

Justina library
User Manual

2024, Herwig Taveirne

Justina User Manual just an Interpreter for Arduino

 i

JusƟna interpreter library

Copyright 2024, Herwig Taveirne

The JusƟna interpreter library is free soŌware: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free SoŌware FoundaƟon, either
version 3 of the License, or (at your opƟon) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not,
see hƩps://www.gnu.org/licenses.

The library is intended to work with 32-bit boards using the SAMD architecture ,
the Arduino nano RP2040 and Arduino nano ESP32 boards.

See GitHub for more informaƟon and documentaƟon: hƩps://github.com/Herwig9820/JusƟna_interpreter

Developer contact: herwig.taveirne@gmail.com

Third-Party Tools NoƟce:

Any third-party tools or soŌware menƟoned in this manual are governed by their own licenses. Users are
responsible for understanding and complying with those licenses when downloading and using these tools.
Please refer to the respecƟve licenses for more informaƟon.

Permission NoƟce:

The content of this manual is provided for informaƟonal purposes only, on an "as is" basis, without
warranƟes of any kind. While every effort has been made to ensure accuracy, no responsibility is taken for
any errors or omissions. You are free to copy, distribute, and adapt any part of this document for your own
use. No formal permission is needed, and no addiƟonal noƟces are required for reuse. However, it is kindly
asked that you acknowledge the source if you choose to share this material.

Publish date: 29/05/2024

Justina User Manual just an Interpreter for Arduino

 ii

Table of Contents

1 IntroducƟon ..1

2 Geƫng started ..5

3 Statements: commands and expressions ...11

4 Data types ...12

5 The console ...13

6 JusƟna variables and constants ..16
6.1 Variables .. 16

6.2 Constant variables ... 17

6.3 Predefined constants ... 18

7 Operators ..19

8 Math, string, type conversion, test and lookup funcƟons ..21

8.1 Math funcƟons .. 21

8.2 Lookup and test funcƟons ... 22

8.3 Type conversion funcƟons ... 24

8.4 String funcƟons .. 24

8.5 InformaƟon funcƟons .. 26

8.6 The 'eval()' funcƟon: parsing and execuƟng expressions at runƟme ... 29

9 Arduino-specific funcƟons ..32

9.1 Arduino-specific digital I/O, Ɵming and other funcƟons ... 32

9.2 JusƟna funcƟons replacing Arduino-specific funcƟons .. 33

9.3 Arduino-specific bit and byte manipulaƟon funcƟons... 33

9.4 AddiƟonal JusƟna bit and byte manipulaƟon funcƟons .. 34

9.5 Direct memory locaƟon read and write funcƟons ... 35

10 Input and output ..36

10.1 IntroducƟon ... 36

10.2 PrinƟng data to a stream ... 37

1.2.10 Applying formaƫng to your output .. 41

10.3 Reading from a stream .. 47

10.4 Other stream funcƟons and commands .. 51

11 Working with SD cards ..54

11.1 StarƟng JusƟna with an SD card mounted in its SD card slot... 55

11.2 SD card funcƟons and commands ... 56

12 Other funcƟons and commands ...62

13 Programming ..64

Justina User Manual just an Interpreter for Arduino

 iii

13.1 Program and program funcƟons .. 64

13.2 Variable declaraƟons in a program .. 66

13.3 Control structures .. 68
13.4 Commands to interact with the user ... 71

13.5 Error trapping .. 72

13.6 Debugging .. 75

13.7 Tracing variables and expressions .. 79

13.8 Breakpoints .. 82
13.9 ExecuƟng a program while one or more programs are stopped ... 86

14 Appendices ...87

Appendix A CreaƟng a JusƟna object and choosing startup opƟons ... 87

Appendix B Changing the size of memory allocated to JusƟna ... 89

Appendix C Example programs .. 90

Appendix D Running background tasks: system callbacks ... 96

Appendix E calling user c++ funcƟons ... 98

Appendix F Installing Notepad++ and the JusƟna language extension ... 102

Appendix G Installing YAT terminal... 104
Appendix H List of predefined constants ... 107

Appendix I Error codes .. 109

Appendix J JusƟna Command and FuncƟon index .. 113

Justina User Manual just an Interpreter for Arduino

1 Introduction Page 1

1 IntroducƟon

JusƟna is both an easy-to-use programming language for Arduino and a capable interpreter.

It has been developed and built around a few objecƟves. On top of the list: simplicity for the user. JusƟna is a
structured language, but it’s non-object oriented (as opposed to the powerful but more complex c++ language). It has
some similariƟes with Basic, a language that has been around for quite some Ɵme. But (and this was, of course, a main
objecƟve) it was built with Arduino in mind - more specifically, 32-bit Arduino’s: boards with a SAMD processor (like
the nano 33 IoT), nano ESP32 boards and nano RP2040 boards.

JusƟna does not impose any requirements or restricƟons related to hardware (pin assignments, interrupts, Ɵmers,... -
it does not use any), nor does it need to have any knowledge about it for proper operaƟon.

The JusƟna syntax has been kept as simple as possible. A program consists of statements. A statement either consists
of

 a single expression (always yielding a result).
 a command, starƟng with a keyword, opƟonally followed by a list of expressions (such a statement is called a

command, because it ‘does’ something without actually calculaƟng a result)

Because JusƟna is an interpreted language, a JusƟna program is not compiled into machine language but it is parsed
into so called tokens before execuƟon. Parsing is a fast process, which makes JusƟna the ideal tool for quick
prototyping. Once it is installed as an Arduino library, call JusƟna from within an Arduino c++ program and you will
have the JusƟna interpreter ready to receive commands, evaluate expressions and execute JusƟna programs.

As an added advantage, you can enter statements directly in the command line of the Arduino IDE (the Serial monitor
by default, a TCP IP client, ...) and they will immediately get executed, without any programming.

Example

In this first example, we will first set the console display width for calculaƟon results to 40 characters wide (by default,
it's set to 64) and set the angle mode to Degrees. We'll then define Arduino pin 17 as an output and write a HIGH value
to the pin. Finally, we'll calculate the cosine of 60°.

In the command line of the Arduino IDE Serial Monitor, type these three lines (each Ɵme followed by ENTER):

dispWidth 40; angleMode DEGREES;
pinMode(17, OUTPUT); digitalWrite(17, HIGH);
cos(60);

Statements typed are echoed aŌer the JusƟna prompt ("JusƟna>") and executed. MulƟple statements can be entered
at the same Ɵme, separated by semicolons.

The result of the last expression entered in the command line is printed on the next line. In this example: both
digitalWrite() and cos() are funcƟons, digitalWrite returning the value wriƩen to the pin (1 is the value of predefined
constant HIGH). If the anode (+) of a led is connected to pin 17, and, via a proper resistor, the cathode (-) is connected
to GROUND, the led will be ON. Commands do not return any result.

2 commands
2 expressions
 result
expression
 result

Justina User Manual just an Interpreter for Arduino

1 Introduction Page 2

A few highlights

 More than 250 built-in funcƟons, commands and operators, 70+ predefined symbolic constants.

 More than 30 funcƟons directly targeƟng Arduino IO ports and memory, including some new.

 Extended operator set includes relaƟonal, logical, bitwise operators, compound assignment operators, pre-
and posƞix increment operators.

 Two angle modes: radians and degrees.

 Scalar and array variables.

 FloaƟng-point, integer and string data types.

 Perform integer arithmeƟc and bitwise operaƟons in decimal or hexadecimal number format.

 Display seƫngs define how to display calculaƟon results: output width, number of digits / decimals to display,
alignment, base (decimal, hex), …

 Input and output: JusƟna reads data from / writes data to mulƟple input and output devices (connected via
Serial, TCP IP, SPI, I2C...). You can even switch the console from the default (typically Serial) to another input
or output device (for instance, switch console output to an OLED screen).

 With an SD card breakout board connected via SPI, JusƟna creates, reads and writes SD card files etc.

 In JusƟna, input and output commands work with argument lists: for instance, with only one statement, you
can read a properly formaƩed text line from a terminal or an SD card file and parse its contents into a series
of variables.

Programming

 Write program funcƟons with mandatory and opƟonal parameters, accepƟng scalar and array arguments.
When calling a funcƟon, variables (including arrays) are passed by reference. Constants and results of
expressions are passed by value.

 Variables or constants declared within a program are either global (accessible throughout the JusƟna
program), local (accessible within a JusƟna funcƟon) or staƟc (accessible within one JusƟna funcƟon, value
preserved between calls)

 Variables not declared within a program but by a user from the command line, are called user variables (or
user constants)

List of SD card files, including JusƟna programs (.jus)

Justina User Manual just an Interpreter for Arduino

1 Introduction Page 3

 Programs have access to user variables and users have access to global program variables (from the command
line. User variables preserve their values when a program is cleared or another program is loaded.

 Parsing and execuƟon errors are clearly indicated, with error numbers idenƟfying the nature of the error.

 Error trapping: if enabled, an error will not terminate a program, instead the error can be handled in code
(either in the procedure where the error occurred or in a 'caller' procedure). It’s even possible to trap an error
in the command line

Program ediƟng

You can use any text editor to write and edit your programs. But you might consider using Notepad++ as text editor,
because a specific 'User Defined Language' (UDL) file for JusƟna is available in the JusƟna library, providing JusƟna
syntax highlighƟng as shown in the example below. See Appendix F: Installing Notepad++ and the JusƟna language
extension.

Excerpt of a JusƟna program, edited in Notepad++ with the JusƟna language extension installed. DisƟnct
colors highlight different language elements.

Justina User Manual just an Interpreter for Arduino

1 Introduction Page 4

Debugging

 When a program is stopped (either by execuƟon of the ‘stop’ command, by user intervenƟon or by an acƟve
breakpoint) debug mode is entered. You can then single step the program, execute statements unƟl the end
of a loop, a next breakpoint…

 Breakpoints can be acƟvated based on an opƟonal trigger expression or a hit count. You can also include a list
of ‘view expressions’ for each breakpoint, and JusƟna will automaƟcally trace specific variables or even
expressions, leƫng you watch their values change, as you single step through the program or a breakpoint is
hit.

While a procedure is stopped in debug mode, you can also manually review the procedure’s local and staƟc variable
contents or view the call stack.

IntegraƟon with c++

1. If enabled, system callbacks allow the Arduino program to perform periodic housekeeping tasks beyond the
control of JusƟna (e.g., maintaining a TCP connecƟon, producing a beep when an error is encountered,
aborƟng, or stopping a JusƟna program...). For that purpose, a set of system flags passes informaƟon back
and forth between the main Arduino program and JusƟna at regular intervals (without the need for
interrupts).

 See Appendix D: Running background tasks: system callbacks.

2. Built-in JusƟna funcƟonality can be extended by wriƟng specific funcƟons in c++. Such 'user c++' funcƟons
include Ɵme-criƟcal user rouƟnes, funcƟons targeƟng specific hardware, funcƟons extending funcƟonality in a
specific domain, etc. These funcƟons are then 'registered' with JusƟna and given an alias.
From then onward, these C++ funcƟons can be called just like any other JusƟna funcƟon, with the same
syntax, using the alias as funcƟon name and passing scalar or array variables as arguments.
You can even write complete JusƟna user c++ libraries, if desired.

 See Appendix E: calling user c++ funcƟons.

List all defined breakpoints for a program

Justina User Manual just an Interpreter for Arduino

2 Getting started Page 5

2 Geƫng started

Start by installing the JusƟna library, named ‘JusƟna interpreter’, from the Arduino library manager.

 In the Arduino IDE, select 'Tools -> Manage Libraries' and filter the library list by "JusƟna"
 Click 'Install', next to the library named 'JusƟna'.

Now let's immediately try a small Arduino program. It will simply call JusƟna and stay there (unƟl we tell it to return to
the calling Arduino program).

#include "Justina.h"

// create Justina_interpreter object with default values
Justina justina;

// -------------------------------
// * Arduino setup() routine *
// -------------------------------

void setup() {
 Serial.begin(115200);
 delay(5000);
 // run interpreter (control will stay there until you quit) Justina)
 justina.begin();
}

// ------------------------------
// * Arduino loop() routine *
// ------------------------------

void loop() {
 // empty loop()
}

A simple Arduino c++ program to launch the JusƟna interpreter

The Arduino program is provided as a sample sketch in JusƟna’s library 'examples' folder, named ‘JusƟna_easy.ino’.

Arduino IDE: File -> Examples -> Examples from custom libraries -> JusƟna interpreter -> JusƟna_easy.ino

Verify the baud rate; the Arduino IDE Serial Monitor should have status ‘connected’ (we will use this Serial Monitor, for
now).

Load and run the sketch. You should see:

Justina User Manual just an Interpreter for Arduino

2 Getting started Page 6

The 'JusƟna>' prompt indicates that JusƟna is currently running. Each Ɵme you enter a statement (in the command
line), the statement will be echoed aŌer the prompt and subsequently executed.

Let's start by typing in a simple expression in the command line: 3 + 5; (+ ENTER)

Serial Monitor output:

The result of the expression, '8', is displayed on the next line, right-aligned (output format and alignment can be
changed in JusƟna display seƫngs).

Let's create a user variable now: In the command line, type var myFirstVar = 10; (+ ENTER)

Serial Monitor output:

The characters var (all lowercase) form a keyword, indicaƟng the start of a command. Commands 'do' something (in
this case, creaƟng a variable and opƟonally iniƟalizing it with some constant value) but they don't produce a result, so
a result is not printed.

Let's now enter mulƟple statements together. Just make sure you separate statements with a semicolon.

In the command line, type 3 + 5; 7 + 8; myFirstVar += 12; (+ ENTER)

Serial Monitor output:

As expected, the three expressions are echoed aŌer the prompt, but only one result is printed: the result of the last
expression (the iniƟal value of variable a was '10'). Because the first two expression results were not stored in a
variable, these results are lost.

The '+=' operator means 'add the result of the expression to the right (12) to the variable on the leŌ'.

You could also have typed myFirstVar = myFirstVar + 12;

Finally, let's deliberately produce some errors and see what happens.

Justina User Manual just an Interpreter for Arduino

2 Getting started Page 7

Parsing errors

In the command line, type

 myFirstVar = 20; myFirstVar += 3 + 5 + * 7-2; 20 + 21;

Serial Monitor output:

Even before the result of the expression could be calculated, a parsing error occurred: the interpreter detected a
syntax error in the second expression (the '*' makes no sense there).

Nothing is echoed aŌer the prompt, instead the expression containing the error is printed with a caret symbol
indicaƟng the posiƟon of the error. Looking up the parsing error message number 1103 in the documentaƟon reveals
that an invalid operator was detected.

ExecuƟon errors

In the command line, type 123 + asin(-2) + 789;

Serial monitor output:

As parsing went OK, your input is echoed aŌer the prompt.

But there's sƟll a problem: the domain for the inverse sine funcƟon asin() is [-1, 1]. So, an execuƟon error occurs and
the posiƟon of the error is shown.

Error number 3100 indicates that an argument is out of range.

A simple loop

In the command line, type var i; for i = 1, 5; coutLine "line = ", i; end;

Serial monitor output:

Justina User Manual just an Interpreter for Arduino

2 Getting started Page 8

The words for, coutLine and end are all keywords, indicaƟng the start of a command. We will discuss the complete
syntax later, but for now:

for and end form a loop structure. In this example, they instruct JusƟna to execute the statements in between 5 Ɵmes,
each Ɵme augmenƟng the value of I by 1.
coutLine ('console out line') prints its arguments to the console and moves to the next line.

Note that command arguments, just as funcƟon arguments, are separated by a comma. But the command argument
list is not put between parentheses in contrast to funcƟon arguments.

Statements (commands or simple expressions) are separated by a semicolon.

EdiƟng and saving your first program

On your computer, in notepad, create a text file with the following text (in next examples we'll switch to notepad++,

offering line numbering and JusƟna syntax highlighƟng).

program myFirstProgram; // this is a JUSTINA program
var i; // this is a global PROGRAM variable
function print5lines(): // this is a function
 for i = 1, 5; // this is the start of a loop
 coutLine "line = ", I; // this prints something
 end; // this is the end of a loop
 return I ** 2; // this returns the square of I
end; // this the end of a function

Save the program under a name, let's say 'myFirst.jus' .

Note: in a JusƟna program, line comments start with two slash characters. All text starƟng with '//' unƟl the end of the
same line is simply discarded during parsing.
Line comments and mulƟ-line comments will be discussed in chapter 13: Programming.

Now, we need to get this program into the Arduino (for the moment, let's assume an SD card reader is not aƩached to
your Arduino, so we cannot get it from there).

Installing a Terminal program on your computer

Unfortunately, we cannot use the Arduino IDE Serial Monitor to send files to the Arduino board (for those developing
with Visual Studio and the VisualMicro Arduino IDE: same issue).

Luckily enough, there are a few good free terminal programs out there. The one I prefer is YAT and we will use it
throughout this manual. A second one which works quite well is named Tera Term. These terminal programs are freely
downloadable on your PC. They allow for serial communicaƟon via USB as well as via TCP / IP connecƟons.

In what follows, we'll sƟck to YAT because it has a couple of nice, useful features.

 To download, install and setup YAT, please refer to Appendix G: Installing YAT .

Assuming that you installed YAT, you can now use YAT as your serial monitor to send JusƟna statements to your
Arduino: when you type a statement in the 'Send Text' textbox and press Enter, you’ll see your Arduino's response, as
you did in the preceding examples.

Justina User Manual just an Interpreter for Arduino

2 Getting started Page 9

Sending a JusƟna program to your Arduino

In Terminal Seƫngs, verify that "Serial COM port" is selected as I/O type, the correct serial port is selected and the
baud rate is set.

Also, at the boƩom of the terminal window, check that indicators RTS (request to send) and DTR (data terminal ready)
both show a green light. If not (showing red), click the indicators to set RTS and DTR ON (indicators should switch to
green).

To connect, click Terminal -> open/start or click the green ‘open/start terminal’ buƩon.

⚠ Remember to close the (Arduino, MS Visual Studio, ...) IDE Serial Monitor before connecƟng the Terminal app
to your Arduino.

You're ready to load your first program now. Referring to the figure above:

 Using the buƩon with 3 dots to the leŌ of YAT key 'send file', select the program you just saved
(note that this file is also available as part of the JusƟna language example programs, in library folder
‘libraries\JusƟna_interpreter\extras\JusƟna_language_examples\’, in your Arduino sketchbook locaƟon).

 Send the command loadProg to Arduino (type it in the 'Send text' textbox and press ENTER or click buƩon 'Send
Text'). This will instruct JusƟna to start waiƟng for a JusƟna program, listening to the 'console input' device (Serial,
as defined in the Arduino program that started JusƟna – see chapter 2: Geƫng started).

 Send the file you just selected to Arduino (buƩon 'Send File')

Notes
 Command loadprog Ɵmes out aŌer 15 seconds if it’s not followed by a program.
 You can load a JusƟna program from any input device, not only the device defined as 'console' - for instance a

TCP input stream, an SD card file (if connected) We'll discuss that in chapter 12: Other funcƟons and
commands.

If JusƟna returns an error code: check your program (text file) and correct any typing errors.

If all is OK, YAT Terminal output will be:

CongratulaƟons ! You just loaded your first program. It has been parsed and is ready for execuƟon. Time to run it !

YAT terminal window (lower part)

Justina User Manual just an Interpreter for Arduino

2 Getting started Page 10

Now, execute funcƟon print5lines (it was defined in program myFirstProgram, in file 'myFirst.jus'):

Type print5lines(); (+ ENTER, or click buƩon Send Text) :

YAT terminal output:

Value 36 is the result returned by the program.

PrinƟng calculaƟon results can be switched off if desired.

ConvenƟons used in this manual

JusƟna commands are printed in bold

Built-in funcƟons are printed in italic.

Square brackets ([]) indicate opƟonal parts of an argument list

Single quotes (' ') are used for clarificaƟon only, and are not part of commands, funcƟons or expressions.

Sample code lines are shown with a fixed spacing font, with a gray background.

JusƟna console output is shown in a light-colored background.

Examples

const name1 = literal1 [, name2 = literal2, name3 = literal3...] ;

digitalWrite (LED_BUILTIN, HIGH);

var n=0, i=0, fact=0; // init as integer
n=1; fact=1; for i =2, n; fact=fact * i; end; // 1!
n=4; fact=1; for i =2, n; fact=fact * i; end; // 4!
n=6; fact=1; for i =2, n; fact=fact * i; end; // 6!

Justina User Manual just an Interpreter for Arduino

3 Statements: commands and expressions Page 11

3 Statements: commands and expressions

A statement consists of either a single expression, or a JusƟna command.

MulƟple statements entered together (on the command line or in a program) must be separated by a semicolon
character: statement ; statement ; statement...

Expressions

An expression is anything that consists of funcƟons with arguments and operators acƟng upon operands (funcƟon
arguments and operands can be expressions themselves). Expressions always yield a result, that is, expressions are
evaluated and make available a result.

Examples:

3 + sqrt(5) ;
name = firstName + " " + lastName ;

(name, firstName and LastName must be declared as variables)

Commands

A command always starts with a keyword, opƟonally followed by a list of expressions, being the arguments of the
command. Commands 'do' something (for example declaring and iniƟalizing a variable), but they do not return a
result.

If a command has arguments, at least one space must separate the command from the first argument.

Note that the argument list, if present, is not put within parentheses. Expressions used as command arguments are
separated by a comma, just like funcƟon arguments.

Command syntax:

keyword [expression [, expression, expression, expression]...] ;

Examples

stopSD ;
copyFile "source.txt", "myCopy.txt" ;
var myName = "John", total = 0 ;
cout 3 + 5 ;

In JusƟna, all idenƟfier names (built-in command and funcƟon names, names of user-wriƩen funcƟons, variable
names, ...) follow the same naming convenƟon: names must start with a leƩer from a to z (or A to Z), and may be
followed by a sequence of leƩers, digits and underscore characters. The maximum name length is 20.

⚠ In JusƟna, all idenƟfier names are case sensiƟve!

Justina User Manual just an Interpreter for Arduino

4 Data types Page 12

4 Data types

JusƟna works with 3 types of values: signed integers, floaƟng point numbers and variable-length strings.

Signed integers (called 'integers' from this point on) are implemented as c++ 32-bit signed integers; floaƟng point
numbers (also called 'floats' from here on) as c++ 32-bit floaƟng-point numbers and JusƟna strings as c++ variable-
length char array heap objects.

Integers and floats are two disƟnct data types with a different internal representaƟon.

Integers are perfect for loop counters, working with binary numbers, logical and bitwise operators.

Integer and float literals

Any sequence of characters recognized as a number, but without a decimal point or an exponent, will be interpreted as
an integer, otherwise the character sequence will be interpreted as a floaƟng-point number.

Integers are perfect to work with Boolean and bitwise operators, or to perform binary arithmeƟc (discussed in chapter
7: Operators)

Integer numbers can be typed in binary or hexadecimal format as well, by preceding the number by a prefix. 0b or 0B
indicates binary, 0x or 0X means hexadecimal.

enter 123; integer

 123.; floaƟng point number

 12e2; floaƟng point number: the 'e' is interpreted as 'exponent.'

0x12e2; integer (base 10 number 4834): the 'e' is a hexadecimal digit.

String literals

Any sequence of characters typed or read and delimited by double quotes (").

Use escape sequences to include special characters as part of a string. An escape sequence consists of a backslash (' \ ')
character followed by another character. Four escape sequences are available:

 \\ Add a backslash character to a string
 \" Add a double quote character to a string instead of interpreƟng it as a string delimiter)
 \r Add a 'carriage return' control character (Ascii code 0x0D) to a string
 \n Add a 'line feed' control character (Ascii code 0x0A) to a string

Good to know: in JusƟna, empty strings ("") do not create a heap object, which helps in conserving memory.

enter "abc"; store a string containing 3 characters: abc

 "\"ab\\cd\"ef"; store a string containing 8 characters: ab\cd"ef

 ""; empty string (does not need character storage for the string)

 "line 1\r\nline2" same as "line 1" + line() + "line2"

FuncƟon line() in the last example is a JusƟna funcƟon returning a 2-character string with a CRLF (carriage return
line feed sequence.

Justina User Manual just an Interpreter for Arduino

5 The console Page 13

5 The console

From the perspecƟve of the user, the console is the input/output device sending commands to JusƟna and displaying
system output. JusƟna looks at it from the other side: JusƟna receives commands from the console and sends output
to it. Right now, the console has been set to the device connected to the 'Serial' stream. Later, we will see how to
change the console, e.g., to a device connected to a TCP/IP terminal, an OLED or LCD display etc.

Output sent to the console includes calculaƟon results, echo of user input, error messages etc.

 Note that input/output is not restricted to the console: several commands are available to read data from and
send data to any available input/output channel or SD card file (if an SD card board is connected). And as
menƟoned, it's even possible to change the console itself to another I/O device.

