Local Interface: Help
feny] v)e

] When connection is lost, try to reconnect to
server approx. every ms

Advanced Settings...

Configuring YAT as TCP/IP client

& If you already use YAT as the Justina console: simply open a second YAT instance on your computer and
configure it as a TCP client

@ you could also set up the TCP/IP terminal on another PC - or even from outside your local network, but you'll
need to enter the external (WAN) IP address and port then.

Connect the TCP/IP terminal (supposing you use YAT: click the green 'Start Terminal' button).

You will now have two terminal windows open: a Serial terminal and a TCP/IP terminal.

Start Justina (type "j" (+ ENTER), as requested by the Serial Terminal).

Now enter printLine I02, "hello"; .Ifalliswell, the textis printed on the TCP/IP terminal window.
To test sending text to the TCP/IP client, we'll make a small 'immediate mode program'. Enter these 2 lines:

var s;
while 1; s=readLine (IO2); if strCmp(s,"end"+line())==0; break;...
...elseif strCmp(s, "")!=0; cout s; end; end;

This 'program' continuously waits for, and prints, data from the TCP/IP terminal. It quits if the text 'end' is received.

Try it; return to the Justina prompt by sending "end" to Justina.

14 Appendices Page 92

Justina User Manual

just an Interpreter for Arduino

User c++ functions to let Justina control the TCP connection

cpp WiFiOff () ;

cpp WiFiRestart () ;
cpp_ TCPoff ()
cpp_TCPon () ;
cpp_stopClient () ;

cpp_setVerbose (verbose) ;

cpp_localIP(s);

cpp_remotelIP(s);

cpp_connState () ;

disconnect from the WiFi network

reconnect to the WiFi network

stop the connection with a client and do not connect to a new client
wait for a client to connect

stop the connection with the client, keep waiting for a new client

verbose = TRUE: print debug messages to Serial when connection
status changes. FALSE: do not print debug messages

get local IP address. The static address is returned as a string in a
variable 's', which must be initialized with a string of at least 15
characters): cpp remoteIP (s=space(15));

get the client IP address. The address is returned as a string in a
variable 's', which must be initialized with a string of at least 15
characters): cpp remoteIP (s=space(15));

returns the current connection state:

0: WiFi not connected

1: trying to connect WiFi

2: WiFi connected - TCP/IP disabled

3: WiFi connected - waiting for TCP/IP client
4: WiFi connected - TCP/IP client connected

Turn your Arduino into a simple web server (HTTP server)

The Justina_interpreter library contains two Justina language examples transforming your Arduino into a webserver

(HTTP server). Check out the next paragraph for details.

14 Appendices

Page 93

Justina User Manual just an Interpreter for Arduino

The Justina interpreter library contains a number of Justina language examples, stored in repository folder
(Arduino sketchbook location) \ libraries\Justina_interpreter\extras\Justina_language_examples

File names obey the 8.3 file name format, to make them compatible with the Arduino SD card file system. Also, these
files have '.jus' as extension: opening these files in Notepad++ will automatically invoke Justina language highlighting (if
the Justina language extension is installed in notepad++, see Appendix F: Installing Notepad++ and the Justina
language extension).

The example files are:

myFirst.jus a really simple Justina program, printing a few lines of text on the console

fact.jus a recursive method to calculate factorials

input.jus ask for user input; parse and execute that input within a running program

overlap.jus two methods to print lines with overlapping print fields

start.jus program to set the display mode, display width, floating point print format, integer print format

and angle mode.

This program will automatically run function 'start()' (without arguments) right after Justina is

started, if:

e your Arduino is equipped with an SD card

e this file ('start.jus') is stored in folder 'Justina' (path '/Justina/start.jus').

e Justina startup options must allow autostart (see Appendix A: Creating a Justina object and
choosing startup options)

SD_test.jus perform some basic SD card tests
SD_parse.jus write formatted data to an SD card, read it back and immediately parse this data into variables
web_swit.jus a simple HTTP server, drawing a webpage with 5 'on/off' buttons, and maintaining the state of 5

'switches'. Buttons representing a switch that is currently 'on' are drawn in a red color. Clicking a
switch acts like a toggle.

For this program to work, first compile and load Arduino c++ program 'Justina_TCPIP', which
sets up your Arduino as a TCP server, and test that the TCP server works as expected (see
above). Justina program 'web_calc.jus' adds an additional layer on top, turning your Arduino
into a HTTP server (web server).

To test, open a web browser and type the complete url, starting with http://...
http://nnn.nnn.nnn.nnn:port (fill in IP address and port)

web_calc.jus a web server, creating a web page functioning as a (working) scientific calculator with 10 user
registers and a 'last result' register.
An input box allows you to type in any expression (no commands) as long as it adheres to the
Justina syntax: internal Justina functions, Justina user functions and Justina user cpp functions
are all allowed. When submitted, the expression is evaluated by Justina and the result (or the
error, if an error is produced) is returned. The 10 last results are shown in an answer box below
the input box ('Last answers').

For this program to work, first compile and load Arduino c++ program 'Justina_TCPIP', which
sets up your Arduino as a TCP server, and test that the TCP server works as expected (see
above). Justina program 'web_calc.jus' adds an additional layer on top, turning your Arduino
into a HTTP server (web server).

