
Lego Controller

NOTE This is a quick reference for the lego controller. For a more detailed

description of the lego controller see lego manual. You should also first read and

understand the operation of the GPIO devices JP1/JP2.

The Lego Controller can be plugged into either the JP1 or JP2 40-pin expansion

headers, and is controlled by reading or writing to the GPIO port. The first 10 bits (0

to 9) are used to control up to 5 motors, turning them ON/OFF and changing their

direction. Bits 10,12,14,16,18 are used to enable up to 5 sensors. Bits 27 to 30 have a

dual function. They can be used to read sensor data or indicate a state value of high or

low depending on the threshold value. Bit 31 is used to determine the state value of

sensor 5. Bits 23 to 26 are used to load a threshold value, depending on which sensor

is selected. Bits 11,13,15,17 and 19 are used as acknowledge hand shaking bits for

each of the sensors in polling mode. The board also features 5 HEX displays which

display the values being read by the sensors.

Since the Lego controller is controlled through a single GPIO port, certain bits will be

configured as both inputs and outputs. When reading inputs, it will thus be necessary

to use masking to get valid data. Similarly, when writing to the outputs, care will have

to be taken to keep any bits you do not want changed the same.

Hardware Setup

 Connect the 9 volt DC power supply to the lego controller.

 Make sure the slider switch at the bottom and centre of the lego controller

board is in centre position. If it is not, the lego controller will not work

properly with the DE2 board. For more information on slider switch modes

see the lego manual section on Slider Switches .

 Connect the lego controller to the break-out box using the 16 pin ribbon cable.

 Connect the lego controller to the DE2 board using the 40 pin ribbon cable.

 Connect the motors and sensors to the break-out box using the 2x2 black

connector blocks. See the picture below for the corresponding connections on

the break-out box.

http://www-ug.eecg.toronto.edu/msl/manuals/legocontrollerv1.8.pdf
http://www-ug.eecg.toronto.edu/msl/nios_devices/dev_pit.html
http://www-ug.eecg.toronto.edu/msl/manuals/legocontrollerv1.8.pdf

The sensor interface works in two modes: value mode and state mode.

Sensors: Value Mode

Value mode is the default. In Value mode, one sensor is selected at a time using bits

18,16,14,12,10 then the 4-bit value of the selected sensor can then be read on bits 30

downto 27. In value mode sensors can only be read one at a time. Reading a sensor

value requires two steps:

1. Enable a sensor: tell the lego controller which sensor you want to read by

writing to the bits of 18,16,14,12,10. Write a 0 for the corresponding sensor

you want to enable (write 1 for the rest). At the same time you should have

Mode set to "Value" and Load Threshold set to "Don't Load"

2. Read the sensor: read the bits 30 downto 27 to get the current value ofthe

selected sensor. In order to have valid data the corresponding sensor ACk bit

19,17,15,13,11 must be low.If it is not low data at 30 downto 27 may not be

valid

Sensors: State Mode

In State mode, 4-bit threshold values are uploaded for each sensor. Bits

18,16,14,12,10 are used to select the sensor and bits 26 downto 23 are used to write

the threshold value. Loading threshold values must be done in Value mode. When the

mode is switched to State mode, the bits 31 downto 27 will display the current "state"

of all 5 sensors. when a sensor reads a value greater than or equal to the threshold it

will set its corresponding bit to a 1, otherwise that bit will be 0. By using the interrupt

feature of the GPIO ports you can set an interrupt to trigger when a sensor passes its

threshold value.

In State mode, all 5 sensors can be read at once, but each sensor only returns one bit

indicating whether it is: at/above threshold or below threshold. Threshold values for

each sensor need to be loaded into the lego controller beforehand. Threshold values

can only be loaded one at a time, however, one threshold value can be loaded for

multiple sensors. Loading a threshold value requires three steps:

1. Enable sensor for loading: tell the lego controller which sensor will get the

threshold value by writing to bits 18,16,14,12,10. Write a 0 for the

corresponding sensor that you want to enable (write 1 for the rest). At the same

time you should have Load Threshold set to "Load" and Mode set to "Value"

2. Write threshold value: write the 4-bit threshold value to bits 26 downto 23.

3. Disable sensor for loading: tell the lego controller the threshold value has

been loaded by disabling all sensors and setting Load Threshold to "Don't

Load".

Once all the sensors have been given a threshold value you can set Mode to "State" by

writing to bit 21. Then to check the state of the sensors, read bits 31 downto 27. A

value of 1 means the corresponding sensor is at/above its threshold value and a value

of 0 means its below its threshold.

Interrupts (in State Mode)

When using the lego controller in State Mode we can set interrupts to trigger any time

a sensor value has passed its threshold value. To do this we use the interrupt feature of

the GPIO. Before enabling interrupts make sure that the sensors are setup for State

Mode. To enable interrupts for the sensors do the following:

1. Enable Interrupts for each desired sensor using the interrupt mask register. This

means setting bits 31 downto 27 of the IMR appropriately.