The following commands allow you to change the way data is displayed:

dispWidth width ; Changes the display width (for prinƟng calculaƟon results). Minimum is 0,
maximum is 255 - even if larger values are entered.
JusƟna will try to fit values within the width set but will use more print space if
required.
By default, values are printed right aligned within a predefined display width.

dispMode promtAndEcho,
 displayResults ;

Sets the display mode.
promptAndEcho: indicates whether the JusƟna prompt and user input echo
must be displayed. Using predefined constants:
NO_PROMPT 0 do not print prompt and do not echo user input
PROMPT 1 print prompt but no not echo user input
ECHO 2 print prompt and echo user input (default).

displayResults: indicates if and how calculaƟon results must be displayed. Using
predefined constants:
NO_RESULTS 0 do not print results
RESULTS 1 print results (default)
QUOTE_RES 2 print string values surrounded by double quotes. Backslash
 and double quote characters included in the string are
 expanded to escape sequences - see 'quote()’ funcƟon.

Example

With command displayMode NO_PROMPT, RESULTS; , JusƟna can be used as a programmable scienƟfic
calculator, showing results not interrupted by prompts and user input echo.

Strings shown surrounded with
double quote characters

Justina User Manual just an Interpreter for Arduino

5 The console Page 14

Formaƫng numeric values

The two commands below define how floaƟng-point and integer values are formaƩed when printed in calculaƟon
results and in echoed user input.

⚠ Note that these two seƫngs also define how numeric values are printed using commands to write data to any
input/output device or SD card file (if SD card connected). See chapter 10: Input and output.

floatFmt precision
 [, notaƟon] [, flags]] ;

Sets display / print formaƫng for floaƟng-point numbers. Arguments ‘notaƟon’
and ‘flags’ can be entered as predefined constants.

Precision: With fixed point and exponenƟal notaƟon, specifies the number of
digits to be printed aŌer the decimal point. With ‘shortest’ notaƟon, specifies
the maximum number of significant digits to be printed.

NotaƟon: display format for floaƟng point numbers.
FIXED "f" fixed point notaƟon
EXP "e" scienƟfic notaƟon
EXP_U "E" scienƟfic notaƟon, ‘E’ uppercase
SHORT "g" shortest notaƟon (fixed or scienƟfic)
SHORT_U "G" shortest notaƟon (fixed or scienƟfic), ‘E’ uppercase

Flags: used to finetune output. Flags are predefined constants. They can be
combined by adding their values together. Using predefined constants:
FMT_LEFT 1 align leŌ
FMT_SIGN 2 always add a sign (- or +) preceding the value
FMT_SPACE 4 precede the value with a space if no sign
FMT_POINT 8 always add decimal point
FMT_000 16 pad the print field with zeros
FMT_NONE 0 clear all flags (see remark, below)

intFmt precision
 [, notaƟon] [, flags]] ;

Sets display / print formaƫng for integers. Arguments ‘notaƟon’ and ‘flags’ can
be entered as predefined constants.

Precision: specifies the minimum number of digits to be wriƩen. If the value has
less digits, the print field will be padded with leading zeros.

NotaƟon:
DEC "d" decimal representaƟon (base 10)
HEX "x" hexadecimal representaƟon (base 16)
HEX_U "X" idem (base 16), hexadecimal digits A-F uppercase

Flags: used to finetune output. Flags are predefined constants. They can be
combined by adding their values together.
FMT_LEFT 1 align leŌ
FMT_SIGN 2 always add a sign (- or +) preceding the value
FMT_SPACE 4 precede the value with a space if no sign
FMT_0X 8 if hex. notaƟon: precede non-zero values with
 "0x" or "0X"
FMT_NONE 0 clear all flags (see remark, below)

Justina User Manual just an Interpreter for Arduino

5 The console Page 15

NotaƟon and flag arguments are both opƟonal; notaƟon and flags last set remain in effect unƟl explicitly entered as
argument a next Ɵme the command is executed. When flags are included as argument, all flags not included are reset.
To clear all flags explicitly, use value 0 (or use predefined flag FMT_NONE).

Note: to display string results leŌ jusƟfied, set the display width to zero (or use the fmt() funcƟon - explained in
chapter 10: Input and output).

Example

Display floaƟng point number '12.3456789' using different seƫngs.

Example

Display integer 53 padded with leading zeros; then display integer 1234567 using different seƫngs.

Note that the number base used for input can be binary, decimal or hexadecimal, this is unrelated to the output
format.

Example

Perform binary arithmeƟc and use bitwise operators (discussed in chapter 7: Operators)

Justina User Manual just an Interpreter for Arduino

6 Justina variables and constants Page 16

6 JusƟna variables and constants

6.1 Variables

A variable can hold any of the three available data types: integer, float and string.

A variable is declared using the keyword var, the name of the variable and an opƟonal iniƟalizer. A variable declared
from the command line is a user variable; any variable declared within a program is a program variable.

 Within a program funcƟon, variables can also be declared with the 'staƟc' keyword - see chapter 13:
Programming.

Variables can be declared as scalars (holding one value) or arrays (holding mulƟple values).

 Scalar variables can receive values of any data type - they will adapt their value types accordingly.
 Arrays can have 1 to 3 dimensions. All values stored in an array have the same data type. Once iniƟalized, an

array cannot change its data type anymore. If possible, values will be cast to the data type of the array.
Otherwise, an execuƟon error will be produced.

var name1 [(dim1 [, dim2 [, dim3]]])] = literal1 [, name2 ..., name3 ...] ;

If a variable has an iniƟalizer literal, the data type is derived from it. Without an iniƟalizer, the variable is defined as a
float and is iniƟalized to zero. String arrays can only be iniƟalized with an empty string.

The var command is a non-executable command: it creates and iniƟalizes variables before execuƟon starts (during
parsing).

Delete individual user variables with the delete command, followed by a list of variable names (arrays: without
dimensions).

delete name1, name2, ... ;

The delete command is a non-executable command and it is not allowed within a program. It must be the first (or
only) statement typed in the command line. It deletes user variables before execuƟon starts.

This will produce an error:

 var hello;
delete hello; hello = "hi"; error (variable does not exist)

Program variables are deleted automaƟcally when a program is deleted.

Examples

var monthlyDetail (12, 5) = 0, monthlyTotal (12) = 0, grandTotal = 0;
var birdNames (10) = "";

 delete monthlyDetail, birdNames;

The array iniƟalizers are important here because they declare the two arrays as integer arrays. By default, they would
be declared as floats (and iniƟalized to 0.)

The maximum for each dimension is 255 elements. But because of RAM memory constraints in microcontrollers, the
maximum number of array elements is set to 1000, occupying a 4-kilobyte block of data. This does not include

Justina User Manual just an Interpreter for Arduino

6 Justina variables and constants Page 17

character storage for non-empty strings stored as array elements. For the same reason, string arrays are always
iniƟalized with empty strings.

Variable names

Variable names follow the same rules as names for constants and user funcƟon names: they must start with a leƩer
from a to z (or A to Z) and may be followed by a sequence of leƩers, digits and underscore characters. The maximum
name length is 20 by default. Names are case sensiƟve.

6.2 Constant variables

Just as normal variables, constant variables can hold any of the three available data types: integer, float and string.

A JusƟna constant variable is declared using the keyword 'const' followed by the name of the constant, an equal sign
and a constant literal defining a value in any of the three defined data types. A constant declared from the command
line is a user constant; any constant declared within a program is a program constant.

MulƟple constants can be declared in one 'const' statement:

 const name1 = literal1 [, name2 = literal2, name3 = literal3...] ;

The constant data type is derived from the iniƟalizer literal (which is mandatary for a constant). Once iniƟalized (before
execuƟon starts), the contents of a constant cannot be changed any more.

The const command is a non-executable command: it creates and iniƟalizes constant variables before execuƟon starts
(during parsing).

Delete individual user (constant) variables with the delete command, followed by a list of user constant (and variable)
names.

delete name1, name2, ...

Note: this is the same delete command used to delete non-constant variables. It’s a non-executable command and it is
not allowed within a program. It must be the first (or only) statement typed in the command line.

Note that program constants are only deleted when a program is deleted.

Examples

 const animal = "dog" JusƟna string
 const chairs = 3, height = 3.2, pet = "cat" 3 constants defined
 delete tables, chairs; delete 2 constants

Constant names

Constant variable names follow the same rules as names for ordinary variables. Constant variables are always scalar,
containing one single value; they cannot be defined as arrays of values.

Justina User Manual just an Interpreter for Arduino

6 Justina variables and constants Page 18

6.3 Predefined constants

Constant variables are not to be confused with predefined constants, like:

e refers to 'Eulers Number' (2.718281...)

PI 3.1415926535897932...

INPUT_PULLUP is used as argument of JusƟna funcƟon 'pinMode()'

During parsing, the symbolic name of a predefined constant is replaced by its value.

Using predefined constants as arguments to command or funcƟons makes a program much more readable and
understandable.

Boolean values

JusƟna uses the integer data type to work with Boolean values: a zero value means 'false', a non-zero value means
'true'. When JusƟna needs a Boolean value (e.g., as argument of a funcƟon), use a predefined constant instead
of '0' or '1' to enhance for readability:

'Boolean' constant Value
FALSE 0
TRUE 1
LOW 0
HIGH 1
OFF 0
ON 1

A complete list of predefined constants is available in Appendix H: List of predefined constants.

Justina User Manual just an Interpreter for Arduino

7 Operators Page 19

7 Operators

JusƟna operators are listed below with precedence (1 is highest) and associaƟvity.

 AssociaƟvity: if two or more successive operators in an expression have same precedence (as in 1 + 2 - 5),
then associaƟvity defines whether operaƟons will be applied to the operands in right-to-leŌ or leŌ-to-right
order.
Most operators have leŌ-to-right associaƟvity. Assignment operators (including compound assignment
operators, like the '+=' operator), all prefix operators and exponenƟaƟon operator '**' have right-to-leŌ
associaƟvity.
As an example, the power operator ‘**’ has right-to-leŌ associaƟvity:

2 ** 3 ** 2  2 ** (3 ** 2)  2 ** 9 = 512

Operators with right-to-leŌ associaƟvity are shown with a light gray background.

Precedence Operator DescripƟon

1
Highest

() Parentheses (funcƟon calls, array elements,
simple parentheses)

2 ++
--

Posƞix increment and decrement

3 ++
--

Prefix increment and decrement

4 ** power

5 +
-
!
~

Unary plus and minus

Logical negaƟon
Bitwise complement

6 *
/
%

MulƟplicaƟon, division

Integer modulus

7 +
-

AddiƟon, string concatenaƟon
SubtracƟon

8 <<
>>

Bitwise shiŌ leŌ and right

9 <
<=
>

>=

RelaƟonal less than, less than or equal

RelaƟonal greater than, greater than or equal

10

==
!=

RelaƟonal is equal, is not equal

11 & Bitwise and

12 ^ Bitwise exclusive or

13 | Bitwise inclusive or

14 && Logical and

15 || Logical or

Justina User Manual just an Interpreter for Arduino

7 Operators Page 20

The precedence and associaƟvity rules are almost idenƟcal to those in c++. If you are in doubt, or to enhance
readability: use parentheses!

Notes

in JusƟna, an expression containing an assignment is sƟll an expression.

So, the following expressions are perfectly valid:

 a = b = c;  a = (b = c);  b = c; a = b;
 a = 1 + (b+= c);  a = 1 + (b = b + c);  b = b + c; a = 1 + b;

All operators in the table above require numeric values as operands. ExcepƟon: the addiƟon operators
(= +=) are used as string concatenaƟon operators when the operands are strings.

Compound assignments first perform an operaƟon on the two operands and then assign the result to the first
operand. Example: a+=2 adds two to the value of a (which must be a variable).

Bitwise operators (& | ^ ~ << >> &= |= ^= <<= >>=) and the integer modulus operator (%) need integer
values as operands. Applying these operators to floaƟng point operands will create a runƟme error (execuƟon error).

Note: to calculate the modulus of two floaƟng point numbers, use the modulus funcƟon fmod() described in chapter 8:
Math, string, type conversion, test and lookup funcƟons.

16 =

*=
/=
+=
-=
%=
&=
^=
|=

<<=
>>=

Assignment

Compound assignments
MulƟplicaƟon / division assignment

AddiƟon, string concatenaƟon assignment
SubtracƟon assignment
Modulus assignment
Bitwise and, exclusive or, inclusive or assignment

Bitwise shiŌ leŌ and right assignment

17
Lowest

, Separator between expressions (arguments) within a
command or funcƟon

18
Lowest

; Separator between statements

Justina User Manual just an Interpreter for Arduino

8 Math, string, type conversion, test and lookup functions Page 21

8 Math, string, type conversion, test and lookup funcƟons

The JusƟna interpreter comes with many built-in ('internal') funcƟons. This chapter covers part of them. Arduino
specific funcƟons will be discussed in the next chapter. Other funcƟons are covered in specific chapters, e.g., input and
output funcƟons.

 Note that JusƟna funcƟon names, like other idenƟfiers in JusƟna, are case sensiƟve (variables, symbolic constants,

command names and funcƟon names whether they are built-in or wriƩen by yourself as in the last example).

In the remainder of this chapter, both the term 'value' and 'expression' refer to an expression that will be evaluated to
obtain a value, unless otherwise noted.

8.1 Math funcƟons

angleMode mode ; This is not a funcƟon but a command. It sets the angle mode for trigonometric
funcƟons. Using predefined constants:
RADIANS 0 set angle mode radians
DEGREES 1 set angle mode degrees

FuncƟons in this table always return a float. The argument(s) must be integer or floaƟng-point numbers.

sqrt (value) square root

sin (value) sine of an angle. Angle: radians or degrees (see angle seƫng)

cos (value) cosine of an angle. Angle: radians or degrees (see angle seƫng)

tan (value) tangent of an angle. Angle: radians or degrees (see angle seƫng)

asin (value) inverse sine. Returns an angle in radians or degrees (see angle seƫng)

acos (value) inverse cosine. Returns an angle in radians or degrees (see angle seƫng)

atan (value) inverse tangent. Returns an angle in radians or degrees (see angle seƫng)

ln (value) natural logarithm

lnp1 (value) ln (value+1). Tends to be more accurate than ln(value+1) for small values

log10 (value) common (base 10) logarithm

exp (value) natural exponenƟal. Same as e ** value

expm1 (value) (e ** value) - 1. Tends to be more accurate than (e ** value) for small values

round (value) rounds value to the closest integer

ceil (value) rounds value to the closest integer not less than value

floor (value) rounds value to the closest integer not greater than value

trunc (value) rounds value towards zero. Example: 'trunc(-5.7)' yields -5.

fmod (value) remainder of division (note: for integer division remainder, use operator '%'

Justina User Manual just an Interpreter for Arduino

8 Math, string, type conversion, test and lookup functions Page 22

The funcƟon below always returns an integer, even if the argument is a floaƟng-point number.

The argument must be integer or floaƟng-point numbers.

signBit (value) sign bit of numeric value (integer or floaƟng-point number): the sign bit of negaƟve
numbers is 1; for zero and posiƟve numbers it will be 0.

FuncƟons in this table return a float if the argument / at least one of the arguments is a floaƟng-point number,
otherwise an integer is returned. The argument(s) must be integer or floaƟng-point numbers.

min (value1, value2) minimum of two values

max (value1, value2) maximum of two values

abs (value) absolute value

A number of mathemaƟcal constants are predefined in JusƟna (e, π, ...), as well as conversion factors from radians to
degrees and vice versa. Please refer to Appendix H: List of predefined constants.

8.2 Lookup and test funcƟons

iŌe (test value, value if true, value if false)
iŌe (test value 1, value if true, test value 2, value if true [, test value n, value if true ...] [value if false])

The first form corresponds to the classic if (...) funcƟon. The test expression is evaluated, if it is true (not equal to zero)
the 'value if true' is returned, otherwise the 'value if false' is returned.

The second form successively evaluates test values from leŌ to right unƟl a test result is true (not equal to zero). It
then returns the corresponding 'value if true'. If none of the test values evaluate to true, either a zero is returned or, if
provided, the 'value if false' is returned.

Test values must be numeric; other arguments can be any data type.

Note that all arguments of these funcƟons are evaluated.

Maximum number of funcƟon arguments = 16.

Justina User Manual just an Interpreter for Arduino

8 Math, string, type conversion, test and lookup functions Page 23

The first argument (‘value’) is successively compared with the test values ‘test 1’, ‘test 2’, ... and if a match is found,
the corresponding result value is returned. If no match is found, either zero is returned or the default result (if it is
provided).

All data types are accepted as funcƟon arguments.

Note that all arguments of this funcƟon are evaluated.

Maximum number of funcƟon arguments = 16.

The index value is an integer not smaller than one. It determines which of the next values will be returned.

An error is produced if the index is not within range (1 to the number of return values provided).

Except for the index value, all data types are accepted as arguments.

Note that all arguments of this funcƟon are evaluated.

Maximum number of funcƟon arguments = 16.

index (test expression, expression 1, expression 2 [, expression 3 ...])

The test expression is successively compared with the other expressions provided as arguments unƟl a match is found
and the index number of the match is returned. If no match is found, zero is returned.

All data types are accepted as funcƟon arguments. The data type of the funcƟon result is integer.

Note that all arguments of this funcƟon are evaluated.

Maximum of funcƟon arguments = 16.

switch (value, test 1, result 1 [, test 2, result 2 ...] [default result])

choose (index value, value if 1, value if 2 [value if 3, value if 4, ...])

Justina User Manual just an Interpreter for Arduino

8 Math, string, type conversion, test and lookup functions Page 24

8.3 Type conversion funcƟons

cInt (value) AƩempts to convert a value in any data type to an integer value.
if the argument is a string, characters will be taken into account as long as the
resulƟng value is a valid integer. If none, zero will be returned.

cFloat (value) AƩempts to convert a value in any data type to a floaƟng-point value.
if the argument is a string, characters will be taken into account as long as the
resulƟng value is a valid floaƟng-point number. If none, zero will be returned.

cStr (value) Converts a value in any data type to a string. No specific formaƫng will be applied (to
format a value into a string, use the fmt(...) funcƟon.

8.4 String funcƟons

FuncƟons within these tables all deal with strings (a sequence of characters).

FuncƟons referring to a posiƟon within a string use 1 as the first character. The posiƟon of the last character indicates
the length of a string. An empty string has 0 characters.

If character posiƟons or other arguments are outside the valid range, an error will be produced.

char (asciiCode) Returns a one-character string with the character represented by
asciiCode (0 <= asciiCode <= 0xFE). 0xFF is not considered a valid ASCII
code.

len (string) Returns string length

line () Returns a 2-character string with a Carriage Return Line Feed Sequence

asc (string [, charPos]) Returns the ascii code for string character indicated by charPos (1 to n).
Default charPos = 1

rtrim (string) Returns a string with trailing spaces removed

ltrim (string) Returns a string with leading spaces removed

trim (string) Returns a string with leading and trailing spaces removed

leŌ (string, n) Returns a string containing only the n leŌmost characters

mid (string, start, n) Returns a string containing the n characters starƟng at posiƟon start of
the original string

right (string, n) Returns a string containing only the n rightmost characters

toUpper (string [, start [, end]]) Returns a string with (part of) the original string converted to uppercase

toLower (string [, start [, end]]) Returns a string with (part of) the original string converted to lowercase

space (n) Returns a string containing n spaces

repeatChar (string, n) Returns a string with character 1 from a string repeated n Ɵmes

findStr (string, substring,
 [, start])

Returns the posiƟon of a substring in a string. If a start posiƟon for the
search is not given, the search starts at the first character. Returns 0 if
substring not found

Justina User Manual just an Interpreter for Arduino

8 Math, string, type conversion, test and lookup functions Page 25

replaceStr (string, substring,
 replaceWith [, start])

Returns a string with a given substring subsƟtuted by a replacement
string. If a start posiƟon for the search is not given, the search starts at
the first character. Returns the original string if substring is not found.
If start is a variable, its value will be set to the first posiƟon in the
returned string aŌer the replacement string. Returns 0 if the substring
was not found, 1 + new string length if substring contained last
characters of string

replaceChar (string variable, ASCII
code [, character posiƟon])

Replaces a single character in a string variable with a character specified
by its ASCII code. If 'character posiƟon' is not specified, the first
character is replaced.
As this changes the original string object and no new string is created,
this speeds up execuƟon.
This funcƟon always returns zero.

strCmp (string1, string2)

Performs a binary comparison between two strings.
Returns 0 if the two strings are equal. Returns a negaƟve integer if the
first non-matching character has a lower value in string 1 than in string2
and a posiƟve integer if it has a greater value

strCaseCmp (string1, string2) Performs a case insensiƟve comparison between two strings.
Returns 0 if the two strings are equal. Returns a negaƟve integer if the
first non-matching character has a lower value in string 1 than in string2
and a posiƟve integer if it has a greater value

ascToHexStr (ASCII code) Returns a two-character string encoding a given ASCII code into two
characters, represenƟng the two hexadecimal digits of the ASCII code.
Examples:
 ascToHexStr(0x61) -> "61" (ASCII code of 'a')
 ascToHexStr(98) -> "62" (ASCII code of 'b')
 ascToHexStr(asc("c")) -> "63" (ASCII code of 'c')

hexStrToAsc(string [, start posiƟon]) Decodes two characters of a string, starƟng at 'character posiƟon' and
represenƟng the two hexadecimal digits of an ASCII code, into that ASCII
code. If 'start posiƟon' is omiƩed, the first two characters are decoded.
If the characters do not represent hexadecimal digits, the funcƟon
returns -1. Examples:
 hexStrToAsc ("62") -> 98 (ASCII code of 'b')
 char(hexStrToAsc ("63")) -> "c"

quote (expression) If the argument is a number, converts it to a string (same as cStr()
funcƟon).
If the argument is a string:

 add surrounding double quotes
 replace all '\' (backslash) characters in the string with a

sequence of two '\' characters
 replace all ' " ' (double quote) characters with a sequence

consisƟng of a '\' character and a ' " ' character
Note: quote() is most useful when used with the eval() funcƟon (further
down in this chapter).

Justina User Manual just an Interpreter for Arduino

8 Math, string, type conversion, test and lookup functions Page 26

In the following table, the default for argument 'charPos' is 1.

isAlpha (string [, charPos]) Returns a non-zero value if the character indicated by charPos is a
leƩer

isAlphaNumeric (string [, charPos]) Returns a non-zero value if the character indicated by charPos is a
leƩer or a digit

isAscii (string [, charPos]) Returns a non-zero value if the character indicated by charPos is an
ASCII character

isControl (string [, charPos]) Returns a non-zero value if the character indicated by charPos is a
control character (ASCII codes 0 to 0x1f; 0x7f)

isDigit (string [, charPos]) Returns a non-zero value if the character indicated by charPos is a
digit

isGraph (string [, charPos]) Returns a non-zero value if the character indicated by charPos has
a graphical representaƟon. Same as isPrintable() funcƟon, but
without the space character

isHexDigit (string [, charPos]) Returns a non-zero value if the character indicated by charPos is a
hexadecimal digit (0 to 9, A to F)

isLowerCase (string [, charPos]) Returns a non-zero value if the character indicated by charPos is a
lowercase character (a to z)

isUpperCase (string [, charPos]) Returns a non-zero value if the character indicated by charPos is an
uppercase character (A to Z)

isPrintable (string [, charPos]) Returns a non-zero value if the character indicated by charPos is a
printable character (it's not a control character): all ASCII codes
greater than 0x1f, except ASCII code 0x7f

isPunct (string, [, charPos]) Returns a non-zero value if the character indicated by charPos has
a graphical representaƟon (as in isGraph() funcƟon) but is not
alphanumeric

isWhitespace (string [, charPos]) Returns a non-zero value if the character indicated by charPos is a
space, a horizontal tab (0x09), a verƟcal tab (0x0b), a form feed
(0x0c), a carriage return (0x0d) or a new line (0x0a) character

8.5 InformaƟon funcƟons

ubound (array variable name,
 dimension)

Array variables only: returns the upper bound of a dimension (an
array can be defined with 1 to 3 dimensions).
If the variable is not an array, or the dimension specified does not
exist, an error is returned

dims(array variable name) Array variables only: returns the number of dimensions (an array
can be defined with 1 to 3 dimensions).
If the variable is not an array, or the dimension specified does not
exist, an error is returned

type (expression) Returns the variable (scalar or array element) data type. Use
following constants to test the data type of a value:
INTEGER 1 integer data type

Justina User Manual just an Interpreter for Arduino

8 Math, string, type conversion, test and lookup functions Page 27

FLOAT 2 floaƟng point data type
STRING 3 string data type
Note: although all elements of an array have the same data type,
you must specify an array element

r ([index]) If 'index' is 1 or index is not provided, returns the last result of a
calculaƟon.
If 'index' is between 2 to 10, return previous results.

isColdStart() Returns 1 if JusƟna went through a cold start; returns 0 if not
(please refer to the quit command)

sysVal (index) Returns a system value maintained by JusƟna.