14 Appendices Page 94

Justina User Manual just an Interpreter for Arduino

To test (or use !) the scientific calculator, open a web browser and type the complete url,
starting with http://...
http://nnn.nnn.nnn.nnn:port (fill in IP address and port)

This is what you should see:

&< O M A Notsecure | 192.168.1.45:8085

) Algemeen D Instellingen D Herbeluister - Radi... ¢ RISCO Cloud a URA - Portal D Web Slice Gallery

Calculator for Arduino, powered by Justina

Enter an expression and tap the calculate button

[I Calculate |

Assign results to registers r0 to r9. Last result is stored in ‘last’. Last expressions under dropdown.
Numbers without decimal point or exponent are treated as integers. Enter strings between "quotes”.
Expressions only (no commands). Consult the Justina interpreter user manual for detailed information.

Last answers

>

NN WD s L) B

bl
4

Justina: JUST an INtepreter for Arduino. Full documentation on GitHub 2024, Herwig Taveirne

Notes:

e Integer and floating-point results are displayed according to the currently set display format
for integers resp. floating point numbers (two user functions are provided to change integer
and floating-point number formatting, respectively).

e Use the standard Justina fmt(...) function to override the set display format

e String results are displayed with any control characters replaced by a small white box

e This example uses the SD card: it expects to find a Justina logo file and icon file
(jus_logo.jpg and jus_icon.jpg) in SD card directory "/justina/images". NOTE: if an SD card is
not connected or the image files are not found, the web page will still be displayed (the
calculator will still work), but without logo and icon.

14 Appendices Page 95

Justina User Manual just an Interpreter for Arduino

Appendix D Running background tasks: system callbacks

The purpose of system callbacks (executed in the background, multiple times per second), is to

e ensure that procedures that need to be executed at regular intervals (e.g., maintaining a TCP connection, etc.)
continue to be executed while control is within Justina

e detect stop, abort, console reset and kill requests (e.g., to request aborting a running Justina program stuck in an
endless loop), when a user presses a pushbutton wired to an input pin

e retrieve the Justina interpreter state (idle, parsing, executing, stopped in debug mode, error), for instance to blink
a led or produce a beep when a user error is made

This eliminates the need for Justina to have any knowledge about the hardware (pins, ...).

If enabled, the system callback function is called:

e whenever Justina is idle (waiting for input): constantly

e when busy (parsing or executing): after a complete statement is parsed or executed, provided that 100
milliseconds have passed since the previous call

System callback functions should be kept short (handled like interrupt service routines) in order not to slow down
Justina operation.

The callback function communicates with Justina via a set of 32 application flags, some used to pass the Justina status
to the callback function and some to read back 'requests' provided by the callback function. Most of the flags are
unassigned.

Justina provides a list of public long constants, all starting with prefix 'appFMT_', that can be used to test, set or clear
application flags in the c++ callback functions.

Status info provided by Justina to the callback procedure

2 application flags pass the current Justina state to the callback procedure:

Justina: :appFMT statusMask use this mask before testing Justina status (2 bits)
Justina::appFMT idle Justina is idle

Justina: :appFMT parsing Justina is currently parsing a program or a user command
Justina::appFMT executing Justina is currently executing a program or a user command
Justina: :appFMT_ stoppedInDebug Justina is currently stopped in debug mode
Justina::appFMT statusAbit status mask bit 0

Justina::appFMT statusBbit status mask bit 1

One application flag informs the callback procedure that an error has occurred and 1 flag is set if since the last call to
the callback procedure, Justina sent or received data to / from an external |10 device.
Justina: :appFMT errorConditionBit set if an error has occurred, reset otherwise

Justina: :appFMT dataInOut currently sending or receiving data

14 Appendices Page 96

Justina User Manual just an Interpreter for Arduino

Requests provided by the callback procedure to Justina

The callback procedure can set 4 individual bits to request a specific Justina action:

Justina: :appFMT consoleRequestBit request to reset Justina console to the default
Justina::appFMT killRequestBit request to kill (exit) Justina

Justina: :appFMT stopRequestBit request to stop a running Justina program in debug mode
Justina: :appFMT abortRequestBit request to abort running Justina code

A flag needs to be set only once (during a single call to the callback procedure) to trigger the requested action.

Example programs

The Justina library contains 2 sketches that make use of system callbacks.

e Justina_systemCallback.ino demonstrates how to use system callbacks to provide a visual indication of
the current interpreter state (idle, executing, error, ...)
e Justina_TCPIP.ino demonstrates how to use system callbacks to maintain a TCP connection

Arduino IDE: File -> Examples -> Examples from custom libraries -> Justina interpreter -> Justina_systemCallback
File -> Examples -> Examples from custom libraries -> Justina interpreter -> Justina_TCPIP

14 Appendices Page 97

Justina User Manual just an Interpreter for Arduino

Appendix E calling user c++ functions

Built-in Justina functionality can be extended by writing specific functions in c++. Such functions may include time-
critical user routines, functions targeting specific hardware, functions extending functionality in a specific domain, etc.
These functions must then be 'registered' with Justina and given a 'Justina function name' (an alias).

From then onward, these C++ functions can be called just like any other Justina function, with the same syntax, using
the alias as function name and passing scalar or array variables as arguments.

The steps involved are detailed below. But the Justina library contains 3 sketches containing examples of user c++
functions, which you can call from Justina (even from the command line):

e Justina_userCPP.ino some examples of user c++ functions
e Justina_userCPPlib.ino demonstrates collecting user cpp functions in a 'user c++ library' file
e Justina_TCPIP.ino user cpp functions to set and get TCP/IP attributes

Arduino IDE: File -> Examples -> Examples from custom libraries -> Justina interpreter -> Justina_userCPP
File -> Examples -> Examples from custom libraries -> Justina interpreter -> Justina_userCPPlib
File -> Examples -> Examples from custom libraries -> Justina interpreter -> Justina_TCPIP

The second sketch (Justina_userCPPlib) demonstates how to collect user c++ functions in a separate 'library' file.