2. Enable interrupts for bits 31 downto 27 using ctl3.

3. Enable interrupts globally using ctl0.

In the interrupt handler routine you can check which sensor triggered the interrupt by

reading the edge capture register.

NOTE: It is possible for two sensors to interrupt at once. Also, a sensor that is not

enabled for interrupts will still cause its corresponding bit on the edge capture register

to go high.

Remember to clear the edge capture register before exiting the interrupt hander

routine.

Notes on Using the Lego Controller

The Lego Controller we are interfacing with views its inputs as coming from GPIO

port 0 or 1.Bits 9 downto 0 controls up to 5 motors, bits 18,16,14,12,10 controls up to

5 sensors,bits 19,17,15,13,11 are sensor acknowledge bits and bits 30 downto 27 reads

the sensor data. However, from the perspective of the software, you have only a single

port available to control the device, as described above. This means you must exercise

great caution when using the device, specifically when controlling the sensors.

 In your program, designate a register that will hold the state of the motors and sensors.Modify

this register to control the motors, and then write that register to the Lego controller. This will

better ensure the proper values are ssent to the lego controller.

Assembly Example: Assuming Lego controller plugged into JP1, turn motor1 on,

forwards

 .equ ADDR_JP1, 0x10000060 /*Address GPIO JP1*/

 movia r8, ADDR_JP1

 movia r9, 0x07f557ff /* set direction for motors to all output */

 stwio r9, 4(r8)

 movia r9, 0xfffffffc /* motor0 enabled (bit0=0), direction set to

forward (bit1=0) */

 stwio r9, 0(r8)

Assembly Example: Assuming Lego controller plugged into JP2, read sensor3

 .equ ADDR_JP2, 0x10000070 /* address GPIO JP2*/

 movia r8, ADDR_JP2

 movia r10, 0x07f557ff /* set direction for motors and sensors to

output and sensor data register to inputs*/

 stwio r10, 4(r8)

 loop:

 movia r11, 0xfffeffff /* enable sensor 3, disable all motors*/

 stwio r11, 0(r8)

 ldwio r5, 0(r8) /* checking for valid data sensor 3*/

 srli r5, r5,17 /* bit 17 equals valid bit for sensor 3*/

 andi r5, r5,0x1

 cmpeqi r6, r5,0x1

 beq r0, r6,good /* checking if low indicated polling data at

sensor 3 is valid*/

 br loop

 good:

 ldwio r10, 0(r8) /* read sensor3 value (into r10) */

 srli r10, r10, 27 /* shift to the right by 27 bits so that 4-bit

sensor value is in lower 4 bits */

Assembly Example: Assuming Lego controller is plugged into JP2, Trigger

Interrupt when the Sensor3 value becomes greater than a threshold value of 0x7

(using state mode)

 .equ ADDR_JP2, 0x10000070 /* address GPIO JP2*/

 .equ ADDR_JP2_IRQ, 0x1000 /* IRQ line for GPIO JP2 (IRQ12) */

 movia r8, ADDR_JP2 /* load address GPIO JP2 into r8*/

 movia r9, 0x07f557ff /* set motor,threshold and sensors bits to

output, set state and sensor valid bits to inputs */

 stwio r9, 4(r8)

/* load sensor3 threshold value HEX 5 and enable sensor3*/

 movia r9, 0xfabfbfff /* set motors off enable threshold load

sensor 3*/

 stwio r9, 0(r8) /* store value into threshold register

/* disable threshold register and enable state mode*/

 movia r9, 0xffdfffff

 stwio r9, 0(r8)

/* enable interrupts DE2 boards */

 movia r12, 0x20000000 /* enable interrupts on sensor 3*/

 stwio r12, 8(r8)

 movia r8, ADDR_JP2_IRQ /* enable interrupt for GPIO JP2 (IRQ12) */

 wrctl ctl3, r8

 movia r8, 1

 wrctl ctl0, r8 /* enable global interrupts */

 LOOP:

 br LOOP

Assembly Example: Using JP2, Check if sensor 3 triggered the interrupt

.equ ADDR_JP2_IRQ, 0x1000 /* IRQ line for for GPIO JP2 (bit 12) */

.equ ADDR_JP2_Edge, 0x1000007C /* address Edge Capture register GPIO JP2

*/

 rdctl et, ctl4 /* check the interrupt pending register

(ctl4) */

 movia r2, ADDR_JP2_Edge

 and r2, r2, et /* check if the pending interrupt is from

GPIO JP2 */

 beq r2, r0, exit_handler

 movia r2, ADDR_JP2_EDGE /* check edge capture register from GPIO

JP2 */

 ldwio et, 0(r2)

 andi r2, et, 0x20000000 /* mask bit 29 (sensor 3) */

 beq r2, r0, exit_handler /* exit if sensor 3 did not interrupt */