Index DescripƟon
Display seƫngs
0 display width (calculaƟon results only)
1 floaƟng point number formaƫng: precision
2 floaƟng point number formaƫng flags
3 floaƟng point number formaƫng: notaƟon
4 integer number formaƫng: precision
5 integer number formaƫng flags
6 integer numbers formaƫng notaƟon
7 prompt and echo seƫng (none, prompt only, prompt +

echo)
8 print last calculaƟon results: yes/no
9 angle mode: 0 is radians, 1 is degrees
fmt() funcƟon seƫngs
10 print field width
11 numeric values: precision
12 numeric values: formaƫng flags
13 numeric values: notaƟon
14 string values: number of characters to print
other
15 Current count of ‘last values’ stored in ‘last values fifo’
16 open SD file count
17 number of defined external IO devices
18 loaded program name (or empty string)
19 trace string (if defined, otherwise empty string)
product info
31 product name
32 legal copyright
33 product version
34 build date
technical data (normally not relevant for the user)
36 evaluaƟon stack: element count
37 flow control stack: element count (call stack depth +

open block count)
38 call stack depth
39 number of stopped programs
40 parsed programs stack: element count (number of

stopped programs + open eval() strings
41 created linked list object count (since startup)

Justina User Manual just an Interpreter for Arduino

8 Math, string, type conversion, test and lookup functions Page 28

42 currently acƟve (created, not yet deleted) objects:
count per object type

43 currently acƟve (created, not yet deleted) objects:
errors per object type

44 returns processor board type:
BOARD_OTHER 0 none of the following
BOARD_SAMD 1 SAMD arch.: nano 33 IoT,...
BOARD_RP2040 2 nano RP2040
BOARD_ESP32 3 nano ESP32

Justina User Manual just an Interpreter for Arduino

8 Math, string, type conversion, test and lookup functions Page 29

8.6 The 'eval()' funcƟon: parsing and execuƟng expressions at runƟme

When an eval() funcƟon is executed, it stops execuƟon, then parses a list of expressions stored in its string argument
(using the same parser that parses JusƟna statements) and executes them. When done, normal execuƟon conƟnues.

eval (string) String: a list of expressions, stored as text and separated by semicolons, and contained
within double quotes.
The string cannot contain command statements (expressions only) but no other
restricƟons apply: you may use variables and constants, operators, call built-in funcƟons,
funcƟons in a JusƟna program, 'external' funcƟons you write in c++, and even other
(nested) eval funcƟons.
FuncƟon eval() returns the result of the last expression in its expression list as funcƟon
result.

To include a string constant within ‘string’, use escape sequences (see chapter 4: Data types), like in this example (extra
spaces for clarity): eval(" \"abc\" + \"def\" "); returns string "abcdef".

Uses of the eval() funcƟon

1. Store much-used expressions as a string in a variable. You can then perform 'eval(variable)' to obtain the result
without having to write a JusƟna funcƟon.

2. Parse and evaluate an expression only known at runƟme. Typical use: in conjuncƟon with the input statement (see
chapter 10: Input and output), allow the user to type in an expression (not just a value) when a program requests
input from the user.

3. During debugging, access local variables of a program stopped for debugging, from within another program.
Please refer to chapter 13: Programming for an example.

4. Use eval() as a (very simple) form of indirecƟon (although in most cases, a beƩer way is using an array).

Example: store much-used expressions as a string in a variable

In this example, a simple formula 'age * 12' is stored in variable ' yearsToMonths '.

ExecuƟng ' eval(yearsToMonths) 'returns the value stored in variable age, mulƟplied by 12.

Justina User Manual just an Interpreter for Arduino

8 Math, string, type conversion, test and lookup functions Page 30

Example: evaluate an expression only known at runƟme

One of the programs in the JusƟna library 'Examples' collecƟon is stored in file ‘input.jus’. We will not study this
program here; we'll merely use it to demonstrate the use of the 'eval()' funcƟon.

StarƟng the program (funcƟon evalInput()), this is what you'll see:

Apparently, the program has stopped, asking you to enter an amount in metric tons (the 'input' statement taking care
of this will be discussed in chapter 13: Programming).

If you enter 2 + 5 + 1; and press ENTER, then you'll see this:

Within the program, an 'eval()' funcƟon (see code line below) parses and executes expression '2 + 5 + 1', yielding 8,
which is then mulƟplies by 1000 and stored in a program variable 'amount'. This amount is then added to variable
'totalAmount' (assignment operators have right-to-leŌ associaƟvity).

...
totalAmount += amount = eval(answer) * 1000;
...

Then, the program conƟnues, first prinƟng the amount in kg, and then asking for a new amount.

AŌer a few entries, we exit the loop by typing '\c' (cancel) + ENTER.

The program then prints the total amount entered and exits.

Justina User Manual just an Interpreter for Arduino

8 Math, string, type conversion, test and lookup functions Page 31

Example: use eval() as a way to obtain indirecƟon

This example uses two variables:

 variable 'ref' contains the name of another variable, in this example named 'value'
 variable 'value' contains value 7

ExecuƟng 'ref' would return string "value", whereas 'eval(ref)' returns numeric value 7.

Please note that this is not a very elegant way of ‘calculaƟng’ which value you want to obtain (‘7’).
A much beƩer method is storing values in an array and then simply indexing the array.

Justina User Manual just an Interpreter for Arduino

9 Arduino-specific functions Page 32

9 Arduino-specific funcƟons

The funcƟons below are, in most cases, the JusƟna equivalent of corresponding Arduino funcƟons. Use them in your
JusƟna programs or type them in from the command line of the Serial Monitor for quick prototyping or tesƟng.

9.1 Arduino-specific digital I/O, Ɵming and other funcƟons

To refer to built-in LED pins, use these predefined constants:

The following JusƟna funcƟons implement the corresponding Arduino funcƟons. Please visit the Arduino Language
Reference for accurate descripƟons.

millis ()

micros ()

delay (Ɵme in milliseconds) In JusƟna, this funcƟon is replaced by the wait () funcƟon,
described below this table.

digitalRead (pin) returns 0 (pin value is low) or 1 (high)

digitalWrite (pin, value) value: for readability, use these predefined constants:
LOW or OFF or FALSE 0
HIGH or ON or TRUE 1

pinMode (pin, mode) mode: for readability, use predefined Arduino constants
INPUT 1
OUTPUT 3
INPUT_PULLUP 5
INPUT_PULLDOWN 9

analogRead (pin)

analogReference (type) Not for nano RP2040

analogWrite (pin, value)

analogReadResoluƟon (bits)

analogWriteResoluƟon (bits)

noTone (pin)

pulseIn (pin, value [, Ɵmeout]) value: use predefined constants LOW (0), HIGH (1)

shiŌIn (dataPin, clockPin, bitOrder) bitOrder: for readability, use predefined constants
LSBFIRST 0
MSBFIRST 1

shiŌOut (dataPin, clockPin, bitOrder, value) bitOrder: use predefined constants LSBFIRST, MSBFIRST

Arduino constant Value
LED_BUILTIN 13
LED_RED 14 (Arduino nano ESP32 only)
LED_GREEN 15 (Arduino nano ESP32 only)
LED_BLUE 16 (Arduino nano ESP32 only)

Justina User Manual just an Interpreter for Arduino

9 Arduino-specific functions Page 33

tone (pin, frequency [, duraƟon])

random ([min,] max)

randomSeed (seed)

9.2 JusƟna funcƟons replacing Arduino-specific funcƟons

wait (Ɵme in milliseconds) This is the JusƟna replacement of the Arduino delay(..)
funcƟon. It does exactly the same thing (waiƟng for a number
of milliseconds), but without suspending JusƟna background
tasks (e.g. maintaining a TCP connecƟon) while waiƟng. More
informaƟon is available in Appendix D: 'Running background
tasks: system callbacks'.

9.3 Arduino-specific bit and byte manipulaƟon funcƟons

The following funcƟons implement the corresponding Arduino funcƟons. Please visit the Arduino Language Reference
for accurate descripƟons.

x: value to be read or changed, n: bit number (0 to 31); b: bit value to write (0 or 1).

x, n data type must be integers.

Note that in the standard Arduino funcƟons, the value to be changed, x, must be a variable. In JusƟna, a constant is
allowed too (constants are not modified, of course).

bit (n)

bitRead (x, n)

bitClear (x, n) JusƟna addiƟon: x can also be an integer constant

bitSet (x, n) JusƟna addiƟon: x can also be an integer constant

bitWrite (x, n, b) JusƟna addiƟon: x can also be an integer constant

highByte (x) replaced by JusƟna funcƟon byteRead (see below)

lowByte (x) replaced by JusƟna funcƟon byteRead (see below)

Justina User Manual just an Interpreter for Arduino

9 Arduino-specific functions Page 34

9.4 AddiƟonal JusƟna bit and byte manipulaƟon funcƟons

These funcƟons provide some useful addiƟons to the Arduino-specific funcƟons implemented in JusƟna.

In the tables underneath, x represents the value to be read or changed. Data type: integer.

Byte read and write funcƟons

Reads or writes 1 byte of a 32-bit integer value (constant or variable).

Note: use byteRead() instead of Arduino lowByte and highByte funcƟons, which are not supported.

x: value. Data type: integer

n: byte number (from 0 to 3; 0 is low order byte). Data type: integer.

b: value to write (0 to 255). Data type: integer.

byteRead (x, n) returns byte n of an integer value (number between 0 and 255)

byteWrite (x, n, b) returns x, with byte n of x changed to the lowest 8 bits of b. Other bits of x
are unchanged.
If x is a variable, its value will be set to the returned funcƟon result as well.
This can be avoided by puƫng x between parentheses
Example: fmt(byteWrite (0xF0F0, 1, 0x66), "x") -> 0x66F0

Masked word read and write funcƟons

Reads a masked 32-bit value; writes, sets or clears bits in a 32-bit value, specified by mask.

All arguments must have an integer data type.

maskedWordRead (x, mask) Returns value x with mask applied

maskedWordClear (x, mask) Returns value x with the bits indicated by mask cleared.
If x is a variable, its value will be set to the returned funcƟon result as well.
This can be avoided by puƫng x between parentheses

maskedWordSet (x, mask) Returns value x with the bits indicated by mask set.
If x is a variable, its value will be set to the returned funcƟon result as well.
This can be avoided by puƫng x between parentheses

maskedWordWrite (x, mask, v) Returns x with bits indicated by mask changed to same bits in v.
If x is a variable, its value will be set to the returned funcƟon result as well.
This can be avoided by puƫng x between parentheses

Justina User Manual just an Interpreter for Arduino

9 Arduino-specific functions Page 35

9.5 Direct memory locaƟon read and write funcƟons

Useful to read specific memory locaƟons, for instance peripheral registers (input / output, Ɵmers, ...), if you have good
reasons not to use the Arduino funcƟons provided or if there is no Arduino funcƟon available.

WARNING

Only use these funcƟons if you really know what you're doing.
If not, disaster will be lurking around the corner.

a: memory address as a 32-bit integer value (e.g., 0xa0f52804). The funcƟons below will align the address with the
start of a 32-bit word before execuƟng the funcƟon.

n: byte number in a word (0 to 3; 0 is low order byte).

v: value to read or write.

All arguments must have an integer data type.

mem32Read (a) returns the 32-bit word stored at memory address a as an integer

mem32Write (a, v) writes a 32-bit integer value v to memory address a. The funcƟon returns 0

mem8Read (a, n) returns the 8 bits stored at memory address a, byte n as an integer

mem8Write (a, n, v) writes an 8-bit integer value v to memory address a, byte n. The funcƟon
returns 0

Justina User Manual just an Interpreter for Arduino

10 Input and output Page 36

10 Input and output

10.1 IntroducƟon

By default, JusƟna uses the Arduino Serial monitor (or any serial terminal program or device) as its only IO device.
However, when the Arduino program creates the JusƟna object, it can pass a reference to all 'external IO' stream
objects it wants to make available as IO devices to JusƟna. These can be Serial ports, a TCP IP client, an LCD or OLED
display... (for more informaƟon, see Appendix A: CreaƟng a JusƟna object and choosing startup opƟons). The
maximum number of IO devices that can be defined in JusƟna is 4.

Note: typing 'sysVal(17)' will return the number of IO devices defined.

JusƟna handles input and output from/to I/O devices and (if an SD card board is connected) SD card files in the same
way, using a set of common commands and funcƟons (SD card commands and funcƟons which are not applicable to IO
devices will be discussed in next chapter: Working with SD cards).

 IO devices are referred to by an assigned ‘device number’: a negaƟve number from minus 1 to minus 'the
number of IO devices' in the order the stream references are passed to JusƟna.

 SD card open files are referred to by an assigned ‘open file number’: a posiƟve number from 1 to the number
of currently open SD card open files.

Generically, IO devices and open files are referred to as streams and are referred to by stream numbers.

Various JusƟna funcƟons and commands require a device number or open SD file number as argument.

Predefined constants are available to represent IO devices and open files in JusƟna (use them to make a program more
readable):

constant IO device number constant open file number

IO1 -1 FILE1 1
IO2 -2 FILE2 2
IO3 -3 FILE3 3
IO4 -4 FILE4 4
CONSOLE 0 (see below) FILE5 5

⚠ You should also read next chapter: Working with SD cards, if you plan to use SD card funcƟonality

The console

The console is defined as the only IO device capable of sending JusƟna commands, typed in the command line of the
Arduino IDE Serial monitor (or a suitable Terminal applicaƟon on your PC or even on your smartphone) to JusƟna. It is
also the IO device where system messages, the echo of statements, results of calculaƟons, ... and the ‘JusƟna>’ prompt
are sent to.

At startup, the IO device referred to by device number -1 (IO1) is set as the console. The user can change the console
to another IO device (if available).

You can read from, and write to, the console without having to bother about its device number in 2 ways:

 several funcƟons and commands always read from / write to the console. Example: cin() funcƟon, cout
commands.

 use predefined constant CONSOLE as device number with commands and funcƟons requiring a device
number.

Justina User Manual just an Interpreter for Arduino

10 Input and output Page 37

Debug out

During debugging and tracing, JusƟna writes specific informaƟon (e.g., the source line where a program was stopped)
to either a designated IO device or a designated SD file (if an SD card board is connected). This IO device or file is
simply named ‘debug out’ (files will be discussed in next chapter: Working with SD cards, debugging and tracing in
chapter 13: Programming).

In addiƟon, you can write to ‘debug out’ with two specific commands, dbout and dboutLine.

The debug out device (or file) is especially useful while debugging a JusƟna program.

At startup, IO device -1 (IO1) is set as the debug out device: because IO1 is also the (default) console, messages sent in
the context of debugging and tracing will appear on the console in between other system messages, your program
output etc.

If this is not wanted, ‘debug out’ can be set to a different IO device or even an open SD card file (if an SD card board is
connected).

10.2 PrinƟng data to a stream

The commands in the tables below will print all arguments, one by one, to the designated output device (or open SD
card file).

 Two commands, vprint and vprintLine, do not print to an IO device or open file but to a variable.

FuncƟons fmt(), tab(), col() and pos() can be used to format individual arguments (see secƟon 1.2.10: Applying
formaƫng to your output).

If no formaƫng is applied, floats and integers will be printed according to their respecƟve display seƫngs (see
floatFmt , intFmt commands in chapter 5: The console), but without taking into account any formaƫng flags set there:

 integers printed in hex format will be preceded by '0x'
 floats will always print with decimal point
 strings will print without any truncaƟng

PrinƟng to console

Note: any external IO device can be set as console (see further).

cout arg1 [, arg2, arg3, ...] ; Print all arguments to the console

coutLine [arg1 , arg2, arg3, ...] ; Same as cout, but advance to a new line when done

Example

In the command line, type

coutLine "an integer: ", 3 * 5, line(), "a float: ", 3. * 5.;

Justina User Manual just an Interpreter for Arduino

10 Input and output Page 38

Serial monitor output:

The ‘line ()’ funcƟon (third argument) advances the print posiƟon to the start of a new line. When all arguments are
printed, the print posiƟon moves to the next line (coutLine command) and the prompt is printed.

In this case, using cout instead of coutLine would have had the same effect, because before prinƟng its prompt, JusƟna
always goes to a new line.

Print to debug out

The syntax of these commands is idenƟcal to the syntax of the console print commands.

Note: any ‘stream’ (external IO device or open SD file) can be set to ‘debug out’.

dbout arg1 [, arg2, arg3, ...] ; Print all arguments to debug out

dboutLine [arg1 , arg2, arg3, ...] ; Same as dbout, but advance to a new line when done

Print to any output device

These commands take one addiƟonal argument: a ‘stream’ number. NegaƟve ‘stream’ numbers (or constants IO1 to
IO4) refer to an external IO device (Serial port, TCP IP client, LCD screen...), posiƟve numbers to an open SD file.

Apart from the ‘stream’ number (first argument) the syntax of these commands is idenƟcal to the syntax of the console
print commands.

print streamNumber, arg1 [, arg2, arg3, ...] ; Print all arguments to a stream

printLine streamNumber [, arg1, arg2, arg3, ...] ; Same as print command, but advance to new line
when done

Example

In the command line, type

printLine IO1, "name ", col(10), "John", line(), " 2 4 6 8 0";

Serial monitor output:

The predefined constant IO1 refers to IO device -1, which is set as the console, so print output is sent to the console
(we could also have used predefined constant CONSOLE, or simply ‘-1’ or ‘0’).

The col() funcƟon moves the print column to column 10 before prinƟng "John" (see further).

Justina User Manual just an Interpreter for Arduino

10 Input and output Page 39

Print to a variable

These commands do not print to a stream but to a variable.

This allows you to create a string containing formaƩed data without actually prinƟng it.

The variable must be able to accept 'string' as data type: if an array element, the array should be defined as string
array (arrays cannot change their data type).

vprint variable, arg1 [, arg2, arg3, ...] ; Print all arguments to a variable

vprintLine variable [, arg1, arg2, arg3, ...] ; Same as vprint, but add CR and LF characters

Example

In the command line, type these 3 commands (variable 'test' should not exist yet):

var test = "before";
vprint test, "after:", tab(), "Pi =", PI;
cout test;

Serial monitor output (assuming that fixed point notaƟon with 2 digits aŌer the decimal point is set for floaƟng point
numbers):

The tab() funcƟon moves the print posiƟon to the start of the next group of print columns. See further down in this
chapter.

Justina User Manual just an Interpreter for Arduino

10 Input and output Page 40

PrinƟng comma-separated argument lists to a stream or variable

These commands print a comma separated list that can later be parsed again into separate variables (with funcƟons
cinList(), readList() and vreadList()).

 floats will be printed with all significant digits, integers in decimal format (base 10)
 strings will be printed with surrounding quotes.

o backslash (\) characters found will be replaced by a sequence of two backslash characters (\\)
(spaces added here for clarity)

o double quote (") characters found will be replaced by a sequence of a backslash and double quote
character (\") (spaces added here for clarity)

At the end, an end of line sequence is added (CR and LF characters).

When prinƟng comma-separated argument lists, display seƫngs for integers and floats (intFmt, floatFmt commands)
are not considered.

Although the primary use of these commands is wriƟng data to SD files in a format that allows to easily retrieve it later
(SD card and files will be treated in a separate chapter), these commands write to any valid stream.

Examples

In the command line, type these 3 commands:

var n1= 123, t1 = "abcdef", n2=456.789e10;
coutLine line(), n1, t1, n2, line();
outList n1, t1, n2;

Serial monitor output:

Extra 'line()' arguments have been included to improve clarity in this example.

Now, let's include a backslash and a double quote in variable t1.

coutList arg1 [, arg2, arg3, ...] ; prints a comma separated list to the console.

printList streamNumber, arg1 [, arg2, arg3, ...] ; Same as coutList, but prints to any stream (external IO
or open SD file).

vprintList listVariable, arg1 [, arg2, arg3, ...] ; Same as coutList, but prints to a variable.

Justina User Manual just an Interpreter for Arduino

10 Input and output Page 41

t1 = "ab\\cd\"ef";
coutLine line(), n1, t1, n2, line();
coutList n1, t1, n2;

Remember, when entering text, precede a quote with a backslash and enter a backslash as a sequence of two
backslash characters.

Serial monitor output:

1.2.10 Applying formaƫng to your output

The various print commands, described during the previous chapter, output data using default formaƫng.

The fmt() funcƟon is used to format the data the way you want before prinƟng. It is most useful when it is used as an
argument of a print command.

The meaning of arguments 'field width', 'precision', 'notaƟon' and 'flags' corresponds to the definiƟon of the same
arguments used in the c++ prinƞ funcƟon.

The funcƟon result is always a string, containing the formaƩed value.

fmt (expression [, field width [, precision [, notaƟon] [, flags [, character count]]]]
fmt(expression [, precision] , notaƟon [, flags [, character count]]

expression: the value to be formaƩed (numeric or string)

field width: the minimum print field width (formaƩed values will never be truncated). If less space is needed,
the output will be padded with spaces.

precision: a) 'expression' evaluates to a string: the maximum number of characters to print if the string is
longer.

 b) 'expression’ evaluates to a number and 'notaƟon' (see below) is DEC, HEX or HEX_U: if the
value to be formaƩed is a float point number, it is first truncated (rounded towards zero) to an
integer. 'precision' specifies the minimum number of digits of the integer value to be wriƩen. If
the value has less digits, it will be padded with leading zeros.

 c) 'expression' evaluates to a number and 'notaƟon' (see below) is FIXED, EXP, EXP_U, SHORT or
SHORT_U: if the value to be formaƩed is an integer, it is converted first to a float. 'precision'
specifies the number of digits to be printed aŌer the decimal point (fixed point, exponenƟal
notaƟon) or the maximum number of significant digits to be printed (shortest notaƟon).

Justina User Manual just an Interpreter for Arduino

10 Input and output Page 42

notaƟon: a) 'expression' evaluates to a number: specifies how numbers should be represented.

 As a floaƟng-point number In fixed point notaƟon, scienƟfic notaƟon or in the shortest
 As an integer: in decimal or hexadecimal representaƟon.

Use the following constants to set a notaƟon (same constants used in commands intFmt and
FloatFmt):
FIXED "f" fixed point notaƟon
EXP "e" scienƟfic notaƟon
EXP_U "E" scienƟfic notaƟon, ‘E’ uppercase
SHORT "g" shortest notaƟon (fixed or scienƟfic)
SHORT_U "G" shortest notaƟon (fixed or scienƟfic), ‘E’ uppercase

DEC "d" decimal representaƟon (base 10)
HEX "x" hexadecimal representaƟon (base 16)
HEX_U "X" idem (base 16), hexadecimal digits A-F uppercase

b) 'expression' evaluates to a string:
CHARS "s" character string

flags: Use the following flags to finetune the output (same constants used in commands intFmt and
FloatFmt):

FMT_LEFT 1 align output leŌ within the print field
FMT_SIGN 2 always add a sign (- or +) preceding numeric values
FMT_SPACE 4 precede numeric values with a space if no sign is wriƩen
FMT_POINT 8 print floaƟng point numbers: always add decimal point
FMT_0X 8 print in hexadecimal notaƟon: precede non-zero values with '0x' or '0X'
FMT_000 16 print floaƟng point numbers: pad print field with zeros.

FMT_NONE 0 clear all flags

Character count: variable, will be updated with length of the formaƩed string returned. Combined with the pos()

funcƟon, the current print column can be calculated. This can be useful to allow overlapping of
print fields (see pos() and col() funcƟons). An example is included in the JusƟna library.

All arguments following the value to be printed are opƟonal (please see 'fmt' funcƟon syntax to check out the allowed
combinaƟons of arguments).

The width, precision, notaƟon and flags arguments remain in effect during next fmt() calls unƟl explicitly changed by
next calls to this funcƟon. When flags are included as argument, all flags not included are reset. To clear all flags
explicitly, use value 0 (or use predefined flag FMT_NONE).

Justina User Manual just an Interpreter for Arduino

10 Input and output Page 43

Examples

The following examples direct their output to the console. The "==" fields are printed to indicate the start and end of
the formaƩed print field.

This first example (below) prints numbers in decimal and hexadecimal notaƟon. The print width is set to 8 characters.
Hexadecimal numbers are printed with at least 4 digits, the last number (a float) is first truncated to an integer and is
printed leŌ aligned.

Print floaƟng point numbers (integers are first converted). The print field width (10 characters) is extended if not wide
enough to print all characters. 'FMT_NONE' resets all flags.

Output a string (the notaƟon is ignored if provided).