Step 1: writing user c++ functions

Justina calls user functions written in c++ (named 'user c++ functions') using the SAME Justina syntax as it uses for
calling any internal Justina function, passing between 0 and 8 (eight) function arguments back and forth (values are
passed by reference) and returning a function result, provided that the user c++ functions utilize the interfacing
mechanism described here.

No matter the number of arguments provided by Justina when calling a user c++ function, the c++ implementation of
that user function always has 4 (four) parameters.

c++ function prototype:

returnType functionName(void** const pdata, const char* const valueType, const int argCount, int& execError) ;

parameter 1: void** const pdata
pointer to an array of void pointers to (maximum eight) arguments, passed by reference by Justina.

parameter 2: const char* const valueType
pointer to an array, indicating the value types (long, float or char*) of the respective arguments, and whether
these arguments are Justina variables or constants. Value types are:

Justina::value isLong 32-bit signed integer
Justina::isFloat 32-bit floating point value
Justina::value isString character string

When checking a value type, 'bit and' it first with constant Justina: :value typeMask.

ValueType bit 7 indicates that the corresponding argument is a Justina variable (defined with the var
command).

parameter 3: const int argCount
number of supplied Justina arguments, from 0 to 8.

14 Appendices Page 98

Justina User Manual just an Interpreter for Arduino

to raise a Justina error, return an error code. Justina will handle this error as it handles all other errors: Justina
will stop execution unless the error is caught by the Justina trapErrors command.
The valid range of error codes is from 3000 to 4999. Outside this range, error codes will be discarded.

Some of these error codes have specific meanings within Justina (see list of error codes in the user
documentation) and, while all error codes in the range given are acceptable, it makes sense to attribute a
meaningful error number to a specific error.

All Justina arguments (0 to 8) are passed by reference: Justina sets a pointer to the respective arguments (integer (c++
long), floating point (c++ float) or text (c++ char*) and passes the pointer to the user c++ function.

If an argument passed by Justina is not a variable but a constant or a Justina expression, Justina actually passes a
pointer to a COPY of the value. This helps to ensure that the user c++ procedure does not inadvertently change the
original value.

In case the address pointed to is an ARRAY element, the user actually has access to the complete array by setting a
pointer to subsequent or preceding array elements.

Within a user c++ procedure:

A\

do NOT change the value type (float, character string) of an argument

you can change the characters in a string but NEVER INCREASE the length of strings

empty strings cannot be changed at all (this would increase the length of the string)

it is allowed to DECREASE the length of a string (with a "\0' terminating character), but keep in mind that the string
will still occupy the same amount of memory (except when you change a string to an empty string - writing a '\0'

Y V V

terminating character in the first position - because in Justina, empty strings do not occupy memory)
ONLY change the (0 to 8) Justina arguments pointed to by the first c++ function argument, NOTHING ELSE.
» You can bypass checking of argument types and count if you are confident that the calling Justina function adheres

A\

to what the called c++ function expects as function arguments

User c++ functions can return a c++ Boolean, char, int, long, float, char* as a result, or nothing (void).
Justina will convert c++ Boolean, char and int return values to integers (c++: long values) upon return. c++ functions
returning void: the Justina function will return zero.

Notes

e Do NOT return a char* pointing to a local c++ char array, unless you declare it as static (local variables exist on the
stack until you leave the procedure, and the pointer returned to Justina may point to garbage).

e |f you return an object created on the heap (NEW), make sure to save the pointer (e.g., as a static variable)
because you will have to DELETE the object later (also from a user c++ procedure)

e You can return a string literal, because these strings are stored in static memory (e.g., ' return "OK"; ')

14 Appendices Page 99

Justina User Manual

just an Interpreter for Arduino

Step 2: storing user c++ function attributes in arrays

Justina must be informed about the user c++ functions it needs to have access to. Justina needs the following:

e afunction pointer (start address of the function)
e the Justina function name (name to use when calling the function from Justina). This name (alias) must follow
the same Justina naming convention as for all other Justina identifiers

Preferably, start your aliases with one of these three prefixes: | cpp_, usr_ or user_| . If you use Notepad++ as

Justina text editor, this will ensure proper highlighting of the Justina function name, just like any other Justina
internal or user function.

e minimum (0) and maximum (8) number of arguments allowed when the user c++ function is called. The
actual number of arguments supplied can then be checked when Justina parses the function call.

This information, grouped by function return type, is stored in arrays of a specific type, defined by Justina (a separate
array for each function return type).

The (still empty) arrays (one for each return type):

Justina:
Justina:
Justina:
Justina:
Justina:
Justina:
Justina:

:CppVoidFunction const
:CppBoolFunction const
:CppCharFunction const
:CppIntFunction const
:CppLongFunction const

:CppFloatFunction const
:Cpp_pCharFunction const

cppVoidFunctions[]1{};
cppBoolFunctions[]{};
cppCharFunctions([]{};
cppIntFunctions[]{};
cppLongFunctions[]{};
cppFloatFunctions([]{};
cpp_pCharFunctions[]{};

In each array, create records for each user c++ function with the corresponding function return type.

A record for a user c++ function

{"JustinaFunctionName",

functionName, minArg, maxArg}

Enter the c++ function name (without parentheses) to supply the function pointer.

Notes

e |f there are no user c++ functions with a specific return type, you do not need to create the corresponding (empty)

array.

e the Justina function name does not need to be the same name as the user c++ function name.

e Functions with invalid Justina names can not be called from Justina.

14 Appendices

Page 100

Justina User Manual just an Interpreter for Arduino

Step 3:

User c++ functions are implemented as callback functions. Justina must be informed about their existence and

function attributes before Justina can call them.