Justina User Manual just an Interpreter for Arduino

10 Input and output Page 44

The following funcƟons are useful to help formaƫng output.

tab ([n]) 1. As argument of a print command: starƟng at the current column
posiƟon, the tab() funcƟon inserts enough spaces to move to the next tab
stop. If 'n' is specified, moves to the n-th next tab stop instead (starƟng
from the current posiƟon).
Do not include the tab() funcƟon in an expression.

2. Outside a print command, the tab() funcƟon returns the set tab size
(opƟonally mulƟplied by 'n', if entered as argument).

col (n) 1. As argument of a print command: starƟng at the current column
posiƟon, the col() funcƟon inserts enough spaces to move the print
posiƟon to column 'n'. No spaces will be inserted if 'n' is less than or equal
to the current print posiƟon.
Do not include the col() funcƟon in an expression.

2. Outside a print command, col(n) simply returns 'n'.

pos () 1. Within a print command: returns the column number where the print
command started prinƟng its first argument. The pos() funcƟon is useful
when it is part of an expression. See the last example below.

2. Outside a print command: pos() returns the column number where the
next print command for the stream last printed to, will start prinƟng.

Change the tab size with this command:

tabSize n ; Sets the distance between tab stops. Tab size is limited to a number
between 2 and 30. Entering a number outside this range will set the tab
size to one of these values without producing an error.

Notes

 The leŌmost column is numbered '1'.
 JusƟna maintains current column posiƟons separately for each individual external IO device and any open SD

card file.
 The tab() and col() funcƟons work only if entered as direct arguments of print commands - not if entered as

part of an expression and not outside print commands.
 The pos() funcƟon is not affected by prinƟng to variables.

Examples

Use of tab() funcƟon

The three words are printed at each tab stop.

Justina User Manual just an Interpreter for Arduino

10 Input and output Page 45

Use of fmt() funcƟon together with col() funcƟon

The second value ("+++") starts prinƟng at column 10, with the same formaƫng as the first number.

A more complicated example

In this example, we’ll use the fmt() and pos() funcƟons to obtain overlapping print fields.

Locate file ‘overlap.jus’ in folder ‘libraries\JusƟna_interpreter\extras\JusƟna_language_examples’ (residing in your
Arduino sketchbook locaƟon), and load the JusƟna program this file contains, using the procedure that was explained
in chapter 2: Geƫng started.

We will not study this program here (programming will be discussed in chapter 13: Programming), but it may be
interesƟng to have a look at the output.

The program contains two small funcƟons (see next page); they both produce the same result. The purpose is to print
10 lines with each Ɵme two numbers of variable length, aŌer each number a separator, and to fill up the remaining
columns unƟl column 15 with '+' characters.

Run the first funcƟon: type ovlap1(); (+ Enter).

Then, run the second funcƟon: type ovlap2(); (+ Enter).

Result:

Both funcƟons contain 2 print commands (cout and coutLine) each prinƟng a part of each line.

Justina User Manual just an Interpreter for Arduino

10 Input and output Page 46

FuncƟon ovlap1(): the cout command prints the two variable length numbers. The coutLine command then uses
funcƟon pos() to determine how many '+' characters need to be printed.

FuncƟon ovlap2(): the cout command only prints the first variable length number on each line. The coutLine command
prints the second number, so, the length of the second number printed, which is stored in variable 'count' needs to be
added to pos() to determine how many '+' characters need to be printed.

Note: funcƟon 'repeatChar();' (repeat character) is used in both examples to print the required number of '+'
characters.

Also note that the '0' value displayed in the output is the JusƟna funcƟon result. Because no result was explicitly
returned by the funcƟon (using the ‘return expression’ command statement) zero was returned.

Extract of JusƟna program ‘overlap.jus’, edited in Notepad++ with the JusƟna language
extension installed.

Extract of JusƟna program ‘overlap.jus’, edited in Notepad++ with the JusƟna language extension
installed.

Justina User Manual just an Interpreter for Arduino

10 Input and output Page 47

10.3 Reading from a stream

The funcƟons below read one or mulƟple characters from a stream (external IO or SD card file if an SD card is
available).

Most of the funcƟons described in this chapter Ɵme out aŌer a period that can be set by the user (see funcƟon
setTimeOut(). During execuƟon of these funcƟons, system callbacks (if enabled – see Appendix D: 'Running background
tasks: system callbacks') conƟnue to be executed regularly (e.g., to maintain a TCP connecƟon), so these funcƟons can
safely be used, for instance when reading a line of text from a remote TCP IP device.

Reading from the console

Note: any external IO device can be set as console stream (see further).

cin ()

cin ([terminator,] length)

Form 1: reads one character from the console. Returns the ASCII code of
the character received as an integer. If no character is available,
immediately exits, returning 0xFF (255).

Form 2: reads characters from console unƟl 'length' characters are read
or terminator character (first character of a terminator string passed) is
encountered or a Ɵmeout occurs. Returns a string with the characters
read, or an empty string if nothing was read.
The terminator character is not stored.

cinLine () Reads characters from console unƟl the internal buffer is full or a
newline character (0x0A) is encountered or a Ɵmeout occurs. Returns a
string with the characters read or an empty string if nothing was read.
The newline character, if encountered, is added to the string.

Example

In this example, cin() reads characters the user inputs and displays the corresponding ASCII codes. It does so unƟl a 'q'
is encountered.

We don't need to write a program to test this: create 2 variables, c and i (var c, i; + ENTER)

Then copy the line of code below, paste it into the command line and press ENTER.

i=1; while i; c= cin(); if (c<255); cout c, ", "; end; if (c == asc("q"));...
...i=0; end; end;

Now, type abc (+ ENTER)

Result:

The ASCII codes for characters a, b and c are printed (97, 98, 99) , followed the ASCII codes for the carriage return /
line feed sequence (13, 10) as a result of pressing ENTER.

Press ‘q’ to quit and return to the JusƟna prompt.

Justina User Manual just an Interpreter for Arduino

10 Input and output Page 48

Reading from any stream

These funcƟons take one addiƟonal argument: a stream number. Constants IO1 to IO4 (or negaƟve numbers -1 to
-4) refer to an external IO device (Serial, TCP, LCD screen...), posiƟve numbers to an open SD file.

Apart from the stream number (first argument) the syntax of these funcƟons is idenƟcal to the syntax of the console
read funcƟons.

read (streamNumber)

read (streamNumber,
 [terminator,] length)

Form 1: reads one character from the indicated stream. Returns the
ASCII code of the character received as an integer. If no character is
available, returns immediately, returning 0xFF (255).

Form 2: reads characters from the indicated stream unƟl 'length'
characters are read or terminator character (first character of a
terminator string passed) is encountered or a Ɵmeout occurs. Returns a
string with the characters read, or an empty string if nothing was read.
The terminator character is not returned.

readLine (streamNumber) Reads characters from the indicated stream unƟl the internal buffer is
full OR a newline character (0x0A) is encountered or a Ɵmeout occurs.
Returns a string with the characters read or an empty string if nothing
was read. The newline character, if encountered, is added to the string.

Reading argument lists from a stream or variable

These funcƟons read and parse a comma separated list of values (numbers and strings) from a stream or a string
variable into a series of variables.

This offers a convenient way to safely read back and parse comma separated lists, created earlier with commands
coutList, printList and vprintList, especially when working with SD files (although this works for any stream).

cinList (variable1 [, variable2, ...]) Reads a string from the console and parses the contents
of that string into a list of variables. Reading stops when a
newline character (ox0A) is encountered or a Ɵmeout
occurs.
Returns the number of variables that successfully received
a value.

readList (streamNumber, variable1
 [, variable2, ...])

Reads a string from the indicated stream and parses the
contents of that string into a list of variables. Reading
stops when a newline character (ox0A) is encountered or
a Ɵmeout occurs.
Returns the number of variables that successfully received
a value.

vreadList (listVariable, variable1 [, variable2, ...]) Parses a string stored in 'listVariable' into a list of
variables.
Returns the number of variables that successfully received
a value.

Justina User Manual just an Interpreter for Arduino

10 Input and output Page 49

Notes:

 Receiving scalar variables will always store parsed values with the correct type (integer, float, string). Array
variables have a fixed type and an execuƟon error will occur if the value cannot be converted to the type of
the array. ExcepƟon: floats will be converted to integers if required and vice versa.

 If the variable list does not contain enough receiving variables to store all values read, the rest of the values
will be discarded. If the list contains more variables than required, then the extra variables will be leŌ
unchanged.

Example

Create scalar variables s, a, b, c and d first. Then, execute these statements:

s = "123, 456, \"abc\", 789";
vreadList (s, a = 0, b = 0, c = 0, d = 0);
a;
vprintList s="hello", a, b, c, d;
s;

Result:

This back-and-forth mechanism is safe for strings too, even if strings contain backslash or double quote characters.

Look for a character sequence ('target string') within a stream

These funcƟons read characters from a stream (external IO or SD card file if an SD card is available) unƟl a specific
character sequence is found.

find (streamNumber, target string) Reads characters from the indicated stream unƟl the target string is
found or a Ɵmeout occurs. The characters read are not returned: the
funcƟon returns 1 if the target string was found, otherwise the
funcƟon returns zero.

findUnƟl (streamNumber, target string,
 terminator string))

Reads characters from the indicated stream unƟl the target string is
found or terminator string is encountered or a Ɵmeout occurs. The
characters read are not returned: the funcƟon returns 1 if the target
string was found, otherwise the funcƟon returns zero.

Justina User Manual just an Interpreter for Arduino

10 Input and output Page 50

Example

Execute this statement from the command line.

while !available(CONSOLE); end; find (CONSOLE, "abc"); coutLine cinLine();

The command is echoed next to the JusƟna prompt, but a new prompt is not printed. This is because of the
' ! available(CONSOLE) ' expression: it checks whether characters sent from the console are waiƟng to be read, and as
long as there aren't, it keeps waiƟng (returning FALSE, changed to TRUE by the negaƟon operator).
Finally, the 'coutLine cinLine()' funcƟon at the end will capture any remaining characters and print them.

Now, you have the Ɵme to enter whatever text, press ENTER and check out the result.

Enter this: I like Justina very much and press ENTER

Result:

The funcƟon result is 0, meaning the string did not contain the target string "abc". Note that this funcƟon Ɵmes out
when the target string ("abc") is not found in the input: the JusƟna prompt will only appear aŌer a short delay (that
can be set).

Now, do this exercise again, but with a different text:

while !available(CONSOLE); end; find (CONSOLE, "abc"); coutLine cinLine();
Here you'll find the abc of Justina

Result:

The remaining text is printed and the funcƟon returns 1, indicaƟng the target string was found.

Justina User Manual just an Interpreter for Arduino

10 Input and output Page 51

10.4 Other stream funcƟons and commands

The funcƟons in the next table are mainly JusƟna wrappers to make the corresponding Arduino funcƟons available to
JusƟna. Console is the default device (in case no device number is specified).

peek ([streamNumber]) reads one character from a stream but does not advance to the next
character. FuncƟon returns 0xFF (255) if no characters are waiƟng to
be read

available (streamNumber) Returns the number of characters waiƟng to be read.

flush (streamNumber) Waits unƟl all characters in output buffer have been sent. For instance,
when wriƟng to an SD card file, wait unƟl all characters have been
physically saved on the SD card (see next chapter).

setTimeout (streamNumber, Ɵmeout) Sets the maximum Ɵme to wait for incoming characters, in
milliseconds. When JusƟna starts, the default is set to 200
milliseconds.
Note that all funcƟons reading data from external IO streams are
impacted by this seƫng, with only two excepƟons: cin() and
read(stream), called without arguments.

getTimeOut (streamNumber) Returns the Ɵmeout set for a stream, in milliseconds.

availableForWrite (streamNumber) Returns the number of characters that can be wriƩen to the output
buffer for a stream without introducing delays.

getWriteError (streamNumber) Returns the last error generated by a stream write operaƟon.

clearWriteError (streamNumber) Clears any write error.

Justina User Manual just an Interpreter for Arduino

10 Input and output Page 52

Commands to change streams designated as console and debug out streams

The following commands let you set the console or the ‘debug out’ stream to another I/O device or(‘debug out’ only)
open file number.

 The console refers to the input/output device sending user input (user commands, ...) to JusƟna and / or
receiving standard JusƟna output (calculaƟon results, error messages...). Example: the Arduino IDE serial
monitor.

setConsole streamNumber ; Changes the console to another external IO device.
use: command line only.

setConsoleIn streamNumber ; Changes the console to another external device for input but keeps
the currently assigned device for console output.
use: command line only.

setConsoleOut streamNumber ; Changes the console to another external device for output but keeps
the currently assigned device for console input.
use: command line only.

setDebugOut streamNumber ; Changes the debug output stream to any external IO device or open
file number (see next chapter).
use: command line only.

⚠ Avoid changing the console to a stream which is currently unavailable (for instance a TCP terminal that is
currently offline). Appendix D: 'Running background tasks: system callbacks' discusses a method to recover
from such a situaƟon.

Print a list all variables

SomeƟmes it’s handy to get an overview of all created variables with their type and current value:

The variables (and constants) are listed in the order created but in two groups: user variables first. In each group
constants are printed on top.

InformaƟon printed includes variable name, type, constant or variable ad value.

User variables have an extra column 'U' (used): an 'x' is printed if a user variable is referenced by the currently loaded
program (because the program didn't define a variable with this name). This is quite useful to retain specific data aŌer
the program has been cleared (or replaced by another program).

Notes

 A user variable in use by a program cannot be deleted as long as the program is loaded.
 a program cannot be loaded if variables it references are not defined (not as program variable and not as user

variable).

listVars [streamNumber] ; Print a list of all user and global program variables to the indicated device number
or open file number. The ‘streamNumber’ argument can refer to any available
external IO device and to any open file. If no device number is specified, prints to
console.

Justina User Manual just an Interpreter for Arduino

10 Input and output Page 53

Example

In this example, the program currently loaded has a variable named 'abcde'. A user variable with the same name exists
as well. They live together peacefully; however, the JusƟna program can only access its own (integer) variable, which
makes the user variable inaccessible. Vice versa, the user can only access the (string) user variable.

But, except for these two variables named 'abcde', the program can access all user variables and a user can access all
global program variables.

The 'x' in the 'U' (Used by program) column tells us that the user variable 't12345' is being referenced in the current
program (the program uses this variable because it hasn't defined a program variable with that name).

Justina User Manual just an Interpreter for Arduino

11 Working with SD cards Page 54

11 Working with SD cards

ConnecƟng a micro-SD card reader to the Arduino opens up a whole new world: you can

 create files on your SD card, write data to / read data from files
 receive and send files from / to your computer or any other device (possibly another Arduino)
 load programs from an SD card instead of loading them from your computer via USB
 enable an AutoStart funcƟon: automaƟcally load and execute a startup file as soon as JusƟna is launched (for

instance to select specific display seƫngs, angle mode etc.)
 ...

JusƟna works internally with the Arduino SD card library but this is completely transparent to the user.

This library uses the older 8.3 file format (max. 8 characters for the file name, 3 characters for the extension, filenames
are not case-sensiƟve) which is more than sufficient for our needs.

Only SD cards with a maximum size of 32 Giga Byte are supported. The Arduino SD card library only supports SD cards
formaƩed for FAT16 and FAT32 file systems (or with a parƟƟon formaƩed as FAT16 or FAT32).

Note for users working with the Arduino nano ESP32 board

The nano ESP32 does not use the standard Arduino SD library, but an SD library specific for this ESP32 board.

Although the command set and funcƟons are more or less idenƟcal, the nano ESP32 library has a few restricƟons as
compared to the standard Arduino SD library. In a nutshell:

 you cannot open a file in a combined read/write (or read/append) mode. AŌer wriƟng (or appending) to a file, you
need to close it and reopen it for reading

 when opening a file for wriƟng (not for appending), the file is automaƟcally truncated before you start wriƟng to
it.

 in write mode, the size() funcƟon does not return the current size; as soon as you start wriƟng it will return 0.

ConnecƟng an SD card breakout board to your Arduino

Micro SD card readers use a standardized interface, requiring only 5 connecƟons between Arduino and card reader:
GND (ground), Vcc, Clock (CLK), Data In (DI), Data Out (DO) and Chip Select (CS).

Within Arduino, communicaƟon is handled by means of the SPI library. This requires the use of specific Arduino pins to
connect to the SD card breakout box pins, with one excepƟon: by default, when the JusƟna object is created, the Chip
Select pin is set to Arduino pin 10. To select another pin as CS pin: please refer to Appendix A: CreaƟng a JusƟna
object and choosing startup opƟons.

Detailed instrucƟons on how to connect and test an SD card are outside the scope of this manual, but if not yet
familiar with the process of hooking up an SD card to your Arduino, this might be a good Ɵme to familiarize yourself
with it. You'll find a good introducƟon in this arƟcle: hƩps://learn.adafruit.com/adafruit-micro-sd-breakout-board-
card-tutorial . You'll also find there how to test whether your card is working.

An example of a Micro SD card breakout board: hƩps://www.adafruit.com/product/254 .

Justina User Manual just an Interpreter for Arduino

11 Working with SD cards Page 55

11.1 StarƟng JusƟna with an SD card mounted in its SD card slot.

By default, when the JusƟna object is created, SD card funcƟonality is enabled but the SD card (if present) is not yet
started, or 'mounted' (to mount the SD card automaƟcally, and even run a JusƟna autostart program file if desired, or
to disable starƟng the SD card all together, please refer to Appendix A: CreaƟng a JusƟna object and choosing startup
opƟons).

Example

 If required: on your computer, if needed, format an SD card (maximum size 32 GB, FAT16 or FAT32 format).
 insert the SD card in the SD card slot (preferably when the power is off) and start JusƟna.

Now, type in these statements (each Ɵme pressing ENTER)

startSD ; (this command does nothing if the SD card was started already)
listFiles ;

Result (in this example, the SD card contains data):

Justina User Manual just an Interpreter for Arduino

11 Working with SD cards Page 56

11.2 SD card funcƟons and commands

This chapter describes all funcƟons and commands dedicated to working with files and directories.

To read or write a file, you must first open it. Open files (and directories) are referred to by a file number assigned to
the file when opening the file.
File and directory names always include the full file path. Use '/' (slash) characters as separators in file paths. The
leading "/" is opƟonal.

Open files represent streams; file numbers are associated with open files. The maximum number of open files is 5; the
file numbers are always in the range 1 to 5 (predefined constants FILE1 to FILE5 – see previous chapter: Input and
output).

Most commands and funcƟons with a device number as one of the arguments (e.g., 'printLine') accept file numbers as
well as device numbers, as indicated in the documentaƟon for these respecƟve commands and funcƟons (see previous
chapter: Input and output).

Referring to a file number without an associated open file will always produce an error.

1. Open files are referred to by file number, closed files are referred to by file name.

FuncƟons for working with SD cards and files:

open (filename, mode) Opens the file with the specified filename and returns a file number
assigned to the open file.

filename: name in 8.3 file format: 8 characters maximum and a 3-character
extension, preceded by the full path.

mode: specifies the access mode by using the predefined constants listed
below. Constants may be combined using the bitwise ‘or’ operator (|).

READ 1 open file for reading (this is the default)
WRITE 2 open file for wriƟng
APPEND 6 open file for wriƟng; data will be appended to the
 end of the file

Note: combining WRITE and APPEND constants will set APPEND mode

NEW_OK 16 if file doesn't exist, create and open a new file
NEW_ONLY 48 only create and open new files, do not allow
 opening exisƟng files

TRUNC (**) 64 on opening, delete all exisƟng file content
 (empty the file)

SYNC (**) 8 synchronous writes: send data physically to the card
 aŌer each write (minimize data loss aŌer a crash)

** Notes for users of the nano ESP32 board: files will always be
truncated when opening a file for WRITE. Because of restricƟons of the
underlying SD library for ESP32, constants TRUNC and SYNC have no
effect when working with the nano ESP32 board.

Justina User Manual just an Interpreter for Arduino

11 Working with SD cards Page 57

close (fileNumber) Close the file associated with the file number. If the file is not open, an error
is produced.

posiƟon (fileNumber) Returns the current posiƟon in the open file: the locaƟon in the file where
the next byte will be read or wriƩen. The first byte in the file has posiƟon 0.

size (fileNumber) Returns the file size (in bytes) of an open file

Note for users of the nano ESP32 board: when a file is opened in
WRITE or APPEND mode, size() does not return the actual size of the
file.

seek (fileNumber, posiƟon)

move to a specific posiƟon in the file.
PosiƟon argument: zero will move to beginning of file; constant EOF will
move to end of file (aŌer the last byte in the file).

Note for users of the nano ESP32 board: use seek() in READ mode. In
WRITE or APPEND mode, this funcƟon does not allow you to freely
move the inserƟon point (only sequenƟal wriƟng).

name (fileNumber) returns the filename of the file, without path

fullName (file number) returns the name of the file, including the full path

isDirectory (fileNumber) returns 1 if the open file is a directory, otherwise returns zero

rewindDirectory (dirFileNumber) Used together with funcƟon openNextFile(), to go back to the first file in a
directory. returns 0.

openNext (dirFileNumber) opens the next file in the open directory associated with dirFileNumber and
returns the file number of the open file. When all files in the directory have
been opened, the next call to funcƟon openNext() will return zero (no error
will be produced).
Note that the previously opened file won't be closed automaƟcally when
you open the next one: it must be closed explicitly (either before or aŌer
opening the next file)

isInUse (fileNumber) Returns 1 if a file associated with this file number is open, otherwise
returns zero.

closeAll () Close all open files. Always returns zero.

exists (fileName) The funcƟon returns 1 if a file (or directory) with the specified name
(including full path) exists and returns zero otherwise.
If the name is not a valid name, an error will be produced.

createDirectory (dirName) Create a directory with the specified name (including full path). If the
parent directory is not the root ("/") directory, then any missing
subdirectories along the path will be created as well.
The funcƟon will return 1 if success and will return zero if the directory
cannot be created (e.g., because the directory already exists).
If the name is not a valid name, an error will be produced.

removeDirectory (dirName) Remove the directory with the specified name (including full path). The
parent directory will not be removed, even if becoming empty.
The funcƟon will return 1 if success and will return zero if the directory
cannot be removed (e.g., because the directory does not exist).
If the name is not a valid name, an error will be produced.

Justina User Manual just an Interpreter for Arduino

11 Working with SD cards Page 58

remove (filename) Remove the file with the specified filename (including the full path). The
funcƟon will return 1 if success and will return zero if the file cannot be
removed (e.g., because it's currently open).

fileNum (filename) If the file with the specified filename is open, return its file number,
otherwise return zero.
If the name is not a valid name, an error will be produced.

Commands available for working with SD cards and files:

startSD ; IniƟalize the SD card. When creaƟng the JusƟna object in your Arduino
sketch, you can select this to happen automaƟcally when JusƟna is
started, or not.

stopSD ; Send all data not yet physically sent to the SD card (including updaƟng file
structure etc.), close all open files and 'stop' the SD card. Note that this
acƟon is always performed automaƟcally when quiƫng JusƟna.
Before removing or inserƟng a card while JusƟna is running, always
execute command 'stopSD'. If not, you do not only risk losing data but
your Arduino may hang.

receiveFile streamNumber,
 filename [, verbose] ;

 - or -
receiveFile fileName ;

Receive a file from an IO device and save it on the SD card, with the
specified filename. The default device number is CONSOLE. If verbose is
FALSE (‘off’), overwrite exisƟng files without warning and do not print any
other messages (e.g., when using this command from within a program).
The default is TRUE (verbose ‘on’).
 - or -
Receive file from the console and save it on the SD card with the specified
filename. Verbose is ‘on’.

Upon execuƟon of this command, JusƟna will wait 10 seconds for the first
character to arrive, giving you Ɵme to start transmission at the other end
(e.g., your computer). It will stop receiving characters aŌer a set Ɵmeout
is reached (see setTimeout() funcƟon.

Note: JusƟna can not only receive text files (e.g., JusƟna program files,
data files organized as records with text fields, ...) but binary files as well
(e.g., an image file).

sendFile filename
 [, streamNumber [, verbose]] ;

Sends the file with the specified filename to an IO device. The default
device number is CONSOLE.
Verbose: if FALSE, output no messages (e.g., when using this command
from within a program. The default is TRUE.

copyFile sourceName,
 destName, [, verbose] ;

Copy a source file to a desƟnaƟon file.
Verbose: if FALSE, overwrite exisƟng files without warning and do not
print any other messages (e.g., when using this command from within a
program). The default is TRUE.

listFiles [streamNumber] ; Print a list of all files and directories on the SD card and send the output
to the indicated device number. For each file, the filename and the size
are printed.
The device number can refer to any available external IO device and to
any open file.
If the device number is not specified, the list is printed to the console.

Justina User Manual just an Interpreter for Arduino

11 Working with SD cards Page 59

listFilesToSerial ; This is simply a 'wrapper' around the SD library method to print a list of
files. This always prints to Serial (even if Serial is not the console) but it
includes a 'date and Ɵme' field (which is only helpful if a real Ɵme clock is
present to supply the correct Ɵme - which is not implemented in the
current version).

Note for users of the nano ESP32 board: this command is not available.

Example

In this example we'll open a file with filename 'myFile' for wriƟng data to it. If the file doesn't exist yet, it must be
created, but if the file does exist, its current contents must be deleted upon opening.

Create a variable myFileNum and then type in this statement (+ ENTER)

myFileNum = open("myFile", WRITE + NEW_OK + TRUNC);

This will open file "myFile" for WRITE, truncaƟng its contents. If the file does not exist, it will be created.

The file number assigned to the now open file is stored in variable 'myFileNum'

Now let’s add 3 text lines to the file, with the same 'printLine' statements we used earlier to send characters to the
console (or any other external IO device) and close the file:

Type in these statements (each Ɵme pressing ENTER)

 printLine myFileNum, "this is line one";
 printLine myFileNum, "this is line two";
 printLine myFileNum, "this is line three";
 close(myFileNum)

Result

The file number assigned to the file is 1.

Justina User Manual just an Interpreter for Arduino

11 Working with SD cards Page 60

Example

We’ll reopen the file we just created for reading, read some of its contents, use the posiƟon() and seek() funcƟons and
finally close the file again.

Type in these statements (each Ɵme pressing ENTER)

myFileNum = open("myFile", READ);
readLine(myFileNum);
position(myFileNum);
read(myFileNum, 13); read 13 characters
position(myFileNum);
read(myFileNum, "l", 20); read unƟl an ‘l’ is found in next 20 characters.
 (The ‘l’ itself is not returned.)
readLine(myFileNum);
seek(myFileNum, 18);
readLine(myFileNum);
close(myFileNum);

Result:

Example

Let’s now send the contents of this SD card file to the console. Type sendFile "myFile", CONSOLE; (+ ENTER)

Justina User Manual just an Interpreter for Arduino

11 Working with SD cards Page 61

Example

In chapter 2: Geƫng started we created a small JusƟna program and saved it on the computer. Then, using YAT as
Terminal ApplicaƟon, we sent this file to the Arduino, where it was parsed immediately ('loadProg' command), ready
to run. But now, we have an SD card. So, why not directly load a program straight from the SD card ?

Of course, on the computer, we could copy the file to the SD card and then place the card in the Arduino SD card slot.
But it's much easier to send the file straight from the computer to the SD card.

We will again use YAT Terminal:

 Using the buƩon with 3 dots to the leŌ of YAT key 'send file', select file 'myFirst.jus' (but don't send it yet).
 Type and execute statement ' receiveFile CONSOLE, "myFirst.jus"; ' in the command line (as

CONSOLE is the default, this argument is opƟonal). This instructs JusƟna to start waiƟng for a file, listening to the
'console input' stream (make sure to choose a file name complying with the 8.3 file format, if not, you'll get an
error).

 Send the file you just selected to Arduino (YAT buƩon 'Send File'). It will be saved on the SD card.

Now, load the program straight from the SD card: type and execute loadProg "myFirst.jus";

(The complete syntax of loadProg is discussed in next chapter: Other funcƟons and commands).

Finally, execute the only funcƟon contained in the program: print5lines();

The console output now looks like this:

Notes:
 the filename on the SD card is unrelated to the filename on the computer.
 if a file with that filename exists already on the SD card, JusƟna will ask your permission to overwrite it.

Justina User Manual just an Interpreter for Arduino

12 Other functions and commands Page 62

12 Other funcƟons and commands

Loading and clearing a program, clearing all of memory

Before you can execute a program, you must load it into memory.

Loading a program is the process of reading a source file, parsing it into a sequence of tokens, storing tokens in
program memory and creaƟng and iniƟalizing program variables. When a program is launched, tokens will then be
read by JusƟna and executed.

When an execuƟon error occurs and for debugging purposes, statements can be ‘unparsed’ with the help of extra
informaƟon stored separately in order to give meaningful messages to the user.

When a program is loaded, any previous program, with associated program variables, is first removed. This does not
affect user variables, which remain available and keep their values.

Commands for clearing (part of) memory:

loadProg [streamNumber] ;

 - or -
loadProg fileName ;

Receive a JusƟna source file from an external IO device (if no argument is
provided, receive from console)
 - or -
read a JusƟna source file with the specified filename from the SD card.

Parse the source file into tokens.

If receiving the JusƟna source file from an external IO device (e.g., the
console), JusƟna will wait 10 seconds for the first character to arrive,
giving you Ɵme to start transmission at the other end (e.g., your
computer). It will stop receiving characters aŌer a set Ɵmeout is reached
(see setTimeout() funcƟon).

Use: command line only.

clearProg ; Remove a parsed program from program memory (with associated
program variables).
This command is non-executable (it is parsed but is skipped during
execuƟon), however it will take effect only aŌer execuƟon has ended.
Use: command line only.

clearMem ; Clear all: same as clearProg but remove all user variables as well.
This command is non-executable (it is parsed but is skipped during
execuƟon), however it will take effect only aŌer execuƟon has ended.
Use: command line only.

Justina User Manual just an Interpreter for Arduino

12 Other functions and commands Page 63

Quiƫng JusƟna

quit ; Quit JusƟna and return to the calling Arduino program (right aŌer the
begin() method).
On quiƫng, JusƟna is kept in memory (including the currently parsed
program, program and user variables, seƫngs etc.).
If the JusƟna begin() method is called again at a later moment, you can
conƟnue your work, right where you leŌ off, without any loss of data.
To completely remove JusƟna from memory, delete the JusƟna object (in
your Arduino program).

Justina User Manual just an Interpreter for Arduino

13 Programming Page 64

13 Programming

To write and execute JusƟna programs, you’ll need a text editor on your computer. It’s highly recommended to use
notepad++ (free): it displays line numbers (important once you start debugging a JusƟna program) and it has JusƟna
syntax highlighƟng, which is invaluable when ediƟng larger JusƟna programs. A JusƟna ‘User Defined Language file’ is
available in the JusƟna library for that purpose.

Second, you’ll need a terminal program to send your program to your Arduino. Unfortunately, the Serial Monitor of the
standard Arduino IDE is not capable to send files to the Arduino. As already menƟoned, a good choice is YAT (free).

As you may have noƟced in previous chapters, notepad++ and YAT are used throughout this manual in examples.

So, if not already done so, you might want to install these two applicaƟons right now. For installaƟon instrucƟons,
please refer to Appendix F: Installing Notepad++ and the JusƟna language extension, and Appendix G: Installing YAT
terminal.

Within a program, all statements must be separated by a semicolon (;). A source line can contain mulƟple statements
and statements can span mulƟple lines.

13.1 Program and program funcƟons

Preliminary note: all idenƟfier names (program name, funcƟon names, variable names) must follow the same naming
convenƟon: names must start with a leƩer from a to z (or A to Z), and may be followed by a sequence of leƩers, digits
and underscore characters. The maximum name length is 20 characters. Names are case sensiƟve.

Every program must start with a program statement, giving the program a name. This should be the first statement in
your program file (excluding comments).

Program programName ; Marks the start of the program and gives the program a name.
Must be the first statement in the program file (only to be preceded by
comment lines).
Please note that the name is not used to start a program, only to label it.

FuncƟons

To be meaningful, a program must contain at least one funcƟon. A funcƟon starts with a funcƟon statement, and it
ends with an end statement. These two statements mark the ‘physical’ start and end of the funcƟon.

The funcƟon statement specifies the funcƟon parameters (values that can be passed to the funcƟon or returned to the
calling funcƟon) and aƩributes a funcƟon name to the funcƟon.

funcƟon funcƟonName ([param name [()] , param name [()] , ...] , [param name = literal , ...]) ;
 [statement; statement; ...]
end ;

Justina User Manual just an Interpreter for Arduino

13 Programming Page 65

A funcƟon may receive scalar values as arguments as well as complete arrays.

 A parameter name followed by empty parentheses indicates that an array is expected as argument. Without
the parentheses a scalar is expected.

FuncƟon parameters can be either mandatory or opƟonal.

 OpƟonal parameters are followed by an equal sign and a literal, forming an iniƟalizer which serves as default
value for the funcƟon parameter in case the calling funcƟon does not supply an argument. OpƟonal
parameters always expect scalars as arguments. All mandatory parameters must precede the opƟonal
parameters.

Example

Function volumes (length, manyWidths(), height, id="zzz", unit=2);
... (function body)
end;

FuncƟon 'volumes' has three mandatory parameters (the second one being an array), followed by two opƟonal
parameters. If opƟonal arguments are not provided, the funcƟon parameters will receive the iniƟal values "zzz" and 2,
respecƟvely.

Calling a funcƟon

To call a JusƟna user funcƟon, use the syntax used for calling an internal JusƟna funcƟon, like ‘sin()’ etc.

The funcƟon name to call is followed by a list of arguments corresponding to the list of funcƟon parameters in the
definiƟon. Where an array is expected, enter the array name (without parentheses), where a scalar is expected, enter
an expression, variable or constant.

funcƟon name ([expression or array name, expression or array name, ...])

Supply all mandatory arguments. OpƟonal arguments can be leŌ out, as desired. If an opƟonal argument is leŌ out,
next opƟonal arguments must be leŌ out as well.

Variables (scalars and arrays) are always passed by reference. That means that the called funcƟon will not make local
copies of passed variable values but will store a reference to the variables instead (scalar, array element or array). Any
changes made within the called funcƟon will be reflected in the original variables.

Constants and the results of expressions are passed by value.

If the constant is a string constant, the ‘value’ passed will be a reference to the character array where the string is
stored - individual characters are never passed (for a string variable, a reference to this ‘value’ is passed).

Example

var length=5, widths(10)=2, height=10;
widths(8)=6;
volumes (length, widths, (height), "abc"); call funcƟon volumes()

Scalar variable 'length' and array 'widths' will be passed by reference, expressions '(height)' and "abc" will be passed
by value.

Justina User Manual just an Interpreter for Arduino

13 Programming Page 66

 if you don’t want a called funcƟon to alter a variable, put the variable between parentheses (creaƟng an
expression)

 an array is always passed by reference

FuncƟons may call other funcƟons and they may even call themselves (this is called recursion; an example program is
included in the library and we’ll discuss it in a moment).

The funcƟon called from the command line (by the user) is the funcƟon where program execuƟon starts, or main
funcƟon (the program name itself is not used to start a program).

Returning control to the caller

13.2 Variable declaraƟons in a program

We already encountered the var and const commands when we discussed user variables and user constants. Within a
program, they serve the same purpose, which is to create program variables and constants.

But the syntax is sƟll the same:

var name1 [(dim1 [, dim2 [, dim3]]])] = literal1 [, name2 ...] ;

const name 1= literal1 [,name 2= literal2,...] ;

In a program, outside a funcƟon, var and const declare global program variables and constants

Global program variables can be referenced (used in equaƟons, as arguments of a funcƟon, ...) anywhere in a program,
with one restricƟon: a variable can only be referenced (e.g. used in an expression) within a program once it has been
declared (aŌer the declaraƟon, further down the program), because the parser makes only one pass (it reads the
source program file only once, from top to boƩom) and it needs to know where memory has been allocated for a
variable when it encounters a reference to that variable.

A global program variable / constant can be used in immediate mode as well (from the command line) unless it’s
‘shadowed’ by a user variable / constant having the same name (scope).

Memory is allocated to global program variables (and constants) during parsing. It remains allocated unƟl the program
is deleted or overwriƩen by another program (lifeƟme).

Commands var and const are the only statements that may appear outside a funcƟon’s body.

return
 [expression] ;

Exit the current funcƟon and return control to the caller (the funcƟon that was calling
the current funcƟon, or the command line if it was directly called from there).
If ‘expression’ is present, it is evaluated and the result (integer, float, string) is returned
to the caller as funcƟon result. If not present, zero is returned (integer value).

end ; Exit the current funcƟon and return control to the caller (the funcƟon that was calling
the current funcƟon, or the command line if it was directly called from there).
Return integer value zero to the caller.

Justina User Manual just an Interpreter for Arduino

13 Programming Page 67

Within a funcƟon, var and const declare local funcƟon variables

Local funcƟon variables, as their name implies, are only ‘known’ inside the funcƟon where they have been defined.
Also here, the rule applies that they can only be referenced (in the funcƟon) once they have been declared (further
down the program file).

Memory for local variables (or local constant variables) is allocated - and variables receive their iniƟal values - when a
funcƟon is called, and before the funcƟon starts execuƟng. Memory is deallocated when a funcƟon ends (control
returns to the caller).

Within a funcƟon, staƟc declares staƟc funcƟon variables

Just like local variables, staƟc variables are only accessible within the funcƟon where they are defined. And also here,
the rule applies that they can only be referenced once they have been defined (further down the program file).

However, memory for these variables is not allocated when a funcƟon is called, but during program parsing (and that’s
also when these variables receive their iniƟal values). StaƟc variables are destroyed when a program is deleted or a
new program is loaded (same lifeƟme as global program variables).

The syntax is idenƟcal to the var command syntax:

staƟc name1 [(dim1 [, dim2 [, dim3]]])] = literal1 [, name2 ...] ;

StaƟc funcƟon variables retain their values between successive calls of the funcƟon.

Notes

 All local and staƟc variables without iniƟalizer are defined as float and iniƟalized to zero during parsing. Same
applies to all array elements of arrays without iniƟalizer.

 Variable declaraƟon commands are non-executable commands, as their only purpose is to inform JusƟna of
the existence of these variables / constants in order to reserve memory for them (during parsing or, for local
variables, before a funcƟon is called). They are never executed. That means you can put them inside a loop for
example (which is not necessarily good programming pracƟce), they will then be available from that point
onward unƟl the end of the funcƟon.

 During the lifeƟme of global program variables (and constants), they are accessible from the command line by
the user (except when ‘shadowed’ by user variables / constants with the same name).

 Vice versa, a program has access to user variables (unless shadowed by program variables).
 Within one funcƟon, a variable name can only reference one variable, be it a user or global program variable,

a local funcƟon variable or a staƟc funcƟon variable. Local and staƟc funcƟon variables ‘shadow’ global
variables with the same name.

Comments

A comment is any text that you add to your source file for documentaƟon purposes and that should be ignored by the
JusƟna interpreter. Two forms exist:

 Single line comment: anything between ‘//’ (two slash characters in a row) and the end of a source line.
 MulƟline comments anything between ‘/*’ (slash and asterisk) and ‘*/" character sequences.

Comments do not need to start at the beginning of a line. Note that mulƟline comment blocks cannot be nested.

Justina User Manual just an Interpreter for Arduino

13 Programming Page 68

13.3 Control structures

Control structures are defined by specific statements controlling how execuƟon should proceed. They decide how the
flow of executed statements should be altered at certain moments.

In JusƟna, control structures always start with a specific control statement and they always end with a control
statement (in JusƟna, that’s always an end command). The statements in between form a statement block.

Control structures may contain other (nested) control structures. This is what makes a program structured, making a
program much easier to develop and maintain with less possibiliƟes to introduce program errors.

if...end structure

The ‘if’ control structure starts with the if command and ends with the end command. OpƟonally elseif and else
commands can occur in between, creaƟng mulƟple statement blocks.

if test expression ; [statement; statement; ...]
[elseif test expression ; [statement; statement; ...]]
 ...
[elseif test expression ; [statement; statement; ...]]
[else ; [statement; statement; ...]]
 [statement; statement; ...]]
end ;

Test expressions are evaluated one by one unƟl a test expression returns a non-zero result (interpreted as TRUE). If
that happens, the corresponding statement block is executed aŌer which execuƟon conƟnues aŌer the end statement.
If all test expressions return zero (false), and an else clause is present, the statement block following the else clause is
executed.

If a test expression returns a non-numeric result, an execuƟon error is produced and execuƟon stops.

for...end loop

Using the ‘for...end’ control structure, the statement block in between can be executed mulƟple Ɵmes: it defines a
for...end loop. This is controlled by ‘control variable’ (a scalar or an array element).

for control variable [= start] , end [, step] ;
 [statement; statement; ...] ;
end ;

‘Start’, ‘end’ and ‘step’ : numeric expressions yielding a numeric result (the default step = 1).

First, ‘control variable’ receives the value ‘start’ (if a start value is not specified, it maintains its current value).

Then the statement block is executed repeatedly. At the end of each iteraƟon, the value of ‘control variable’ is
incremented by ‘step’. If this new value is sƟll in the range between ‘start’ and ‘end’ values, a new iteraƟon starts.
Otherwise, the loop ends and execuƟon conƟnues aŌer the end statement.

Justina User Manual just an Interpreter for Arduino

13 Programming Page 69

Notes
 to test the current value of ‘control variable’ aŌer each iteraƟon, ‘end’ and ‘step’ values will be converted to

the type of ‘control variable’
 if ‘end’ is higher than ‘start’ but ‘step’ is negaƟve, then the loop will not be executed (and same if ‘end’ is less

than ‘start’ but ‘step’ is posiƟve)
 the value of ‘control variable’ should not be changed within the statement block
 two nested for...end blocks can not share the same control variable

 while...end loop

Using the ‘while...end’ control structure, the statement block in between can be executed mulƟple Ɵmes: it defines a
while...end loop.

while test expression ;
 [statement; statement; ...] ;
end ;

First, ‘test expression’ is evaluated. If its result is not equal to zero (TRUE), the statement block is executed. At the end
of each iteraƟon, the test expression is evaluated again and if the result is sƟll not equal to zero, the next iteraƟon
starts.

When the test expression result becomes zero (FALSE), the loop ends and execuƟon conƟnues aŌer the end
statement.

Other commands changing the program execuƟon flow

break ; This command ends execuƟon of a loop. ExecuƟon conƟnues aŌer the loop end
statement.

conƟnue ; The remainder of the currently executed loop is skipped, moving on immediately with
the test at the end of the iteraƟon. The test result determines whether a next iteraƟon
starts or the loop is ended.

Notes

 control structures can be used in immediate mode as well
 In Notepad++, using the JusƟna Language extension, the funcƟon...end structure, the return statement, the

control structures and the break and conƟnue commands are displayed in a bold and slightly darker color to
disƟnguish them from other (non-control structure) commands

Justina User Manual just an Interpreter for Arduino

13 Programming Page 70

Example: JusƟna program ‘factorial’

Locate file ‘fact.jus’ in folder ‘libraries\JusƟna_interpreter\extras\JusƟna_language_examples\’, residing in your
sketchbook locaƟon, and open it in Notepad++.

The program calculates the factorial of a posiƟve integer, using a recursive mechanism: the program repeatedly calls
itself, unƟl a final result is calculated.

We will execute this program when we discuss debugging, a liƩle bit further down. But let’s try to find out how it
works now.

This program has only one funcƟon, named fact. It has one parameter ‘n’, without iniƟalizer, which means that an
argument has to be supplied when this funcƟon is called. It also has a local variable ‘fact_n’ which will store calculated
factorials.

When funcƟon fact() is called from the command line with value ‘3’ as argument:
 local storage for variables ‘fact_n’ and ‘n’ (which receives value 3) is created and fact() starts execuƟng
 to calculate 3! as 3 * 2! , 2! must be calculated first (if clause, line 22)
 to calculate 2!, fact() calls funcƟon fact() again, with ‘2’ as argument, creaƟng a second independent instance of

fact()
 local storage for variables ‘fact_n’ and ‘n’ (which receives value 2) is created and fact() starts execuƟng
 fact() calculates 2! as 2 (else clause, line 24) and returns 2!
 instance 1 of fact() resumes and can now mulƟply 3 with 2! : it returns 3!

Note that this is not a very efficient way to calculate factorials. The higher the input value, the more instances of
‘fact()’ we need concurrently. At a certain moment RAM memory will be completely used (remember that Arduino is
sƟll a microprocessor, with a relaƟvely small amount of memory and no means of effecƟvely managing memory –
notably the ‘heap’, where all local variables are stored) and the processor will simply hang before it could start
releasing memory as funcƟon instances end.

The following lines of code do exactly the same thing, and we’re not even wriƟng a program. You can do this from the
command line:

var n=0, i=0, fact=0; // init as integer
n=1; fact=1; for i =2, n; fact=fact * i; end; // 1!
n=4; fact=1; for i =2, n; fact=fact * i; end; // 4!
n=6; fact=1; for i =2, n; fact=fact * i; end; // 6!

Justina User Manual just an Interpreter for Arduino

13 Programming Page 71

13.4 Commands to interact with the user

A few commands allow the user to interact with a running program without stopping JusƟna background tasks (e.g.
maintaining a TCP connecƟon – see Appendix D: 'Running background tasks: system callbacks').

input prompt, value, flag ; Halts the program, displays a message on the console and waits for an answer
from the user before proceeding.

prompt character string expression, which will be displayed as a message on the console.

value must be a variable. On entry, opƟonally contains a default answer (a string). On exit, will contain
the answer entered by the user in response to the message. The answer is always stored a string.

 To cancel the input operaƟon, type (or include) '\c' in the answer.
In order to select the default answer, type (or include) '\d' in the answer.

flag This mandatory argument must be a variable. Supplying a constant or an expression instead of a
variable will lead to a runƟme error. Possible values on entry:

NO_DEFAULT 0 selecƟng a provided default answer is not allowed.
ALLOW_DEFAULT 1 selecƟng a provided default answer is allowed.

on exit, argument 'flag' (a variable), will contain:

CANCELED 0 the user canceled the operaƟon
OK 1 the user confirmed by pressing ENTER, or entered 'Y' as a valid

Note: all characters typed to form an answer are stored, including ‘\’ characters (escape sequences are not processed).
You don’t need to type surrounding quote, because a string is what is expected.

info prompt [, flag] ; Halts the program, displays a message on the console and waits for the user to choose
between a few opƟons before proceeding.

prompt character string expression, which will be displayed as a message on the console.

flag OpƟonally, supply a value for this argument. Note: if this argument is provided, it must be a
variable. Supplying a constant or an expression instead of a variable will lead to a runƟme error.
Possible values on entry:

ENTER 0 confirmaƟon required by pressing ENTER (other characters are
 ignored). This is the default.

ENTER_CANCEL 1 idem, but ' \c ' (cancel) is allowed as well in the input.
YES_NO 2 Only 'Y' or 'N' (yes or no) are accepted as answer.
YN_CANCEL 3 Only 'Y' or 'N' (yes or no) and ' \c ' (cancel) are accepted as input.

 on exit, argument 'flag' (which must be a variable), if supplied, will contain the user answer:

CANCELED 0 the user entered 'cancel'
OK 1 the user confirmed by pressing ENTER, or entered 'Y' as a valid

 answer
NOK -1 the user entered 'N' as a valid answer

Two other commands to interact with the user are useful as well.

Justina User Manual just an Interpreter for Arduino

13 Programming Page 72

pause seconds ; Pause for a whole number of seconds.
Pressing ENTER on the console keyboard will immediately resume execuƟon.
Minimum is 1 second. A floaƟng-point argument will always be converted to integer
first.

halt ; Displays a message on the console ("Press ENTER to conƟnue") and halts the program
unƟl ENTER is pressed on the console keyboard.
Note: this command should not be confused with the ‘stop’ command (see secƟon
13.6: Debugging, below).

13.5 Error trapping

Normally, when an execuƟon error occurs, JusƟna will display an error message and execuƟon will end.

Example: if in a program, a statement asin(-2); is executed, execuƟon will terminate and an error will be
produced (-2 is not within the domain of the arc sine funcƟon):

 Remark that the error message also indicates the JusƟna funcƟon and source line.

But there can be situaƟons where, if an error occurs, we don’t want the program to terminate. Instead, we want to
test for errors and take appropriate acƟon. Two commands and a funcƟon are provided for this.

The following command is not directly linked to error trapping, but we’ll put it here:

trapErrors trap ; trap: numeric argument. If trap is not equal to zero, clear the last error and set error
trapping on. If zero, set error trapping off (but do not clear the last error).

clearError ; clear the last error

err([evalParseError]) If error trapping is enabled, err() returns the last execuƟon error that occurred. If no
error present, returns 0.
Special case: if the execuƟon error signals a runƟme parsing error during execuƟon of
an eval() funcƟon or a list parsing funcƟon (cinList(), ...), the parsing error is returned
to the 'evalParseError' argument (if provided), which must be a variable capable of
storing an integer value.

raiseError number ; "produce" an error with the specified number. JusƟna will behave as if the error actually
occurred.

Justina User Manual just an Interpreter for Arduino

13 Programming Page 73

Example: program ‘input’

In this example, we will use the input command together with the eval() funcƟon and error trapping.

Locate file ‘input.jus’ in folder ‘libraries\JusƟna_interpreter\extras\JusƟna_language_examples' (residing in your
Arduino sketchbook locaƟon) and open it in Notepad++.