You 'register' user c++ functions with a specific return type, by calling a Justina method for that return type, passing
the information stored in the array for that return type.

The methods require two arguments:

e the name of the array for the respective return type

e the count of user c++ functions with this return type

Registering user

c++ functions with Justina:

justina

justina.
justina.
justina.
justina.
justina.
justina.

.registerFloatUserCppFunctions (cppFloatFunctions, count);
register pCharUserCppFunctions (cpp_pCharFunctions, count);
registerVoidUserCppFunctions (cppVoidFunctions, count);
registerBoolUserCppFunctions (cppBoolFunctions, count);
registerCharUserCppFunctions (cppCharFunctions, count);
registerIntUserCppFunctions (cppIntFunctions, count);
registerLongUserCppFunctions (cppLongFunctions, count);

Notes

e Register user c++ functions BEFORE starting the interpreter (before calling the .begin() method)

o If there

are no user c++ functions with a specific return type, you do not need to call the corresponding

Justina method.

Example programs

The Justina library contains 2 sketches containing user c++ functions.

e Justina_userCPP.ino demonstrates how to write user c++ functions for Justina

e Justina_userCPP_lib.ino demonstrates how to create a Justina user c++ 'library' file

Arduino IDE: File -> Examples -> Examples from custom libraries -> Justina interpreter -> Justina_userCPP
File -> Examples -> Examples from custom libraries -> Justina interpreter -> Justina_userCPP_lib

14 Appendices

Page 101

Justina User Manual

just an Interpreter for Arduino

Appendix F Installing Notepad++ and the Justina language extension

On your computer, download and install Notepad++ (https://notepad-plus-plus.org/downloads/)

Open Notepad++.

In NotePad++, select

Language -> User Defined Language -> Define your language...

A popup window will open.:

User Defined Language v.2.1.0.12

User language: | User Defined Language v Create new...
Export... [1gnore case

Folder &Default Keywords Lists Comment & Number Operators & Delimiters

Save as... Dock

[Jtransparency

Documentation Folding in comment style
https://ivan-radic.github.io/udl-documentation Styler
Open:
Default style
Middle:

Click 'Import..." and browse to folder ‘libraries\Justina_interpreter\extras\ Justina_UDL_Notepad++'in your Arduino

sketchbook location.

User language: User Defined Language v Create new...

Save as... Dock
Export... [C1gnore case [transparency
Folder &Default Keywords Lists Comment & Number Operators & Delimiters
Documentation Folding in comment style
oo |
L v <« Justina_interpreter > extras > Justina_UDL_Notepad++ v 0 Search Justina_UDL_Not
Defaull Organize v New folder =~
@ examples A Name - Date modified
@i extras & Justina-notepad++-UDLxml 26/04/2024 17:32

@ Justina_constants

@ Justina_language_examples

[Fod © Justina_UDL_Notepad++

Q@ src

Select file 'Justina_notepad++\UDL.xml' and click 'Open’

Close the popup

The Justina Language Extension is now installed. This means that Justina is now one of the many languages available

for syntax highlighting.

14 Appendices

Page 102

Justina User Manual just an Interpreter for Arduino

Select Justina as language extension for an open file:

In Notepad++, select
Language -> Justina
Justina syntax highlighting is now enabled for the currently open file.

Note: text files ending with the “.jus’ extension will automatically select the Justina Language Extension on opening.

= Use .jus as extension for your Justina programs

Checking that the Justina extension is properly installed

In Notepad++, open file 'test_highlight.jus' in folder “libraries\Justina_interpreter\extras\ Justina_UDL_Notepad++' (in
your Arduino sketchbook location).

The opened file does not contain a program but merely the collection of all words and symbols (command names,
function names, operators, predefined constants) recognized by Justina, with proper highlighting.

his: with all defined symbols in Justina, with proper highlighting

commands (control block stat.: bold) functions predefined const

I W N K

PSR

[Ffunction
Elfor
Flwhile
if

18] elseif
2 Helse

1 end

2 break
23 continue

4 return

T

=

27 e £ e err cl ULLUP

Some of the Justina commands (blue and dark blue), functions (red) and predefined constants (magenta) as shown
in Notepad++ with the Justina language extension installed

14 Appendices Page 103

Justina User Manual just an Interpreter for Arduino
Appendix G Installing YAT terminal

The Arduino IDE Serial Monitor, although a great tool for uploading your compiled Arduino programs and for
communicating with your Arduino (and Justina), does not allow sending files to Justina. As a Justina program consists
of a text file that is edited on your computer (preferably with Notepad++), there are only two ways to load and parse a
Justina program in your Arduino:

1. Ifan SD card module is hooked up to your Arduino, you can copy program files from your computer to an SD
card, and then insert that SD card in the Arduino SD card board. But this means that you constantly need to
insert and remove SD cards. And there's always a risk that during one of these operations your SD card will
get corrupted.

2. Send the program file to your Arduino via Serial, a TCP client, ... and either store it on an SD card to load it
from there, or load and parse the program immediately while it's being sent.

While the second option is the most straightforward one (especially if you go through a series of program load, test,
debug, correct and reload ... iterations), the Arduino IDE Serial Monitor doesn't support that.

Fortunately, there are several good free terminal programs available. The one | prefer is YAT and we use it throughout
most examples in this manual. A second one which works quite well is named Tera Term. These terminal programs can
be freely downloaded on your PC. They allow for serial communication via USB as well as via TCP / IP connections.

In what follows, we'll stick to YAT because it has a couple of nice, useful features.

Download and install YAT

On your computer, download and install YAT (https://sourceforge.net/projects/y-a-terminal/).