Using a while...end structure and an input statement, this program repeatedly asks to enter an amount in metric tons
and subsequently prints out this amount in kilograms. All amounts entered are summed up and when the user finally
cancels the last input, the loop ends and the total amount entered is printed.

But the user can enter mulƟple amounts in one go, by entering an expression (like 2+3*4;) when the program stops
to request input. The eval(...) funcƟon will then parse and execute the expression the user entered.

But if the user makes an error in one of his entries, we don’t want the program to end execuƟon with an error. We
merely want to display an error message, indicaƟng that the user entered an incorrect amount and let him try again.

We accomplish that by seƫng error trapping ‘on’ just before the eval() funcƟon, seƫng it ‘off’ again just aŌer, and
then tesƟng for an error, using the err() funcƟon.

Now, load the program.

If we type this:

evalInput(); start the program
2.3; enter an amount
2 + 2.1; enter two amounts, using an expression
"abc"; an incorrect entry
5; enter an amount
\c; exit the program

Justina User Manual just an Interpreter for Arduino

13 Programming Page 74

The output will be

If an error occurs and error trapping is not ‘on’ in the funcƟon where the error occurs, the funcƟon is ended and
control returns to the calling funcƟon. If error trapping is ‘on’ in the calling funcƟon, the error can be trapped there
(using the err() funcƟon to determine the nature of the error). If not ‘on’, the calling funcƟon is also ended and control
passes to the caller of that funcƟon.

This goes on unƟl a funcƟon with error trapping enabled is found in the call stack. The error can then be trapped in
that funcƟon (note that an error can even be trapped in the command line).

An execuƟon error will only be produced if no funcƟon in the call stack was found with error trapping ‘on’.

2 + 2.1 metric ton

incorrect amount “abc”

total amount

Justina User Manual just an Interpreter for Arduino

13 Programming Page 75

13.6 Debugging

Stopping a program for debugging

A running program can be stopped for debugging in 4 ways: start a program in debug mode, insert stop commands in
your program, set breakpoints or use JusƟna system callbacks.

Using system callbacks and a simple pushbuƩon, a program can be ‘forced’ to stop and enter debug mode (e.g., while
in an endless loop). This will be discussed in Appendix D: 'Running background tasks: system callbacks'.

Seƫng breakpoints is by far the most powerful method: you don’t need to alter and reload your program, you can set
breakpoints anyƟme, not only before you start a program but also when it’s currently stopped, you can specify
breakpoint triggers and enter ‘trace’ expressions to view variable contents etc.

For now, let’s start with the easiest ways to stop a program and see how we then can execute one statement at a Ɵme.

Each Ɵme a program stops and enters debug mode, JusƟna will print two extra lines before the prompt: a ‘STOP’ line
clearly signaling debug mode, and a line showing the next statement to execute, together with source line number
and currently acƟve funcƟon. These lines are printed to the ‘debug out’ stream.

 The debug out stream can be set to any stream, be it an IO device or an open SD card file (the laƩer is useful for
logging debugging messages). See setDebugOut command, chapter 10: Input and output.
On startup, the debug out stream is set to the same (default) IO device as the console.

Example

 Locate file ‘myFirst.jus’ in folder ‘libraries\JusƟna_interpreter\extras\JusƟna_language_examples’ (residing in your
Arduino sketchbook locaƟon) and load the JusƟna program it contains.

Now type:

debug ; If followed by a call to a program funcƟon; the program will enter debug mode,
stopping the program before it executes its first statement.
Use: command line only.

stop ; Insert this statement where you want a program to stop, entering debug mode. The
program will enter debug mode before it executes its next statement.

nop ; no operaƟon. Placeholder for stop (instead of removing stop, you could replace it by
nop; this will not change program memory used nor will it change source line
numbering).

Justina User Manual just an Interpreter for Arduino

13 Programming Page 76

debug; print5lines();

The program will immediately enter debug mode.

The console will first print a ‘STOP’ line to clearly indicate that the program has stopped and is in debug mode now.

On the next line it will print the line number of the next statement to execute, the funcƟon (between square brackets)
and the source statement ("for I = 1, 5", which you can verify in Notepad++).

Stepping through a program

Now, enter command step a few Ɵmes. Each Ɵme, JusƟna executes one statement and prints out the statement to be
executed next.

As you have seen in the previous example, when the system enters debug mode, the command line is ready to accept
input again. But because a program is stopped, we call this the ‘debug command line’, because a number of debugging
commands become available.

Command step is part of a series of commands to execute one, or a few, program statements, staying in debug mode.
There is also a command to exit debug mode and resume execuƟon.

 Note that these commands will produce an error if no program is stopped in debug mode.

program output

program output

stopped in funcƟon print5lines() at line 17

Justina User Manual just an Interpreter for Arduino

13 Programming Page 77

SomeƟmes it is useful to manually skip execuƟon of part of a program that is being debugged, because that part is not
relevant in the context of debugging. This is accomplished by the setNextLine command.

step ; Execute one statement and enter debug mode again before the next statement is
executed.
If a statement contains a call to another funcƟon, JusƟna will step into that funcƟon and
stop there.
Use: command line only.

loop ; If currently stopped inside a control structure, executes statements unƟl the end
statement is reached: JusƟna will execute one iteraƟon of a loop (for...end; ...) or the
statements within an if...end structure, and will stop and enter debug mode again
before the control structure end statement, making this the next statement.
If not currently within a control structure, then loop behaves like step.
Use: command line only.

bStepOut ; ‘block step out’ - command line only. If currently stopped inside a control structure,
conƟnue execuƟon unƟl all statements of the control structure have been executed. The
program will stop and enter debug mode again at the first statement aŌer the control
structure end statement.
If not currently within a control structure, then bStepOut behaves like step.
Use: command line only.

stepOut ; ConƟnues execuƟon unƟl all statements of the current funcƟon have been executed.
The program will stop and enter debug mode again in the calling funcƟon, aŌer the
statement with the funcƟon call. If the funcƟon was called directly from the command
line, then execuƟon will conƟnue there (JusƟna stops only if within a program).
Use: command line only.

stepOver ; Execute one statement and enter debug mode again before the next statement is
executed.
If a statement contains a call to another funcƟon, JusƟna will not step into that funcƟon
(it will not stop and enter debug mode there).
Use: command line only.

go ; conƟnue execuƟon again when a program was stopped in debug mode.
use: command line only.

setNextLine line ; Change the ‘next statement’ (where execuƟon will resume) to the (first) statement
starƟng on the indicated source line.
The statement must be part of the funcƟon where the program is currently stopped and
it is not possible to move control into a currently uniniƟalized block structure (a loop or
if...end structure). You can always move control out of a block structure, however.
Note that this command will produce an error if no program is stopped in debug mode.
Use: command line only.

Justina User Manual just an Interpreter for Arduino

13 Programming Page 78

When a program is stopped in debug mode, the user has access to the stopped funcƟon’s local variables from the
command line: a user can examine variables and even change their values, in the same way he accesses user variables
or global program variables.

But if mulƟple variables (or constants) with the same name exist, the parser will first look for a user variable with that
name, then for a global program variable with that name and, only if none of these two exist, for a local variable of the
stopped funcƟon. So, we need a way to tell the parser to look for that funcƟon’s local variable immediately.

Notes:

 As soon as one of the above commands executes, the parsed command line is deleted and command line
execuƟon will terminate: for instance, if you type
1 + 2; step; 3 + 4; JusƟna will execute a statement from the stopped program but the remaining
expression 3 + 4; will never get executed – which is quite logical, because there’s no way control could sƟll
return to there.

 Instead, If a stopped program finally ends (terminates), the original command line (containing the call to the
program) will conƟnue execuƟon: although the original command line text in the serial monitor or terminal may
have been overwriƩen by debugging commands, it’s parsed statements were saved and execuƟon will conƟnue
there, just as if the program was executed without debugging – which is as it should be.

AborƟng a program

A program stopped in debug mode can be aborted by using the abort command.

Note that a user can also abort running code by using system callbacks. See Appendix D: 'Running background tasks:
system callbacks'.

This is a prefix (not an operator), opƟonally placed in front of a variable name, to force
the parser to interpret the variable as a local variable of a stopped funcƟon in case a
user variable or a global program variable with the same name would exist as well.

abort ; Terminate a currently stopped program, releasing all memory it occupied for local
funcƟon variables. This doesn’t influence global program variables (as they are created
during program parsing) or user variables.
Use: command line only.

Justina User Manual just an Interpreter for Arduino

13 Programming Page 79

13.7 Tracing variables and expressions

Tracing provides a way to automaƟcally review the contents of variables, and even the result of expressions, during
debugging.

To inform JusƟna about the variables or expressions you would like to review, using the trace command. During
debugging, you’ll then see the evoluƟon of selected variable contents or expression results.

Traced variable values and expression results are printed to the ‘debug out’ stream and will appear in a separate
‘TRACE’, line in between the ‘STOP’ line and the line showing the next statement.

 On startup, the debug out stream is set to the IO device also designated as default console. If this is not wanted,
the debug out stream can be set to any stream, be it another IO device or an open SD card file (the laƩer is useful
for logging debugging and tracing messages).

The ‘TRACE’ line starts with a <TRACE> label, followed by a comma-separated list of values. Depending on the current
seƫng (see table above), each value may be preceded by the corresponding expression text and a colon.

If parsing and evaluaƟon of an expression in the trace string produces an error:

 parsing error: ‘ErrP’ followed by the parsing error number is printed instead of the respecƟve expression and
value (even if viewing expressions is currently Off)

 evaluaƟon error; the respecƟve expression is printed, followed by a colon and ‘ErrE’ plus the execuƟon error
number

Example: program ‘factorial’

We discussed this program earlier in this chapter. Let’s now execute it step by step, while reviewing the contents of
local variable ‘n’ and ‘fact_n’ in funcƟon fact().

Locate file ‘fact.jus’ in folder ‘libraries\JusƟna_interpreter\extras\JusƟna_language_examples\’, residing in your
Arduino sketchbook locaƟon) and load the JusƟna program it contains.

Open the file in notepad++ as well, to be able to follow execuƟon of the program.

First, set the trace string: trace "n; fact_n";

trace traceString ; This command stores a ‘traceString’: a list of expressions, stored as a single string. The
expressions within the string are separated by semicolons.
A trace string is used to automaƟcally ‘trace’ the values of specific variables - including the
stopped funcƟon’s local variables - while you execute statements during debugging: the
expressions stored in the trace string will be automaƟcally parsed and evaluated, and the
results printed, each Ɵme control returns to the command line while in debug mode.
Tracing is not acƟve if ‘traceString’ is set to an empty string ("") or a program is not in
debug mode.
The string cannot contain command statements, eval() funcƟons and calls to program
funcƟons. No other restricƟons apply: you may use variables and constants, operators, call
built-in funcƟons and 'external' funcƟons you write in c++.
To include a string constant within ‘string’, use escape sequences (see chapter 4: Data
types), or use the quote() funcƟon.

viewExprOn ; While tracing, precede each value traced by the corresponding expression text and a colon

viewExprOff ; While tracing, print values traced only - without the corresponding expression text

Justina User Manual just an Interpreter for Arduino

13 Programming Page 80

While tracing, view expressions (text) as well, not only values: viewExprOn

Now let’s calculate the factorial of 3 (3!) and trace the evoluƟon of the variables.

Start debugging: debug; fact(3);

Then step through the program unƟl the result, 6, is printed.

Remember that the funcƟon and var commands are non-executable statements; these statements are skipped during
execuƟon.

If a global program variable or a user variable exists with the same variable name as the local variable, precede the
variable name with the ‘#’ character to force the parser to select the stopped funcƟon’s local variable.

Example: trace #n.

Each Ɵme JusƟna stops in
debug mode, the console will
now print an extra line: it
starts with label “<TRACE>”
followed by all variables (or
even expressions) in the trace
string with their value.

calculate 3!

calculate 3 x 2!

return 2!

return 3!

Step-by-step execuƟon of funcƟon fact(3)

Excerpt of source file 'fact.jus'

Justina User Manual just an Interpreter for Arduino

13 Programming Page 81

PrinƟng the call stack

During debugging, someƟmes it helps to ‘see’ how deep funcƟons calling each other are currently nested. We can
visualize this by prinƟng the ‘call stack’. This is especially useful when dealing with recursive funcƟon calls.

Example

Referring to the previous example, let’s now calculate the factorial of 5.

Start debugging: debug; fact(5);

 Execute 'step; ' 5 Ɵmes.

Then execute command listCallStack CONSOLE; (the argument is opƟonal; CONSOLE is the default)

This shows that control is currently 3 levels deep in funcƟon ‘fact’ and the next line to execute is line 22.

listCallStack [streamNumber] ; This command prints the current call stack. If a program is stopped for
debugging, this shows us what funcƟon was iniƟally called from the
command line, and the tree of funcƟons called when the program was
stopped. The funcƟon that was execuƟng instrucƟons (the 'deepest'
instrucƟon in the call stack) is shown first.
The ‘streamNumber’ argument can refer to any available external IO device
and to any open file. If no device number is specified, prints to console.

Justina User Manual just an Interpreter for Arduino

13 Programming Page 82

13.8 Breakpoints

Breakpoints allow you to ‘mark’ specific program statements where you want the program to stop and enter debug
mode. Breakpoints are not inserted in your program; they are maintained separately in a breakpoint table and they
don’t change your program in any way. You can enter a maximum of 10 breakpoints.

Breakpoints are extremely helpful while debugging a program. You can

 enter and change breakpoints dynamically
 add a separate trace string for each breakpoint, specifying mulƟple variables or expressions to be traced
 add a separate trigger (opƟonal) for each breakpoint, specifying a condiƟon for stopping the program

Breakpoints are set using the setBP commands, which has two forms

Each Ɵme a program stops and enters debug mode because a breakpoint was encountered, JusƟna will print a ‘BREAK’
line instead of a ‘STOP’ line to indicate that a breakpoint was hit, and (as with a normal stop) a line showing the next
statement to execute. Output is printed to the ‘debug out’ stream.

Traced variable values and expression results are printed to the ‘debug out’ stream as well, on a separate line, starƟng
with the label <BP TR> (breakpoint trace) and in between the ‘STOP’ line and the line showing the next statement.
 The debug out stream can be set to any stream, be it an IO device or an open SD card file (the laƩer is useful for

logging debugging messages). See setDebugOut command, chapter 10: Input and output.
On startup, the debug out stream is set to the same (default) IO device as the console.

Notes

 viewExprOn and viewExprOff commands affect prinƟng of expressions during BP tracing as well.

setBP line [, line, ...] ;

 - or -
setBP line, traceString [, trigger] ;

Set breakpoints for specific source lines, forcing the program to stop if the
statement starƟng on one of these source lines is reached while the
program was running.
This does not change previously set breakpoint aƩributes (see next).
 - or -
Set a breakpoint for a source line, forcing the program to stop if the first
statement starƟng on that source line is reached while the program is
running.
At the same Ɵme, this second form stores a trace string (same format and
restricƟons as trace command), but only applicable to this breakpoint. If
‘traceString’ is set to an empty string (""), no variables (or expressions)
are traced when this breakpoint is hit.

If the opƟonal trigger is specified, it’s stored as well. The trigger can either
be a hit count or a condiƟon:
 condiƟon: a string, containing one expression. Each Ɵme the source

line is reached, the expression is parsed and evaluated. If the result is
numeric and not equal to zero (TRUE), the program will stop and
enter debug mode. Otherwise, execuƟon will conƟnue.

 hit count: a number indicaƟng the number of Ɵmes this source line
must be reached before the program stops. An internal counter keeps
track of this. This counter is reset each Ɵme the breakpoint is hit and
when the setBP statement sets a new hit count.

Use: command line only.

Justina User Manual just an Interpreter for Arduino

13 Programming Page 83

 Errors during parsing and evaluaƟon of trace string expressions when a breakpoint is hit, are reported in the
same way as when parsing global trace string expressions (see trace command).

 An error during parsing and evaluaƟon of a trigger condiƟon (a string expression), as well as a non-numeric
result is interpreted as a FALSE condiƟon: the program will not stop at the respecƟve breakpoint.

 When a new program is loaded or a program is cleared, all breakpoints set are deleted.

Example: program ‘factorial’

We already executed this program step by step, to illustrate how debugging and tracing works.

Now we will ‘debug’ this program again, but by using breakpoints.

Load program ‘fact.jus‘ again (loadProg command). And, again, open it in Notepad++ as well, to be able to follow
where control is during debugging.

It’s important to place breakpoints ‘strategically’, in order to have a good understanding of what the program does,
based on the contents of variables used in the program (‘n’ and ‘fact_n’).

 we’ll place breakpoints at the two lines containing an expression: these are lines 22 and 24. Here, we’re
interested in the value of variable ‘n’ (variable ‘fact_n’ is zero at this point: ‘fact_n’ is a local variable, it has
just been iniƟalized – see line 19)

 the return statement returns the result of these expressions, so here we’ll put a breakpoint to trace variable
‘fact_n’.

Set the breakpoints now. Enter these lines:

setBP 22, "n"; argument of the acƟve ‘fact’ funcƟon (for n > 2)
setBP 24, "n"; argument of the acƟve ‘fact’ funcƟon (for n <= 2)
setBP 27, "fact_n"; return value of the acƟve ‘fact’ funcƟon

We’ll not set a trigger for these breakpoints at this Ɵme.

While tracing, view expressions (text) as well, not only values: viewExprOn

Now let’s calculate the factorial of 3 (3!) again and trace the evoluƟon of the variables.

Start the program: fact(3);

Then conƟnue execuƟon, using go instead of step, and do that unƟl the program ends and the result, 6, is printed.

 You don’t need to start the program in debug mode, nor do you need to insert STOP statements: you have set
breakpoints instead.

Now, the program only stops where you want it to stop – and without inserƟng stop commands that need to be
removed again aŌerwards.

Justina User Manual just an Interpreter for Arduino

13 Programming Page 84

Other breakpoint commands:

clearBP line [, line, ...] ; Clear breakpoints for specific source lines and clear associated breakpoint trace
strings and condiƟons if set.
Use: command line only.

enableBP line [, line, ...] ; Enable breakpoints for specific source lines. This requires that the respecƟve
breakpoints are set. If not, this command will produce an error.
Note: when a breakpoint is iniƟally set, it is enabled by default.
Use: command line only.

disableBP line [, line, ...] ; Disable breakpoints for specific source lines. These breakpoints will be inacƟve
unƟl they are enabled again.
This command requires that the respecƟve breakpoints are set. If not, this
command will produce an error.
Use: command line only.

BPon ; Enable breakpoints. This is a global seƫng and does not influence any of the
defined breakpoint seƫngs. This is the default status.
Use: command line only.

BPoff ; Disable breakpoints. This is a global seƫng and does not influence any of the
defined breakpoint seƫngs.
Use: command line only.

Excerpt of source file 'fact.jus'

calculate 3 x 2!

calculate 2!

return 2!

calculate 3!

return 3!

ExecuƟng funcƟon fact(3) with breakpoints set

Justina User Manual just an Interpreter for Arduino

13 Programming Page 85

To get an overview of all current breakpoints, use the listBP command.

Referring to the previous example, this is the output of the listBP command:

Now, let’s adapt the trace string for line 22, to display not only the value of ‘n’, but also a random number between 0
and 999. In addiƟon, we'll disable the breakpoint for line 24, set a condiƟon for line 22 and a hitcount for line 27.
To make sure that the parser selects local variable 'n' and not a global or user variable with the same name , we'll use
'#n' in trace and trigger expressions.

setBP 22, "#n; random(1000)" , "#n<=4" break when n is less than or equal to 4
setBP 27, "fact_n", 3 break every three Ɵmes the line gets executed
disableBP 24

Calculate the factorial of a few numbers and see what happens.

listBP [streamNumber] ; Print a list of all currently defined breakpoints with their aƩributes. The list is
sorted by source line number.
The ‘device number’ argument can refer to any available external IO device and to
any open file. If no device number is specified, prints to console.

Justina User Manual just an Interpreter for Arduino

13 Programming Page 86

13.9 ExecuƟng a program while one or more programs are stopped

While a program is stopped for debugging, you can start another program ‘instance’ . You can even stop that second
running program as well, debug it, trace its variables etc. But you cannot switch to a previously stopped program and
conƟnue execuƟon there before all newer program ‘instances’ were ended (or aborted). If more than one program is
stopped, JusƟna will indicate that in the 'STOP' line while debugging.

Note: only one program file can be loaded and parsed in program memory at any one Ɵme. So, starƟng a new
program ‘instance’ means calling one of the funcƟons available in the parsed program and execuƟng it – possibly the
same funcƟon that started the currently stopped program(s). The only thing to take into account is that global program
variables and user variables are shared.

From inside a running program, you can access the local variables of the funcƟon where the last program instance was
stopped. To do this from inside a running program, use the eval() funcƟon and add prefix ‘#’ to the stopped funcƟon’s
variable names (same prefix as you would use from the command line or from within a trace string).

Example: if the stopped funcƟon has a local variable ‘count’, then you could do this from inside a running program:

eval(" #count "); to return the value of variable ‘count’
eval(" #count += 7 "); to add 7 to ‘count’ and return the new total

PrinƟng the call stack (listCallStack command) will print a separate funcƟon tree for each stopped program.

Justina User Manual just an Interpreter for Arduino

14 Appendices Page 87

14 Appendices

Appendix A CreaƟng a JusƟna object and choosing startup opƟons

CreaƟng a JusƟna_interpreter object using default values

The simplest way to create a JusƟna object is by using this statement:

Justina justina;

This sets Serial as the single IO 'channel' available for JusƟna and assumes that the Arduino Serial Monitor (or another
serial terminal program or device) will act as console. Moreover, if an SD card board is connected, JusƟna is allowed to
access SD cards to create, read and write files, etc. The SD card chip select pin is set to pin 10 by default.

CreaƟng a JusƟna object, specifying an SD card mode and chip select pin

Justina justina(cardMode [, CSpin]);

cardMode: use one of the following public JusƟna constants (precede by ' JusƟna:: '):

Justina::SD_notAllowed card reader not present or card operaƟons not allowed (maybe, SDcard
is in use by the calling Arduino program)

Justina::SD_allowed card reader is allowed but SD card will not be started (mounted)
automaƟcally (maybe no SD card is inserted). This is the default

Justina::SD_init start (mount) SD card when calling JusƟna begin()

Justina::SD_runStart when calling JusƟna begin(): start (mount) SD card, load JusƟna
program "SD_start.jus" from SD card if present and execute user
funcƟon start() if found

CSpin: SD card chip select pin (opƟonal). Connect this Arduino pin to the SD card reader Chip Select pin. The default is
Arduino pin 10.

CreaƟng a JusƟna object connecƟng to mulƟple IO devices

JusƟna can handle up to 4 input and output devices, represented by Stream objects and Print objects, respecƟvely.

Justina justina(inputs, outputs, count [, cardMode , CSpin]);

inputs: a Stream * array with pointers to input streams (Serial, a TCP IP client, an ASCII keyboard...)
outputs: a Print * array with pointers to output streams (Serial, a TCP IP client, an OLED or LCD screen,)
count: the number of inputs and outputs defined (minimum 1, maximum 4)
SDcardMode: as described above (opƟonal)
CSpin: as described above (opƟonal)

Example

For example, if you're using a Serial monitor and an lcd display (number of devices = 2):

Stream* pExtInput[2]{ &Serial, nullpr};
Print* pExtOutput[2]{ &Serial, &lcd};
Justina justina(pExtInput, pExtInput, 2);

(assuming an 'lcd' object has been created - see for instance the Arduino IDE example ' LiquidCrystal ')

Justina User Manual just an Interpreter for Arduino

14 Appendices Page 88

 If an output device has no corresponding input device (e.g., the lcd display in this example), enter a 'nullptr' in
the corresponding posiƟon within the input stream array. The same logic applies if an input device has no
corresponding output device.

 JusƟna uses the input and output devices referenced in the first array posiƟon as default console input and
output, respecƟvely. None of these can be a nullptr.

 Typically, Serial will be entered in the first array posiƟon (default console). However, any capable IO device can
be set as default console.

Example

Stream* pExtInput[1]{ &Serial };
Print* pExtOutput[1]{ & lcd};
Justina justina(pExtInput, pExtInput, 1);

In this example (assuming an 'lcd' object has been created), the Arduino Serial monitor will be used as console input
only; console output will be sent to an LCD display (which is probably not very useful).

Example programs

The JusƟna library contains two sketches demonstraƟng the use of addiƟonal IO devices, next to Serial.
 JusƟna_OLED.ino adding OLED displays as extra JusƟna output devices
 JusƟna_TCPIP.ino adding a TCP IP terminal as extra JusƟna output device

Arduino IDE: File -> Examples -> Examples from custom libraries -> JusƟna interpreter -> JusƟna_OLED
 File -> Examples -> Examples from custom libraries -> JusƟna interpreter -> JusƟna_TCPIP

Justina User Manual just an Interpreter for Arduino

14 Appendices Page 89

Appendix B Changing the size of memory allocated to JusƟna

By default, JusƟna sets the size of specific memory areas, taking into account the available RAM of the Arduino board
used.

 maximum
allowable

Arduino RP2040 and
Arduino ESP32 boards

Arduino SAMD boards

program memory size in bytes (*) 65536 65536 4000
max. program variable names (**) 255 255 64
max. user variables 255 255 64
max. staƟc variables 255 255 32
max. program funcƟons 255 255 32

(*): Minimum is 2000 bytes. This includes 500 bytes of program memory for parsed immediate mode (user)
commands, leaving 1500 bytes (which is sufficient for a Ɵny program).

(**): Program variable names are shared between global, local and staƟc program variables: names are stored only
once (but a global, a local and a staƟc program variable using the same variable name are all disƟnct variables, of
course).

Depending on your specific requirements, these values can be increased or decreased by ediƟng a specific
'constants.h' file, but this WITHOUT CHANGING ANY OF THE FILES IN THE JUSTINA LIBRARY. Changes you make in a
library file would be overwriƩen each Ɵme the library is updated.

 The constants.h file

 Locate folder 'libraries\JusƟna_interpreter\extras\JusƟna_constants' in your sketchbook locaƟon.
 Copy this folder ('JusƟna_constants') to folder 'libraries'. You have now a library folder 'JusƟna_constants' within

the 'libraries' folder, next to the 'JusƟna_interpreter' library folder.

Change the size of specific memory areas

 Open file 'libraries\JusƟna_constants\JusƟna_constants.h' for ediƟng
 Change the values next to the preprocessor #DEFINE direcƟves. For example:

#define PROGMEM_SIZE 2000
#define MAXVAR_USER 100
#define MAXVAR_PROG 100
#define MAXVAR_STAT 100
#define MAXFUNC 50

 Save the file

 if you don't want to change the default for a specific value (as in the table above), comment out the

respecƟve line (' //').

Justina User Manual just an Interpreter for Arduino

14 Appendices Page 90

Appendix C Example programs

c++ examples

The JusƟna interpreter library contains a number of c++ examples, which can be selected from the Arduino IDE menu:

 File -> Examples -> Examples from custom libraries -> JusƟna interpreter -> (select an example from the list)

Each of these sketches will start JusƟna, but (apart from the first sketch, which is basic) they demonstrate specific
features built-in into JusƟna (e.g., adding extra IO channels to JusƟna, next to the console).

Example Scenario
JusƟna_easy As the name suggests, this example is straighƞorward. It demonstrates how to start

JusƟna. When the program is executed, you should see the JusƟna prompt appearing
on the console.

You can then start typing user commands in the command line, load and execute
JusƟna programs, etc.

Hardware required: none.

JusƟna_systemCallback Demonstrates the use of system callbacks to detect JusƟna stop, abort, console reset
and kill requests, retrieve the current JusƟna status (e.g., to signal that a user error
occurred) and blink a heartbeat led.

Hardware required: 5 LEDs, 2 pushbuƩons, resistors.

More informaƟon: Appendix D: 'Running background tasks: system callbacks'.

JusƟna_userCPP Demonstrates how to extend JusƟna funcƟonality by wriƟng 'user c++' funcƟons. You
can then call these user c++ funcƟons from the JusƟna command line, just like any
other JusƟna funcƟon, with the same syntax, using an alias as funcƟon name and
passing scalar or array variables as arguments.

Hardware required: none.

More informaƟon: Appendix E: calling user c++ funcƟons.

JusƟna_userCPP_lib Demonstrates how to create a JusƟna 'user c++ library' file. It also shows how to pass
arrays (by reference) to a user c++ funcƟon.

Hardware required: none.

More informaƟon: Appendix E: calling user c++ funcƟons.

JusƟna_OLED Demonstrates how to set up OLED displays as addiƟonal JusƟna output devices, next
to Serial.

You can then print data to the OLED displays in the same way you print to the JusƟna
console. You can change the console (in this case, for output only) to an OLED display.

Hardware required: OLED display with SH1106 controller communicaƟng over
SW SPI and/or OLED display with SSD1306 controller communicaƟng over I2C.

The sketch sets up the OLED displays as addiƟonal output devices IO2 and / or IO3,
next to Serial (IO1, CONSOLE).

Justina User Manual just an Interpreter for Arduino

14 Appendices Page 91

JusƟna_TCPIP This is probably the most 'complex' of the examples provided. The program
demonstrates the setup needed for various JusƟna features, namely

 seƫng up Arduino as a TCP/IP server in order to use a TCP/IP client terminal as
an addiƟonal output device, or to build a JusƟna HTTP server on top of it (see
JusƟna language examples, below).

 using JusƟna system callback funcƟons to maintain the TCP/IP connecƟon, to
blink a heartbeat LED and to set status LEDs indicaƟng the TCP/IP connecƟon
state.

 using JusƟna user c++ funcƟons (user callback funcƟons) to let JusƟna control
the TCP/IP connecƟon.

Hardware required: 4 LEDs, 4 x 220 Ohm resistor.

More informaƟon:
- next paragraph ('The JusƟna_TCPIP sketch in some more detail')
- Appendix D: 'Running background tasks: system callbacks'
- Appendix E: calling user c++ funcƟons
- Appendix G: Installing YAT terminal

The 'JusƟna_TCPIP' sketch in some more detail

The sketch sets up a TCP/IP server communicaƟng over a second IO channel (IO2), next to Serial (IO1, CONSOLE).

Before running this sketch, you'll have to prepare a couple of things:

First, enter the data that you need to keep private in the secrets.h file:

Also set the staƟc IP address for the server (your Arduino), and set gateway address, subnet mask and DNS address to
correspond to your local network seƫngs. Also enter the server port. Example:

As the server address is staƟc, it won't change over Ɵme, which makes it easier for clients to connect.

In your router seƫngs:

(1) set the staƟc IP address for your Arduino (same that you entered in secrets.h)
(2) if you want access from outside your LAN: enable port forwarding

⚠ If not familiar with this topic, it is suggested that you study and run a few of the standard Arduino WiFi
examples available in the Arduino IDE first.

In the sketch, 4 Arduino pins are defined as outputs. Connect each output pin to the anode of a LED (refer to the
sketch for the output pin numbers) and connect each cathode to one terminal of a resistor. Wire the other terminal to
ground.

Justina User Manual just an Interpreter for Arduino

14 Appendices Page 92

LEDs connected to pins:

HEARTBEAT_PIN when blinking, signals that your sketch is running
DATA_IO_PIN blinks while JusƟna is sending or receiving data to/from any defined IO device
WiFi_CONNECTED_PIN ON when WiFi is connected
TCP_CONNECTED_PIN blinking when waiƟng for a TCP/IP client, ON when a TCP/IP client is connected

TesƟng your sketch

To test proper operaƟon of the TCP/IP server, you'll need a TCP/IP client to connect to it. This TCP/IP client can then
read and write data from/to JusƟna (you could even change the console to the TCP/IP client).

A convenient way to setup a TCP/IP client, is to use YAT (see Appendix G: Installing YAT terminal).

To configure YAT as a TCP client, follow the steps in Appendix G: Installing YAT terminal, but select TCP/IP as IO type, fill
in the staƟc server address ('Remote Host') and port (as setup in your sketch) and deselect the check boxes beneath.

 If you already use YAT as the JusƟna console: simply open a second YAT instance on your computer and
configure it as a TCP client

 you could also set up the TCP/IP terminal on another PC - or even from outside your local network, but you'll
need to enter the external (WAN) IP address and port then.

Connect the TCP/IP terminal (supposing you use YAT: click the green 'Start Terminal' buƩon).

You will now have two terminal windows open: a Serial terminal and a TCP/IP terminal.

Start JusƟna (type "j" (+ ENTER), as requested by the Serial Terminal).

Now enter printLine IO2, "hello"; . If all is well, the text is printed on the TCP/IP terminal window.

To test sending text to the TCP/IP client, we'll make a small 'immediate mode program'. Enter these 2 lines:

var s;
while 1; s=readLine(IO2); if strCmp(s,"end"+line())==0; break;...
 ...elseif strCmp(s, "")!=0; cout s; end; end;

This 'program' conƟnuously waits for, and prints, data from the TCP/IP terminal. It quits if the text 'end' is received.

Try it; return to the JusƟna prompt by sending "end" to JusƟna.

Configuring YAT as TCP/IP client

Justina User Manual just an Interpreter for Arduino

14 Appendices Page 93

User c++ funcƟons to let JusƟna control the TCP connecƟon

cpp_WiFiOff(); disconnect from the WiFi network

cpp_WiFiRestart(); reconnect to the WiFi network

cpp_TCPoff(); stop the connecƟon with a client and do not connect to a new client

cpp_TCPon(); wait for a client to connect

cpp_stopClient(); stop the connecƟon with the client, keep waiƟng for a new client

cpp_setVerbose(verbose); verbose = TRUE: print debug messages to Serial when connecƟon
status changes. FALSE: do not print debug messages

cpp_localIP(s); get local IP address. The staƟc address is returned as a string in a
variable 's', which must be iniƟalized with a string of at least 15
characters): cpp_remoteIP(s=space(15));

cpp_remoteIP(s); get the client IP address. The address is returned as a string in a
variable 's', which must be iniƟalized with a string of at least 15
characters): cpp_remoteIP(s=space(15));

cpp_connState(); returns the current connecƟon state:

 0: WiFi not connected

 1: trying to connect WiFi

 2: WiFi connected - TCP/IP disabled

 3: WiFi connected - waiƟng for TCP/IP client

 4: WiFi connected - TCP/IP client connected

Turn your Arduino into a simple web server (HTTP server)

The JusƟna_interpreter library contains two JusƟna language examples transforming your Arduino into a webserver
(HTTP server). Check out the next paragraph for details.

Justina User Manual just an Interpreter for Arduino

14 Appendices Page 94

JusƟna language examples

The JusƟna interpreter library contains a number of JusƟna language examples, stored in repository folder

 (Arduino sketchbook locaƟon) \ libraries\JusƟna_interpreter\extras\JusƟna_language_examples

File names obey the 8.3 file name format, to make them compaƟble with the Arduino SD card file system. Also, these
files have '.jus' as extension: opening these files in Notepad++ will automaƟcally invoke JusƟna language highlighƟng (if
the JusƟna language extension is installed in notepad++ , see Appendix F: Installing Notepad++ and the JusƟna
language extension).

The example files are:

myFirst.jus a really simple JusƟna program, prinƟng a few lines of text on the console
fact.jus a recursive method to calculate factorials
input.jus ask for user input; parse and execute that input within a running program
overlap.jus two methods to print lines with overlapping print fields
start.jus program to set the display mode, display width, floaƟng point print format, integer print format

and angle mode.
This program will automaƟcally run funcƟon 'start()' (without arguments) right aŌer JusƟna is
started, if:
 your Arduino is equipped with an SD card
 this file ('start.jus') is stored in folder 'JusƟna' (path '/JusƟna/start.jus').
 JusƟna startup opƟons must allow autostart (see Appendix A: CreaƟng a JusƟna object and

choosing startup opƟons)
SD_test.jus perform some basic SD card tests
SD_parse.jus write formaƩed data to an SD card, read it back and immediately parse this data into variables
web_swit.jus a simple HTTP server, drawing a webpage with 5 'on/off' buƩons, and maintaining the state of 5

'switches'. BuƩons represenƟng a switch that is currently 'on' are drawn in a red color. Clicking a
switch acts like a toggle.

For this program to work, first compile and load Arduino c++ program 'JusƟna_TCPIP', which
sets up your Arduino as a TCP server, and test that the TCP server works as expected (see
above). JusƟna program 'web_calc.jus' adds an addiƟonal layer on top, turning your Arduino
into a HTTP server (web server).

To test, open a web browser and type the complete url, starƟng with hƩp://...
 http://nnn.nnn.nnn.nnn:port (fill in IP address and port)

web_calc.jus a web server, creaƟng a web page funcƟoning as a (working) scienƟfic calculator with 10 user
registers and a 'last result' register.
An input box allows you to type in any expression (no commands) as long as it adheres to the
JusƟna syntax: internal JusƟna funcƟons, JusƟna user funcƟons and JusƟna user cpp funcƟons
are all allowed. When submiƩed, the expression is evaluated by JusƟna and the result (or the
error, if an error is produced) is returned. The 10 last results are shown in an answer box below
the input box ('Last answers').

For this program to work, first compile and load Arduino c++ program 'JusƟna_TCPIP', which
sets up your Arduino as a TCP server, and test that the TCP server works as expected (see
above). JusƟna program 'web_calc.jus' adds an addiƟonal layer on top, turning your Arduino
into a HTTP server (web server).

Justina User Manual just an Interpreter for Arduino

14 Appendices Page 95

To test (or use !) the scienƟfic calculator, open a web browser and type the complete url,
starƟng with hƩp://...
 http://nnn.nnn.nnn.nnn:port (fill in IP address and port)

This is what you should see:

Notes:
 Integer and floaƟng-point results are displayed according to the currently set display format

for integers resp. floaƟng point numbers (two user funcƟons are provided to change integer
and floaƟng-point number formaƫng, respecƟvely).

 Use the standard JusƟna fmt(...) funcƟon to override the set display format
 String results are displayed with any control characters replaced by a small white box
 This example uses the SD card: it expects to find a JusƟna logo file and icon file

(jus_logo.jpg and jus_icon.jpg) in SD card directory "/jusƟna/images". NOTE: if an SD card is
not connected or the image files are not found, the web page will sƟll be displayed (the
calculator will sƟll work), but without logo and icon.

Justina User Manual just an Interpreter for Arduino

14 Appendices Page 96

Appendix D Running background tasks: system callbacks

The purpose of system callbacks (executed in the background, mulƟple Ɵmes per second), is to
 ensure that procedures that need to be executed at regular intervals (e.g., maintaining a TCP connecƟon, etc.)

conƟnue to be executed while control is within JusƟna
 detect stop, abort, console reset and kill requests (e.g., to request aborƟng a running JusƟna program stuck in an

endless loop), when a user presses a pushbuƩon wired to an input pin
 retrieve the JusƟna interpreter state (idle, parsing, execuƟng, stopped in debug mode, error), for instance to blink

a led or produce a beep when a user error is made

This eliminates the need for JusƟna to have any knowledge about the hardware (pins, ...).

If enabled, the system callback funcƟon is called:
 whenever JusƟna is idle (waiƟng for input): constantly
 when busy (parsing or execuƟng): aŌer a complete statement is parsed or executed, provided that 100

milliseconds have passed since the previous call

System callback funcƟons should be kept short (handled like interrupt service rouƟnes) in order not to slow down
JusƟna operaƟon.

The callback funcƟon communicates with JusƟna via a set of 32 applicaƟon flags, some used to pass the JusƟna status
to the callback funcƟon and some to read back 'requests' provided by the callback funcƟon. Most of the flags are
unassigned.

JusƟna provides a list of public long constants, all starƟng with prefix 'appFMT_', that can be used to test, set or clear
applicaƟon flags in the c++ callback funcƟons.

Status info provided by JusƟna to the callback procedure

2 applicaƟon flags pass the current JusƟna state to the callback procedure:

Justina::appFMT_statusMask use this mask before tesƟng JusƟna status (2 bits)

Justina::appFMT_idle JusƟna is idle
Justina::appFMT_parsing JusƟna is currently parsing a program or a user command
Justina::appFMT_executing JusƟna is currently execuƟng a program or a user command
Justina::appFMT_stoppedInDebug JusƟna is currently stopped in debug mode

Justina::appFMT_statusAbit status mask bit 0
Justina::appFMT_statusBbit status mask bit 1

One applicaƟon flag informs the callback procedure that an error has occurred and 1 flag is set if since the last call to
the callback procedure, JusƟna sent or received data to / from an external IO device.
Justina::appFMT_errorConditionBit set if an error has occurred, reset otherwise
Justina::appFMT_dataInOut currently sending or receiving data

Justina User Manual just an Interpreter for Arduino

14 Appendices Page 97

Requests provided by the callback procedure to JusƟna

The callback procedure can set 4 individual bits to request a specific JusƟna acƟon:

Justina::appFMT_consoleRequestBit request to reset JusƟna console to the default
Justina::appFMT_killRequestBit request to kill (exit) JusƟna
Justina::appFMT_stopRequestBit request to stop a running JusƟna program in debug mode
Justina::appFMT_abortRequestBit request to abort running JusƟna code

A flag needs to be set only once (during a single call to the callback procedure) to trigger the requested acƟon.

Example programs

The JusƟna library contains 2 sketches that make use of system callbacks.

 JusƟna_systemCallback.ino demonstrates how to use system callbacks to provide a visual indicaƟon of
the current interpreter state (idle, execuƟng, error, ...)

 JusƟna_TCPIP.ino demonstrates how to use system callbacks to maintain a TCP connecƟon

Arduino IDE: File -> Examples -> Examples from custom libraries -> JusƟna interpreter -> JusƟna_systemCallback
 File -> Examples -> Examples from custom libraries -> JusƟna interpreter -> JusƟna_TCPIP

Justina User Manual just an Interpreter for Arduino

14 Appendices Page 98

Appendix E calling user c++ funcƟons

Built-in JusƟna funcƟonality can be extended by wriƟng specific funcƟons in c++. Such funcƟons may include Ɵme-
criƟcal user rouƟnes, funcƟons targeƟng specific hardware, funcƟons extending funcƟonality in a specific domain, etc.
These funcƟons must then be 'registered' with JusƟna and given a 'JusƟna funcƟon name' (an alias).

From then onward, these C++ funcƟons can be called just like any other JusƟna funcƟon, with the same syntax, using
the alias as funcƟon name and passing scalar or array variables as arguments.

The steps involved are detailed below. But the JusƟna library contains 3 sketches containing examples of user c++
funcƟons, which you can call from JusƟna (even from the command line):

 JusƟna_userCPP.ino some examples of user c++ funcƟons
 JusƟna_userCPPlib.ino demonstrates collecƟng user cpp funcƟons in a 'user c++ library' file
 JusƟna_TCPIP.ino user cpp funcƟons to set and get TCP/IP aƩributes

Arduino IDE: File -> Examples -> Examples from custom libraries -> JusƟna interpreter -> JusƟna_userCPP
 File -> Examples -> Examples from custom libraries -> JusƟna interpreter -> JusƟna_userCPPlib
 File -> Examples -> Examples from custom libraries -> JusƟna interpreter -> JusƟna_TCPIP

The second sketch (JusƟna_userCPPlib) demonstates how to collect user c++ funcƟons in a separate 'library' file.

Step 1: wriƟng user c++ funcƟons

JusƟna calls user funcƟons wriƩen in c++ (named 'user c++ funcƟons') using the SAME JusƟna syntax as it uses for
calling any internal JusƟna funcƟon, passing between 0 and 8 (eight) funcƟon arguments back and forth (values are
passed by reference) and returning a funcƟon result, provided that the user c++ funcƟons uƟlize the interfacing
mechanism described here.

No maƩer the number of arguments provided by JusƟna when calling a user c++ funcƟon, the c++ implementaƟon of
that user funcƟon always has 4 (four) parameters.

c++ funcƟon prototype:
returnType funcƟonName(void** const pdata, const char* const valueType, const int argCount, int& execError) ;

parameter 1: void** const pdata
pointer to an array of void pointers to (maximum eight) arguments, passed by reference by JusƟna.

parameter 2: const char* const valueType
pointer to an array, indicaƟng the value types (long, float or char*) of the respecƟve arguments, and whether
these arguments are JusƟna variables or constants. Value types are:
Justina::value_isLong 32-bit signed integer
Justina::isFloat 32-bit floaƟng point value
Justina::value_isString character string

When checking a value type, 'bit and' it first with constant Justina::value_typeMask .

ValueType bit 7 indicates that the corresponding argument is a JusƟna variable (defined with the var
command).

parameter 3: const int argCount
number of supplied JusƟna arguments, from 0 to 8.

Justina User Manual just an Interpreter for Arduino

14 Appendices Page 99

parameter 4: int& execError
to raise a JusƟna error, return an error code. JusƟna will handle this error as it handles all other errors: JusƟna
will stop execuƟon unless the error is caught by the JusƟna trapErrors command.
The valid range of error codes is from 3000 to 4999. Outside this range, error codes will be discarded.

Some of these error codes have specific meanings within JusƟna (see list of error codes in the user
documentaƟon) and, while all error codes in the range given are acceptable, it makes sense to aƩribute a
meaningful error number to a specific error.

All JusƟna arguments (0 to 8) are passed by reference: JusƟna sets a pointer to the respecƟve arguments (integer (c++
long), floaƟng point (c++ float) or text (c++ char*) and passes the pointer to the user c++ funcƟon.

If an argument passed by JusƟna is not a variable but a constant or a JusƟna expression, JusƟna actually passes a
pointer to a COPY of the value. This helps to ensure that the user c++ procedure does not inadvertently change the
original value.
In case the address pointed to is an ARRAY element, the user actually has access to the complete array by seƫng a
pointer to subsequent or preceding array elements.

Within a user c++ procedure:

 do NOT change the value type (float, character string) of an argument
 you can change the characters in a string but NEVER INCREASE the length of strings
 empty strings cannot be changed at all (this would increase the length of the string)
 it is allowed to DECREASE the length of a string (with a '\0' terminaƟng character), but keep in mind that the string

will sƟll occupy the same amount of memory (except when you change a string to an empty string - wriƟng a '\0'
terminaƟng character in the first posiƟon - because in JusƟna, empty strings do not occupy memory)

 ONLY change the (0 to 8) JusƟna arguments pointed to by the first c++ funcƟon argument, NOTHING ELSE.
 You can bypass checking of argument types and count if you are confident that the calling JusƟna funcƟon adheres

to what the called c++ funcƟon expects as funcƟon arguments

Return values
User c++ funcƟons can return a c++ Boolean, char, int, long, float, char* as a result, or nothing (void).
JusƟna will convert c++ Boolean, char and int return values to integers (c++: long values) upon return. c++ funcƟons
returning void: the JusƟna funcƟon will return zero.

Notes

 Do NOT return a char* poinƟng to a local c++ char array, unless you declare it as staƟc (local variables exist on the
stack unƟl you leave the procedure, and the pointer returned to JusƟna may point to garbage).

 If you return an object created on the heap (NEW), make sure to save the pointer (e.g., as a staƟc variable)
because you will have to DELETE the object later (also from a user c++ procedure)

 You can return a string literal, because these strings are stored in staƟc memory (e.g., ' return "OK"; ')

Justina User Manual just an Interpreter for Arduino

14 Appendices Page 100

Step 2: storing user c++ funcƟon aƩributes in arrays

JusƟna must be informed about the user c++ funcƟons it needs to have access to. JusƟna needs the following:

 a funcƟon pointer (start address of the funcƟon)
 the JusƟna funcƟon name (name to use when calling the funcƟon from JusƟna). This name (alias) must follow

the same JusƟna naming convenƟon as for all other JusƟna idenƟfiers

Preferably, start your aliases with one of these three prefixes: cpp_ , usr_ or user_ . If you use Notepad++ as
JusƟna text editor, this will ensure proper highlighƟng of the JusƟna funcƟon name, just like any other JusƟna
internal or user funcƟon.

 minimum (0) and maximum (8) number of arguments allowed when the user c++ funcƟon is called. The
actual number of arguments supplied can then be checked when JusƟna parses the funcƟon call.

This informaƟon, grouped by funcƟon return type, is stored in arrays of a specific type, defined by JusƟna (a separate
array for each funcƟon return type).

The (sƟll empty) arrays (one for each return type):

Justina::CppVoidFunction const cppVoidFunctions[]{};
Justina::CppBoolFunction const cppBoolFunctions[]{};
Justina::CppCharFunction const cppCharFunctions[]{};
Justina::CppIntFunction const cppIntFunctions[]{};
Justina::CppLongFunction const cppLongFunctions[]{};
Justina::CppFloatFunction const cppFloatFunctions[]{};
Justina::Cpp_pCharFunction const cpp_pCharFunctions[]{};

In each array, create records for each user c++ funcƟon with the corresponding funcƟon return type.

A record for a user c++ funcƟon

{"JustinaFunctionName", functionName, minArg, maxArg}

Enter the c++ funcƟon name (without parentheses) to supply the funcƟon pointer.

Notes

 If there are no user c++ funcƟons with a specific return type, you do not need to create the corresponding (empty)
array.

 the JusƟna funcƟon name does not need to be the same name as the user c++ funcƟon name.
 FuncƟons with invalid JusƟna names can not be called from JusƟna.

Justina User Manual just an Interpreter for Arduino

14 Appendices Page 101

Step 3:

User c++ funcƟons are implemented as callback funcƟons. JusƟna must be informed about their existence and
funcƟon aƩributes before JusƟna can call them.