Under 'Terminal->settings', select the USB port the Arduino is connected to, the baud rate etc. and press OK.

»
ot File Terminal Send Receive Log View Window Help - 8 X
ERREIEB OO s 2 81016 v |BEGBE® @6 -EE
R Predefined Commands:
—)]0|0@0/s|0/s (Cuis] Shit+F 1. F12to send fo cop
Terminal Settings [Terminal-port.yat] X
'/A Teminal Type: Text v Text Settings... H
1/0 Type: Serial COM Port N Cancel =
1/0 Settings
Serial Port: Defauts...
COM?7 - USB Serial Device - (in use by this temir v] S
Bits per Second: | 115200 v Help
Data Bits: 8 v
Parity: None v
Stop Bits: 1 o
Flow Control:
None v
When connected....
...monitor the port every 500 ms
When disconnected....
..1ry to reopen the port every ms
[...switch to the next available port Advanced Seftings...
T

14 Appendices Page 104

Justina User Manual just an Interpreter for Arduino

In the YAT menu, select 'Send' and, in the dropdown that will open, verify that the only option selected is
'Keep [Text] after Send'. Select it if needed and deselect all the other options (if selected).

C YaAT- [[Terminal-port.yat] - COM7 - Open - Connected]

o File Terminal | Send | Receive Log View Window Help
DREGIE T B
Text w/o EOL Ctrl+F3
File F4

Use Explicit Default Radix

Allow Concurrent Sending

I Keep [Text] after Send Ctrl+Shift+K
Send Characters Immediately Ctrl+Shift+|

Enable <...> and \... Escapes on sending [Text]
Expand Multi-Line Text Ctrl+Shift+E

Skip Empty Lines on sending [File] ~ Ctrl+Shift+M

Enable <...> and \... Escapes on sending [File]

Now select 'View->panels' and, in the dropdown that will open, verify that the options selected are as indicated in
the figure. Deselect the other options (if selected).

Unidirectional Send (Tx) Yat will now only display characters it receives from your
Bidirectional Send/Receive Arduino and will not echo any characters it sends to Arduino
Unidirectional Receive (Ro) (Justina will take care of echoing characters it receives from

YAT).
Vertical v

Sending text and files to Arduino is now enabled as well, as is
the use of predefined commands.

Predefined Commands

[]

12 (1x12) v

Send Text

Send File In the 'View' menu as well, you might want to disable

formatting (it's only overloading what you see).

[

Reset to Defaults...

Connecting / disconnecting YAT

c YAT- [[Terminal-port.yat] - COM7 - Open - Connected]

Connect and disconnect YAT,

o Fi i ~QRecei i i
using the two buttons indicated. 0 flvlé Terminal eceive Log View Window Help
BERRE OO)su|ce 2 31016 BEEEEBH

e

| While connected, verify that indicators 'RTS' (Request to
Send Text [F3] Send) and 'DTR' (Data Terminal Ready) are ON (green light).
Send File [F4] Click on the indicators to change their status, if currently

OFF (red lights).

The other indicators are not relevant here.

Ics @(OR@)osR@ DO @

~

14 Appendices Page 105

Justina User Manual just an Interpreter for Arduino

Predefined commands

One final, great feature of YAT is that you can enter a set of Predefined Commands, accessible via a number of buttons
and saved together with the other terminal settings (button 'Save Terminal’, underneath the YAT menu).

When clicking a button, the corresponding predefined command will be sent to Justina.

f Predefined Commands: \
LR R S

[Cir+] Shift+F1..F12to send
load prog from CONSOLE
load prog from 102
step over
step over

step out
step out of block

loop once
breakpoints ON

breakpoints OFF
list breakpoints
list call stack

— /

Example of a predefined Justina command set

You can now use YAT as your serial monitor to send Justina statements to your Arduino (type a statement in the 'Send
Text' textbox and press Enter or F3) and see your Arduino's response, as you did in the preceding examples.

/A Remember to close the Arduino Serial Monitor before connecting the Terminal app to your Arduino., and vice
versa

Sending binary files

To send a binary file with YAT, you'll have to temporarily change the Terminal type from Text to Binary (in terminal
settings).

If you need to send commands as well (e.g., 'receiveFile "image001.jpg" '), you must enable 'Escape sequences on
sending text' (in the Send menu) and terminate your commands with ' \n' (in binary mode, YAT will not add a newline
character by itself).

14 Appendices Page 106

Justina User Manual

just an Interpreter for Arduino

Appendix H List of predefined constants

Symbolic constant name and value

Data type

Description

Math symbols

e 2.71828182... floating point base of natural logarithm

Pl 3.14159265... floating point Pi

HALF_PI 1.57079632... floating point /2

QUART_PI 0.78539816... floating point /4

TWO_PI 6.28318530... floating point 2 1
Conversion factors

DEG_TO_RAD 0.01745329... floating point degrees to radians

RAD_TO_DEG 57.2957795... floating point radians to degrees
AngleMode command: setting angle mode

RADIANS 0 integer Angle mode set to radians

DEGREES 1 integer Angle mode set to degrees
Boolean constants

FALSE 0 integer

TRUE 1 integer

OFF 0 integer

ON 1 integer

LOW 0 integer

HIGH 1 integer
Arduino Digital 10

INPUT 0x1 integer pinMode

OUTPUT 0x3 integer pinMode

INPUT_PULLUP 0x5 integer pinMode

INPUT_PULLDOWN 0x9 integer pinMode

LSBFIRST 0 integer shiftOut, shiftin: bitOrder

MSBFIRST 1 integer shiftOut, shiftin: bitOrder

LED_BUILTIN 13 integer built-in LED pin

LED_RED 14 integer nano ESP32 only: red LED pin

LED_GREEN 15 integer nano ESP32 only: green LED pin

LED BLUE 16 integer nano ESP32 only: blue LED pin
Checking data types: type function result

INTEGER 1 integer argument type is integer

FLOAT 2 integer argument type is floating point

STRING 3 integer argument type is string

Console display mode: dispMode command arguments

NO_PROMPT 0 integer no prompt, no echo

PROMPT 1 integer show prompt but no echo

ECHO 2 integer show prompt and echo input

NO_RESULTS 0 integer do not display results

RESULTS 1 integer display results

QUOTE_RES 2 integer display results; strings between quotes
info statement: 'flag' argument (entry)

ENTER 0 integer 'Enter’ answer accepted

ENTER_CANCEL 1 integer 'Enter’ and 'Cancel' answer accepted

YES_NO 2 integer 'Yes' and 'No' answer accepted

YN _CANCEL 3 integer 'Yes', 'No' and 'Cancel' answer accepted
input statement: 'flag' argument (entry)

NO_DEFAULT 0 integer 'Default' is not allowed as answer

ALLOW_ DEFAULT 1 integer 'Default' is allowed as answer

14 Appendices

Page 107

Justina User Manual just an Interpreter for Arduino

Symbolic constant name and value Data type Description

Additional test values

CANCELED 0 integer Operation was canceled
OK 1 integer Operation confirmed
NOK -1 integer Operation was not confirmed
External device 10
CONSOLE 0 integer input & output from / to console
101 -1 integer input & output from / to 10 device 1
102 -2 integer input & output from / to 10 device 2
103 -3 integer input & output from / to 10 device 3
104 -4 integer input & output from / to 10 device 4
File 10
FILE1 1 integer input & output from / to file number 1
FILE2 2 integer input & output from / to file number 2
FILE3 3 integer input & output from / to file number 3
FILE4 4 integer input & output from / to file number 4
FILES 5 integer input & output from / to file number 5
READ 0x1 integer file mode
WRITE 0x2 integer file mode
APPEND 0x6 integer file mode
SYNC 0x8 integer file mode
NEW_OK 0x10 integer file mode
NEW_ONLY 0x30 integer file mode
TRUNC 0x40 integer file mode
EOF -1 integer use to indicate 'EOF' position
Formatting: floating point notation
FIXED "f" string fixed point notation
EXP "e" string scientific notation
EXP_U "E" string scientific notation, 'E' uppercase
SHORT "g" string shortest notation (fixed or scientific)
SHORT_U "G" string shortest notation: 'E' uppercase
Formatting: integer number notation
DEC "d" string decimal representation
HEX "x" string hexadecimal representation
HEX U "X" string hexadecimal, A..F uppercase
Formatting: character strings
CHARS "s" string character string
Formatting: flags
FMT_LEFT 0x01 integer align output left within the print field
FMT_SIGN 0x02 integer numeric values: always add sign
FMT_SPACE 0x04 integer numeric values: add space if no sign
FMT_POINT 0x08 integer floating point only: always add decimal point
FMT_0OX 0x08 integer hex notation only: add Ox or OX if not zero
FMT_000 0x10 integer floating point only: pad print field with zeros
FMT_NONE 0x00 integer clear all flags
Arduino board information
BOARD_OTHER 0 integer non-supported board
BOARD_SAMD 1 integer Arduino SAMD architecture
BOARD_RP2040 2 integer Arduino nano RP2040
BOARD_ESP32 3 integer Arduino nano ESP32 only

14 Appendices Page 108

Justina User Manual

just an Interpreter for Arduino

Appendix | Error codes
Error number Error code
0 noerror
Parsing errors
1000 result_statementTooLong
1001 result_tokenNotFound
1002 result_missingLeftParenthesis
1003 result_missingRightParenthesis
1100 result_separatorNotAllowedHere
1101 result_operatorNotAllowedHere
1102 result_prefixOperatorNotAllowedhere
1103 result_invalidOperator
1104 result_parenthesisNotAllowedHere
1105 result_resWordNotAllowedHere
1106 result_functionNotAllowedHere
1107 result_variableNotAllowedHere
1108 result_alphaConstNotAllowedHere
1109 result_numConstNotAllowedHere
1110 result_assignmNotAllowedHere
1111 result_cannotChangeConstantValue
1112 result_identifierNotAllowedHere
1113 result_prefixCharNotAllowedHere
1200 result_constantValueExpected
1201 result_variableNameExpected
1202 result_assignmentOrSeparatorExpected
1203 result_separatorExpected
1300 result_maxVariableNamesReached
1301 result_maxLocalVariablesReached
1302 result_maxStaticVariablesReached
1303 result_maxdJustinaFunctionsReached
1304 result_progMemoryFull
1400 result_identifierTooLong
1401 result_spaceMissing
1402 result_token_not_recognised
1403 result_alphaConstToolLong
1404 result_alphaConstinvalidEscSeq
1405 result_alphaNoCtriICharAllowed
1406 result_alphaClosingQuoteMissing
1407 result_numberlnvalidFormat
1408 result_parse_overflow
1500 result_function_wrongArgCount
1501 result_function_redefinitionNotAllowed
1502 result_function_mandatoryArgFoundAfterOptionalArgs
1503 result_function_maxArgsExceeded
1504 result_function_prevCallsWrongArgCount
1505 result_function_defsCannotBeNested
1506 result_function_scalarAndArrayArgOrderNotConsistent
1507 result_function_scalarArgExpected
1508 result_function_arrayArgExpected
1509 result_function_redefiningNotAllowed
1510 result_function_undefinedFunctionOrArray