You 'register' user c++ funcƟons with a specific return type, by calling a JusƟna method for that return type, passing
the informaƟon stored in the array for that return type.

The methods require two arguments:

 the name of the array for the respecƟve return type
 the count of user c++ funcƟons with this return type

 Registering user c++ funcƟons with JusƟna:

 justina.registerFloatUserCppFunctions(cppFloatFunctions, count);
 justina.register_pCharUserCppFunctions(cpp_pCharFunctions, count);
 justina.registerVoidUserCppFunctions(cppVoidFunctions, count);
 justina.registerBoolUserCppFunctions(cppBoolFunctions, count);
 justina.registerCharUserCppFunctions(cppCharFunctions, count);
 justina.registerIntUserCppFunctions(cppIntFunctions, count);
 justina.registerLongUserCppFunctions(cppLongFunctions, count);

Notes

 Register user c++ funcƟons BEFORE starƟng the interpreter (before calling the .begin() method)
 If there are no user c++ funcƟons with a specific return type, you do not need to call the corresponding

JusƟna method.

Example programs

The JusƟna library contains 2 sketches containing user c++ funcƟons.

 JusƟna_userCPP.ino demonstrates how to write user c++ funcƟons for JusƟna
 JusƟna_userCPP_lib.ino demonstrates how to create a JusƟna user c++ 'library' file

Arduino IDE: File -> Examples -> Examples from custom libraries -> JusƟna interpreter -> JusƟna_userCPP
 File -> Examples -> Examples from custom libraries -> JusƟna interpreter -> JusƟna_userCPP_lib

Justina User Manual just an Interpreter for Arduino

14 Appendices Page 102

Appendix F Installing Notepad++ and the JusƟna language extension

On your computer, download and install Notepad++ (hƩps://notepad-plus-plus.org/downloads/)

Open Notepad++.

In NotePad++, select
 Language -> User Defined Language -> Define your language...

A popup window will open.:

Click 'Import...' and browse to folder ‘libraries\JusƟna_interpreter\extras\ JusƟna_UDL_Notepad++' in your Arduino
sketchbook locaƟon.

Select file 'JusƟna_notepad++\UDL.xml' and click 'Open'

Close the popup

The JusƟna Language Extension is now installed. This means that JusƟna is now one of the many languages available
for syntax highlighƟng.

Justina User Manual just an Interpreter for Arduino

14 Appendices Page 103

Select JusƟna as language extension for an open file:

In Notepad++, select

Language -> JusƟna

JusƟna syntax highlighƟng is now enabled for the currently open file.

Note: text files ending with the ‘.jus’ extension will automaƟcally select the JusƟna Language Extension on opening.

 Use .jus as extension for your JusƟna programs

Checking that the JusƟna extension is properly installed

In Notepad++, open file 'test_highlight.jus' in folder ‘libraries\JusƟna_interpreter\extras\ JusƟna_UDL_Notepad++' (in
your Arduino sketchbook locaƟon).

The opened file does not contain a program but merely the collecƟon of all words and symbols (command names,
funcƟon names, operators, predefined constants) recognized by JusƟna, with proper highlighƟng.

Some of the JusƟna commands (blue and dark blue), funcƟons (red) and predefined constants (magenta) as shown
in Notepad++ with the JusƟna language extension installed

Justina User Manual just an Interpreter for Arduino

14 Appendices Page 104

Appendix G Installing YAT terminal

The Arduino IDE Serial Monitor, although a great tool for uploading your compiled Arduino programs and for
communicaƟng with your Arduino (and JusƟna), does not allow sending files to JusƟna. As a JusƟna program consists
of a text file that is edited on your computer (preferably with Notepad++), there are only two ways to load and parse a
JusƟna program in your Arduino:

1. If an SD card module is hooked up to your Arduino, you can copy program files from your computer to an SD
card, and then insert that SD card in the Arduino SD card board. But this means that you constantly need to
insert and remove SD cards. And there's always a risk that during one of these operaƟons your SD card will
get corrupted.

2. Send the program file to your Arduino via Serial, a TCP client, ... and either store it on an SD card to load it
from there, or load and parse the program immediately while it's being sent.

While the second opƟon is the most straighƞorward one (especially if you go through a series of program load, test,
debug, correct and reload ... iteraƟons), the Arduino IDE Serial Monitor doesn't support that.

Fortunately, there are several good free terminal programs available. The one I prefer is YAT and we use it throughout
most examples in this manual. A second one which works quite well is named Tera Term. These terminal programs can
be freely downloaded on your PC. They allow for serial communicaƟon via USB as well as via TCP / IP connecƟons.

In what follows, we'll sƟck to YAT because it has a couple of nice, useful features.

Download and install YAT

On your computer, download and install YAT (hƩps://sourceforge.net/projects/y-a-terminal/).

Under 'Terminal->seƫngs', select the USB port the Arduino is connected to, the baud rate etc. and press OK.

Justina User Manual just an Interpreter for Arduino

14 Appendices Page 105

In the YAT menu, select 'Send' and, in the dropdown that will open, verify that the only opƟon selected is
'Keep [Text] aŌer Send'. Select it if needed and deselect all the other opƟons (if selected).

Now select 'View->panels' and, in the dropdown that will open, verify that the opƟons selected are as indicated in
the figure. Deselect the other opƟons (if selected).

Yat will now only display characters it receives from your
Arduino and will not echo any characters it sends to Arduino
(JusƟna will take care of echoing characters it receives from
YAT).

Sending text and files to Arduino is now enabled as well, as is
the use of predefined commands.

In the 'View' menu as well, you might want to disable
formaƫng (it's only overloading what you see).

ConnecƟng / disconnecƟng YAT

Connect and disconnect YAT,
using the two buƩons indicated.

While connected, verify that indicators 'RTS' (Request to
Send) and 'DTR' (Data Terminal Ready) are ON (green light).
Click on the indicators to change their status, if currently
OFF (red lights).
The other indicators are not relevant here.

Justina User Manual just an Interpreter for Arduino

14 Appendices Page 106

Predefined commands

One final, great feature of YAT is that you can enter a set of Predefined Commands, accessible via a number of buƩons
and saved together with the other terminal seƫngs (buƩon 'Save Terminal', underneath the YAT menu).

When clicking a buƩon, the corresponding predefined command will be sent to JusƟna.

You can now use YAT as your serial monitor to send JusƟna statements to your Arduino (type a statement in the 'Send
Text' textbox and press Enter or F3) and see your Arduino's response, as you did in the preceding examples.

⚠ Remember to close the Arduino Serial Monitor before connecƟng the Terminal app to your Arduino., and vice
versa

Sending binary files

To send a binary file with YAT, you'll have to temporarily change the Terminal type from Text to Binary (in terminal
seƫngs).

If you need to send commands as well (e.g., 'receiveFile "image001.jpg" '), you must enable 'Escape sequences on
sending text' (in the Send menu) and terminate your commands with ' \n' (in binary mode, YAT will not add a newline
character by itself).

Example of a predefined JusƟna command set

Justina User Manual just an Interpreter for Arduino

14 Appendices Page 107

Appendix H List of predefined constants

Symbolic constant name and value Data type Description

Math symbols
e 2.71828182... floating point base of natural logarithm
PI 3.14159265... floating point Pi
HALF_PI 1.57079632... floating point π / 2
QUART_PI 0.78539816... floating point π / 4
TWO_PI 6.28318530... floating point 2 π

Conversion factors
DEG_TO_RAD 0.01745329... floating point degrees to radians
RAD_TO_DEG 57.2957795... floating point radians to degrees

AngleMode command: setting angle mode
RADIANS 0 integer Angle mode set to radians
DEGREES 1 integer Angle mode set to degrees

Boolean constants
FALSE 0 integer
TRUE 1 integer
OFF 0 integer
ON 1 integer
LOW 0 integer
HIGH 1 integer

Arduino Digital IO
INPUT 0x1 integer pinMode
OUTPUT 0x3 integer pinMode
INPUT_PULLUP 0x5 integer pinMode
INPUT_PULLDOWN 0x9 integer pinMode
LSBFIRST 0 integer shiftOut, shiftIn: bitOrder
MSBFIRST 1 integer shiftOut, shiftIn: bitOrder
LED_BUILTIN 13 integer built-in LED pin
LED_RED 14 integer nano ESP32 only: red LED pin
LED_GREEN 15 integer nano ESP32 only: green LED pin
LED_BLUE 16 integer nano ESP32 only: blue LED pin

Checking data types: type function result
INTEGER 1 integer argument type is integer
FLOAT 2 integer argument type is floating point
STRING 3 integer argument type is string

Console display mode: dispMode command arguments

NO_PROMPT 0 integer no prompt, no echo
PROMPT 1 integer show prompt but no echo
ECHO 2 integer show prompt and echo input
NO_RESULTS 0 integer do not display results
RESULTS 1 integer display results
QUOTE_RES 2 integer display results; strings between quotes

info statement: 'flag' argument (entry)
ENTER 0 integer 'Enter' answer accepted
ENTER_CANCEL 1 integer 'Enter' and 'Cancel' answer accepted
YES_NO 2 integer 'Yes' and 'No' answer accepted
YN_CANCEL 3 integer 'Yes', 'No' and 'Cancel' answer accepted

input statement: 'flag' argument (entry)
NO_DEFAULT 0 integer 'Default' is not allowed as answer
ALLOW_DEFAULT 1 integer 'Default' is allowed as answer

Justina User Manual just an Interpreter for Arduino

14 Appendices Page 108

Symbolic constant name and value Data type Description

Additional test values
CANCELED 0 integer Operation was canceled
OK 1 integer Operation confirmed
NOK -1 integer Operation was not confirmed

External device IO
CONSOLE 0 integer input & output from / to console
IO1 -1 integer input & output from / to IO device 1
IO2 -2 integer input & output from / to IO device 2
IO3 -3 integer input & output from / to IO device 3
IO4 -4 integer input & output from / to IO device 4

File IO
FILE1 1 integer input & output from / to file number 1
FILE2 2 integer input & output from / to file number 2
FILE3 3 integer input & output from / to file number 3
FILE4 4 integer input & output from / to file number 4
FILE5 5 integer input & output from / to file number 5
READ 0x1 integer file mode
WRITE 0x2 integer file mode
APPEND 0x6 integer file mode
SYNC 0x8 integer file mode
NEW_OK 0x10 integer file mode
NEW_ONLY 0x30 integer file mode
TRUNC 0x40 integer file mode
EOF -1 integer use to indicate 'EOF' position

Formatting: floating point notation
FIXED "f" string fixed point notation
EXP "e" string scientific notation
EXP_U "E" string scientific notation, 'E' uppercase
SHORT "g" string shortest notation (fixed or scientific)
SHORT_U "G" string shortest notation: 'E' uppercase

Formatting: integer number notation
DEC "d" string decimal representation
HEX "x" string hexadecimal representation
HEX_U "X" string hexadecimal, A..F uppercase

Formatting: character strings
CHARS "s" string character string

Formatting: flags
FMT_LEFT 0x01 integer align output left within the print field
FMT_SIGN 0x02 integer numeric values: always add sign
FMT_SPACE 0x04 integer numeric values: add space if no sign
FMT_POINT 0x08 integer floating point only: always add decimal point
FMT_0X 0x08 integer hex notation only: add 0x or 0X if not zero
FMT_000 0x10 integer floating point only: pad print field with zeros
FMT_NONE 0x00 integer clear all flags

Arduino board information
BOARD_OTHER 0 integer non-supported board
BOARD_SAMD 1 integer Arduino SAMD architecture
BOARD_RP2040 2 integer Arduino nano RP2040
BOARD_ESP32 3 integer Arduino nano ESP32 only

Justina User Manual just an Interpreter for Arduino

14 Appendices Page 109

Appendix I Error codes

Error number Error code

0 noerror

 Parsing errors

1000 result_statementTooLong
1001 result_tokenNotFound
1002 result_missingLeftParenthesis
1003 result_missingRightParenthesis
1100 result_separatorNotAllowedHere
1101 result_operatorNotAllowedHere
1102 result_prefixOperatorNotAllowedhere
1103 result_invalidOperator
1104 result_parenthesisNotAllowedHere
1105 result_resWordNotAllowedHere
1106 result_functionNotAllowedHere
1107 result_variableNotAllowedHere
1108 result_alphaConstNotAllowedHere
1109 result_numConstNotAllowedHere
1110 result_assignmNotAllowedHere
1111 result_cannotChangeConstantValue
1112 result_identifierNotAllowedHere
1113 result_prefixCharNotAllowedHere
1200 result_constantValueExpected
1201 result_variableNameExpected
1202 result_assignmentOrSeparatorExpected
1203 result_separatorExpected
1300 result_maxVariableNamesReached
1301 result_maxLocalVariablesReached
1302 result_maxStaticVariablesReached
1303 result_maxJustinaFunctionsReached
1304 result_progMemoryFull
1400 result_identifierTooLong
1401 result_spaceMissing
1402 result_token_not_recognised
1403 result_alphaConstTooLong
1404 result_alphaConstInvalidEscSeq
1405 result_alphaNoCtrlCharAllowed
1406 result_alphaClosingQuoteMissing
1407 result_numberInvalidFormat
1408 result_parse_overflow
1500 result_function_wrongArgCount
1501 result_function_redefinitionNotAllowed
1502 result_function_mandatoryArgFoundAfterOptionalArgs
1503 result_function_maxArgsExceeded
1504 result_function_prevCallsWrongArgCount
1505 result_function_defsCannotBeNested
1506 result_function_scalarAndArrayArgOrderNotConsistent
1507 result_function_scalarArgExpected
1508 result_function_arrayArgExpected
1509 result_function_redefiningNotAllowed
1510 result_function_undefinedFunctionOrArray

Justina User Manual just an Interpreter for Arduino

14 Appendices Page 110

Error number Error code

1511 result_function_arrayParamMustHaveEmptyDims
1512 result_function_needsParentheses
1600 result_var_nameInUseForFunction
1601 result_var_notDeclared
1602 result_var_redeclared
1603 result_var_definedAsScalar
1604 result_var_definedAsArray
1605 result_var_constantArrayNotAllowed
1606 result_var_constantVarNeedsAssignment
1607 result_var_ControlVarInUse
1608 result_var_controlVarIsConstant
1609 result_var_illegalInDeclaration
1610 result_var_illegalInProgram
1611 result_var_usedInProgram
1612 result_var_deleteSyntaxinvalid
1700 result_arrayDef_noDims
1701 result_arrayDef_negativeDim
1702 result_arrayDef_dimTooLarge
1703 result_arrayDef_maxDimsExceeded
1704 result_arrayDef_maxElementsExceeded
1705 result_arrayDef_emptyInitStringExpected
1706 result_arrayDef_dimNotValid
1707 result_arrayUse_noDims
1708 result_arrayUse_wrongDimCount
1800 result_cmd_programCmdMissing
1801 result_cmd_onlyProgramStart
1802 result_cmd_onlyImmediateMode
1803 result_cmd_onlyImmModeFirstStatement
1804 result_cmd_onlyInsideProgram
1805 result_cmd_onlyInsideFunction
1806 result_cmd_onlyOutsideFunction
1807 result_cmd_onlyImmediateOrInFunction
1808 result_cmd_onlyInProgOutsideFunction
1809 result_cmd_onlyImmediateNotWithinBlock
1810 result_cmd_resWordExpectedAsPar
1811 result_cmd_expressionExpectedAsPar
1812 result_cmd_varWithoutAssignmentExpectedAsPar
1813 result_cmd_varWithOptionalAssignmentExpectedAsPar
1814 result_cmd_variableExpectedAsPar
1815 result_cmd_variableNameExpectedAsPar
1816 result_cmd_identExpectedAsPar
1817 result_cmd_argumentMissing
1818 result_cmd_tooManyArguments
1900 result_userCB_allAliasesSet
1901 result_userCB_aliasRedeclared
2000 result_block_noBlockEnd
2001 result_block_noOpenBlock
2002 result_block_noOpenLoop
2003 result_block_noOpenFunction
2004 result_block_notAllowedInThisOpenBlock
2005 result_block_wrongBlockSequence
2100 result_trace_eval_resWordNotAllowed

Justina User Manual just an Interpreter for Arduino

14 Appendices Page 111

Error number Error code

2101 result_trace_eval_genericNameNotAllowed
2102 result_trace_userFunctonNotAllowed
2103 result_trace_evalFunctonNotAllowed
2104 result_parseList_stringNotComplete
2105 result_parseList_valueToParseExpected
2106 result_BP_lineRangeTooLong
2107 result_BP_lineTableMemoryFull
2108 result_BP_emptyTriggerString
2109 result_BP_triggerString_nothingToEvaluate
2200 result_parse_abort
2201 result_parse_setStdConsole
2202 result_parse_kill

 Execution errors

3000 result_array_subscriptOutsideBounds
3001 result_array_subscriptNonInteger
3002 result_array_subscriptNonNumeric
3003 result_array_dimCountInvalid
3004 result_array_valueTypeIsFixed
3100 result_arg_outsideRange
3101 result_arg_integerTypeExpected
3102 result_arg_floatTypeExpected
3103 result_arg_stringExpected
3104 result_arg_numberExpected
3105 result_arg_nonEmptyStringExpected
3106 result_arg_stringTooShort
3107 result_arg_invalid
3108 result_arg_integerDimExpected
3109 result_arg_dimNumberInvalid
3110 result_arg_variableExpected
3111 result_arg_tooManyArgs
3112 result_arg_wrongSpecifierForDataType
3200 result_integerTypeExpected
3201 result_floatTypeExpected
3202 result_numberExpected
3203 result_operandsNumOrStringExpected
3204 result_undefined
3205 result_overflow
3206 result_underflow
3207 result_divByZero
3208 result_testexpr_numberExpected
3300 result_noProgramStopped
3400 result_BP_sourcelineNumberExpected
3401 result_BP_notAllowedForSourceLine
3402 result_BP_statementIsNonExecutable
3403 result_BP_maxBPentriesReached
3404 result_BP_wasNotSet
3405 result_BP_hitcountNotWithinRange
3406 result_BP_sourceLineNotInStoppedFunction
3407 result_BP_cannotMoveIntoBlocks
3500 result_EVAL_emptyString=3500
3501 result_EVAL_nothingToEvaluate

Justina User Manual just an Interpreter for Arduino

14 Appendices Page 112

Error number Error code

3502 result_EVAL_parsingError
3503 result_list_parsingError
3600 result_SD_noCardOrNotAllowed
3601 result_SD_noCardOrCardError
3602 result_SD_fileNotFound
3603 result_SD_couldNotOpenFile
3604 result_SD_fileIsNotOpen
3605 result_SD_fileAlreadyOpen
3606 result_SD_invalidFileNumber
3607 result_SD_fileIsEmpty
3608 result_SD_maxOpenFilesReached
3609 result_SD_fileSeekError
3610 result_SD_directoryExpected
3611 result_SD_directoryNotAllowed
3612 result_SD_couldNotCreateFileDir
3613 result_SD_directoryDoesNotExist
3614 result_SD_pathIsNotValid
3615 result_SD_sourceIsDestination
3616 result_SD_fileNotAllowedHere
3700 result_IO_invalidStreamNumber
3701 result_IO_noDeviceOrNotForInput
3702 result_IO_noDeviceOrNotForOutput

Justina User Manual just an Interpreter for Arduino

14 Appendices Page 113

Appendix J JusƟna Command and FuncƟon index

This index lists all JusƟna commands and built-in funcƟons, along with the page numbers where they appear.
Commands are shown in bold, funcƟons in italic.

abort, 78, 90, 96, 97
abs, 22
acos, 21
analogRead, 32
analogReadResolution, 32
analogReference, 32
analogWrite, 32
analogWriteResolution, 32
angleMode, 21
asc, 24, 47
ascToHexStr, 25
asin, 7, 21, 72
atan, 21
available, 50, 51
availableForWrite, 51
bit, 33
bitClear, 33
bitRead, 33
bitSet, 33
bitWrite, 33
BPoff, 84
BPon, 84
break, 69
bStepOut, 77
byteRead, 33, 34
byteWrite, 34
ceil, 21
cFloat, 24
char, 24
choose, 23
cin, 36, 47, 51
cinLine, 47, 50
cinList, 40, 48
cInt, 24
clearBP, 84
clearError, 72
clearMem, 62
clearProg, 62
clearWriteError, 51
close, 57
closeAll, 57
col, 37, 38, 42, 44, 45
const, 10, 17, 66, 67
continue, 69
copyFile, 11, 58
cos, 21
cout, 11, 36, 37, 38, 39, 45, 46, 47

coutLine, 7, 8, 37, 38, 40, 41, 45, 46, 50
coutList, 40, 41, 48
createDirectory, 57
cStr, 24, 25
dbout, 37, 38
dboutLine, 37, 38
debug, 4, 75, 76, 77, 78, 79, 80, 81, 82, 86, 96, 97
delete, 16, 17
digitalRead, 32
digitalWrite, 10, 32
dims, 26
disableBP, 84, 85
dispMode, 13
dispWidth, 13
else, 68
elseif, 68
enableBP, 84
end, 7, 8, 10, 47, 50, 64, 66, 68, 69, 70, 73
err, 72, 73, 74
eval, 25, 27, 29, 30, 31, 73
exists, 57
exp, 21
expm1, 21
fileNum, 58
find, 49, 50
findStr, 24
findUntil, 49
floatFmt, 14, 37, 40
floor, 21
flush, 51
fmod, 20, 21
fmt, 15, 24, 27, 34, 37, 41, 42, 45
for, 7, 8, 10, 68, 69, 70
fullName, 57
function, 64, 65, 69
getTimeOut, 51
getWriteError, 51
go, 77, 83
halt, 72
hexStrToAsc, 25
if, 47, 68
ifte, 22
index, 23
info, 71
input, 29, 30, 71, 73
intFmt, 14, 37, 40
isAlpha, 26

Justina User Manual just an Interpreter for Arduino

14 Appendices Page 114

isAlphaNumeric, 26
isAscii, 26
isColdStart, 27
isControl, 26
isDigit, 26
isDirectory, 57
isGraph, 26
isHexDigit, 26
isInUse, 57
isLowerCase, 26
isPrintable, 26
isPunct, 26
isUpperCase, 26
isWhitespace, 26
left, 24
len, 24
line, 24, 38, 40, 41
listBP, 85
listCallStack, 81
listFiles, 58
listFilesToSerial, 59
listVars, 52
ln, 21
lnp1, 21
loadProg, 9, 61, 62
log10, 21
loop, 68, 77
ltrim, 24
maskedWordClear, 34
maskedWordRead, 34
maskedWordSet, 34
maskedWordWrite, 34
max, 22, 33
mem32Read, 35
mem32Write, 35
mem8Read, 35
mem8Write, 35
micros, 32
mid, 24
millis, 32
min, 22, 33
name, 38, 57
nop, 75
noTone, 32
open, 56, 59
openNext, 57
pause, 72
peek, 51
pinMode, 1, 18, 32
pos, 37, 42, 44, 45, 46
position, 57
print, 38, 41, 44
printLine, 38, 56, 59
printList, 40, 48
program, 64
pulseIn, 32
quit, 27, 63
quote, 25
r, 27

raiseError, 72
random, 33
randomSeed, 33
read, 48, 51
readLine, 48
readList, 40, 48
receiveFile, 58, 61
remove, 58
removeDirectory, 57
repeatChar, 24, 46
replaceChar, 25
replaceStr, 25
return, 66, 69
rewindDirectory, 57
right, 24
round, 21
rtrim, 24
seek, 57
sendFile, 58
setBP, 82, 83, 85
setConsole, 52
setConsoleIn, 52
setConsoleOut, 52
setDebugOut, 52
setNextLine, 77
setTimeout, 51, 58, 62
shiftIn, 32
shiftOut, 32
signBit, 22
sin, 21, 65
size, 57
space, 24
sqrt, 11, 21
startSD, 58
static, 16, 67
step, 68, 76, 77, 78, 81
stepOut, 77
stepOver, 77
stop, 4, 75
stopSD, 11, 58
strCaseCmp, 25
strCmp, 25
switch, 23
sysVal, 27, 36
tab, 37, 39, 44
tabSize, 44
tan, 21
toLower, 24
tone, 33
toUpper, 24
trace, 27, 79
trapErrors, 72
trim, 24
trunc, 21
type, 26
ubound, 26
var, 6, 7, 10, 11, 16, 39, 40, 47, 65, 66, 67, 70
viewExprOff, 79, 82
viewExprOn, 79, 80, 82, 83

Justina User Manual just an Interpreter for Arduino

14 Appendices Page 115

vprint, 37, 39
vprintLine, 37, 39
vprintList, 40, 48

vreadList, 40, 48
wait, 32, 33
while, 47, 50, 69, 73

Justina User Manual just an Interpreter for Arduino

14 Appendices Page 116