14 Appendices

Page 109

Justina User Manual just an Interpreter for Arduino

Error number Error code
1511 result_function_arrayParamMustHaveEmptyDims
1512 result_function_needsParentheses
1600 result_var_namelnUseForFunction
1601 result_var_notDeclared
1602 result_var_redeclared
1603 result_var_definedAsScalar
1604 result_var_definedAsArray
1605 result_var_constantArrayNotAllowed
1606 result_var_constantVarNeedsAssignment
1607 result_var_ControlVarinUse
1608 result_var_controlVarlsConstant
1609 result_var_illegallnDeclaration
1610 result_var_illegallnProgram
1611 result_var_usedInProgram
1612 result_var_deleteSyntaxinvalid
1700 result_arrayDef _noDims
1701 result_arrayDef_negativeDim
1702 result_arrayDef_dimToolLarge
1703 result_arrayDef _maxDimsExceeded
1704 result_arrayDef _maxElementsExceeded
1705 result_arrayDef_emptylnitStringExpected
1706 result_arrayDef_dimNotValid
1707 result_arrayUse_noDims
1708 result_arrayUse_wrongDimCount
1800 result_cmd_programCmdMissing
1801 result_cmd_onlyProgramStart
1802 result_cmd_onlylmmediateMode
1803 result_cmd_onlylImmModeFirstStatement
1804 result_cmd_onlylnsideProgram
1805 result_cmd_onlylnsideFunction
1806 result_cmd_onlyOutsideFunction
1807 result_cmd_onlylmmediateOrInFunction
1808 result_cmd_onlylnProgOutsideFunction
1809 result_cmd_onlylmmediateNotWithinBlock
1810 result_cmd_resWordExpectedAsPar
1811 result_cmd_expressionExpectedAsPar
1812 result_cmd_varWithoutAssignmentExpectedAsPar
1813 result_cmd_varWithOptionalAssignmentExpectedAsPar
1814 result_cmd_variableExpectedAsPar
1815 result_cmd_variableNameExpectedAsPar
1816 result_cmd_identExpectedAsPar
1817 result_cmd_argumentMissing
1818 result_cmd_tooManyArguments
1900 result_userCB_allAliasesSet
1901 result_userCB_aliasRedeclared
2000 result_block_noBlockEnd
2001 result_block_noOpenBlock
2002 result_block_noOpenlLoop
2003 result_block_noOpenFunction
2004 result_block_notAllowedInThisOpenBlock
2005 result_block_wrongBlockSequence
2100 result_trace_eval_resWordNotAllowed

14 Appendices Page 110

Justina User Manual just an Interpreter for Arduino

Error number Error code
2101 result_trace_eval_genericNameNotAllowed
2102 result_trace_userFunctonNotAllowed
2103 result_trace_evalFunctonNotAllowed
2104 result_parseList_stringNotComplete
2105 result_parseList_valueToParseExpected
2106 result BP_lineRangeToolLong
2107 result_BP_lineTableMemoryFull
2108 result_BP_emptyTriggerString
2109 result_BP_triggerString_nothingToEvaluate
2200 result_parse_abort
2201 result_parse_setStdConsole
2202 result parse Kkill

Execution errors
3000 result_array_subscriptOutsideBounds
3001 result_array_subscriptNonInteger
3002 result_array_subscriptNonNumeric
3003 result_array_dimCountlnvalid
3004 result_array_valueTypelsFixed
3100 result_arg_outsideRange
3101 result_arg_integerTypeExpected
3102 result_arg_floatTypeExpected
3103 result_arg_stringExpected
3104 result_arg_numberExpected
3105 result_arg_nonEmptyStringExpected
3106 result_arg_stringTooShort
3107 result_arg_invalid
3108 result_arg_integerDimExpected
3109 result_arg_dimNumberinvalid
3110 result_arg_variableExpected
3111 result_arg_tooManyArgs
3112 result_arg_wrongSpecifierForDataType
3200 result_integerTypeExpected
3201 result_floatTypeExpected
3202 result_numberExpected
3203 result_operandsNumOrStringExpected
3204 result_undefined
3205 result_overflow
3206 result_underflow
3207 result_divByZero
3208 result_testexpr_numberExpected
3300 result_noProgramStopped
3400 result_BP_sourcelineNumberExpected
3401 result_ BP_notAllowedForSourceLine
3402 result BP_statementlsNonExecutable
3403 result BP_maxBPentriesReached
3404 result BP_wasNotSet
3405 result_BP_hitcountNotWithinRange
3406 result_BP_sourceLineNotInStoppedFunction
3407 result_BP_cannotMovelntoBlocks
3500 result_ EVAL_emptyString=3500
3501 result_EVAL_nothingToEvaluate

14 Appendices Page 111

Justina User Manual

just an Interpreter for Arduino

Error number

Error code

3502
3503
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3700
3701
3702

result_EVAL_parsingError
result_list_parsingError
result_SD_noCardOrNotAllowed
result_SD_noCardOrCardError
result_SD_fileNotFound
result_SD_couldNotOpenFile
result_SD_filelsNotOpen
result_SD_fileAlreadyOpen
result_SD_invalidFileNumber
result_SD_filelsEmpty
result_SD_maxOpenFilesReached
result_SD_fileSeekError
result_SD_directoryExpected
result_SD_directoryNotAllowed
result_SD_couldNotCreateFileDir
result_SD_directoryDoesNotExist
result_SD_pathIsNotValid
result_SD_sourcelsDestination
result_SD_fileNotAllowedHere
result_lO_invalidStreamNumber
result_IO_noDeviceOrNotForlnput
result 10 _noDeviceOrNotForOutput

14 Appendices

Page 112

Justina User Manual just an Interpreter for Arduino

AppendixJ Justina Command and Function index

This index lists all Justina commands and built-in functions, along with the page numbers where they appear.
Commands are shown in bold, functions in italic.

abort, 78, 90, 96, 97 coutLine, 7, 8, 37, 38, 40, 41, 45, 46, 50
abs, 22 coutList, 40, 41, 48
acos, 21 createDirectory, 57
analogRead, 32 cStr, 24, 25
analogReadResolution, 32 dbout, 37, 38
analogReference, 32 dboutLine, 37, 38
analogWrite, 32 debug, 4, 75,76, 77, 78, 79, 80, 81, 82, 86, 96, 97
analogWriteResolution, 32 delete, 16, 17
angleMode, 21 digitalRead, 32

asc, 24, 47 digitalWrite, 10, 32
ascToHexStr, 25 dims, 26

asin, 7,21, 72 disableBP, 84, 85

atan, 21 dispMode, 13

available, 50, 51 dispWidth, 13
availableForWrite, 51 else, 68

bit, 33 elseif, 68

bitClear, 33 enableBP, 84

bitRead, 33 end, 7, 8, 10, 47, 50, 64, 66, 68, 69, 70, 73
bitSet, 33 err,72,73,74

bitWrite, 33 eval, 25,27, 29, 30, 31, 73
BPoff, 84 exists, 57

BPon, 84 exp, 21

break, 69 expm1, 21

bStepOut, 77 fileNum, 58

byteRead, 33, 34 find, 49, 50

byteWrite, 34 findStr, 24

ceil, 21 findUntil, 49

cFloat, 24 floatFmt, 14, 37, 40
char, 24 floor, 21

choose, 23 flush, 51

cin, 36, 47,51 fmod, 20, 21

cinlLine, 47, 50 fmt, 15, 24, 27, 34, 37, 41, 42, 45
cinList, 40, 48 for, 7, 8, 10, 68, 69, 70
cint, 24 fullName, 57

clearBP, 84 function, 64, 65, 69
clearError, 72 getTimeOut, 51
clearMem, 62 getWriteError, 51
clearProg, 62 go, 77, 83
clearWriteError, 51 halt, 72

close, 57 hexStrToAsc, 25
closeAll, 57 if, 47, 68

col, 37, 38, 42, 44, 45 ifte, 22

const, 10, 17, 66, 67 index, 23

continue, 69 info, 71

copyfFile, 11, 58 input, 29, 30, 71, 73

cos, 21 intFmt, 14, 37, 40

cout, 11, 36, 37, 38, 39, 45, 46, 47 isAlpha, 26

14 Appendices Page 113

Justina User Manual just an Interpreter for Arduino

isAlphaNumeric, 26 raiseError, 72
iSAscii, 26 random, 33
isColdStart, 27 randomSeed, 33
isControl, 26 read, 48, 51

isDigit, 26 readLine, 48
isDirectory, 57 readlList, 40, 48
isGraph, 26 receiveFile, 58, 61
isHexDigit, 26 remove, 58

isinUse, 57 removeDirectory, 57
isLowerCase, 26 repeatChar, 24, 46
isPrintable, 26 replaceChar, 25
isPunct, 26 replaceStr, 25
isUpperCase, 26 return, 66, 69
isWhitespace, 26 rewindDirectory, 57
left, 24 right, 24

len, 24 round, 21

line, 24, 38, 40, 41 rtrim, 24

listBP, 85 seek, 57
listCallStack, 81 sendFile, 58
listFiles, 58 setBP, 82, 83, 85
listFilesToSerial, 59 setConsole, 52
listVars, 52 setConsoleln, 52
In, 21 setConsoleOut, 52
Inp1,21 setDebugOut, 52
loadProg, 9, 61, 62 setNextLine, 77
log10, 21 setTimeout, 51, 58, 62
loop, 68, 77 shiftin, 32

Itrim, 24 shiftOut, 32
maskedWordClear, 34 signBit, 22
maskedWordRead, 34 sin, 21, 65
maskedWordSet, 34 size, 57
maskedWordWrite, 34 space, 24

max, 22, 33 sqrt, 11, 21
mem32Read, 35 startSD, 58
mem32Write, 35 static, 16, 67
mem8Read, 35 step, 68, 76, 77, 78, 81
mem8Write, 35 stepOut, 77

micros, 32 stepOver, 77

mid, 24 stop, 4,75

millis, 32 stopSD, 11, 58

min, 22, 33 strCaseCmp, 25
name, 38, 57 strCmp, 25

nop, 75 switch, 23

noTone, 32 sysVal, 27, 36

open, 56, 59 tab, 37, 39, 44
openNext, 57 tabSize, 44

pause, 72 tan, 21

peek, 51 toLower, 24
pinMode, 1, 18, 32 tone, 33

pos, 37,42, 44, 45, 46 toUpper, 24
position, 57 trace, 27,79

print, 38, 41, 44 trapErrors, 72
printLine, 38, 56, 59 trim, 24

printList, 40, 48 trunc, 21

program, 64 type, 26

pulseln, 32 ubound, 26

quit, 27, 63 var, 6, 7, 10, 11, 16, 39, 40, 47, 65, 66, 67, 70
quote, 25 viewExprOff, 79, 82
r, 27 viewExprOn, 79, 80, 82, 83

14 Appendices Page 114

Justina User Manual just an Interpreter for Arduino

vprint, 37, 39 vreadList, 40, 48
vprintLine, 37, 39 wait, 32, 33
vprintList, 40, 48 while, 47, 50, 69, 73

14 Appendices Page 115

Justina User Manual just an Interpreter for Arduino

14 Appendices Page 116

