
My guide for setting up a raspberry pi zero w as a wifi rerouter and access point


references:

1: http://www.0xf8.org/2016/02/using-your-raspberry-pi-zeros-usb-wifi-adapter-as-both-wifi-
client-and-access-point/

2: https://www.karlrupp.net/en/computer/nat_tutorial

3: https://www.raspberrypi.org/forums/viewtopic.php?f=36&t=138730&start=25

4: https://learn.adafruit.com/setting-up-a-raspberry-pi-as-a-wifi-access-point/overview


The goal of this guide is to turn a raspberry pi zero w into a device that attempts to connect to 
a surrounding wifi network and act as an access point. For the robot I’m working with, I’d like 
to reliably connect to the onboard raspberry pi 2. This raspberry pi zero w will act as a consist 
network through which I can connect. The added benefit of this is I can also connect to the 
internet if the raspberry pi zero w finds a network.


Check what channel you’re on

If you haven’t done so, connect your raspberry pi zero w to a wifi network. Type “iwlist wlan0 
channel” and note which channel you’re on. This number will be used later.


Install stuff 
We’ll be using the hostapd and dnsmasq libraries. Type the following to install them:

sudo apt-get install hostapd dnsmasq 

Double checking configuration 
Make sure when you type “iw list” this text appears at the bottom of the long output:


valid interface combinations: 
   * #{ managed } <= 1, #{ P2P-device } <= 1, #{ P2P-client, P2P-GO } <= 1, 
     total <= 3, #channels <= 2 
   * #{ managed } <= 1, #{ AP } <= 1, #{ P2P-client } <= 1, #{ P2P-device } <= 
1, 
     total <= 4, #channels <= 1 
 Device supports scan flush. 

This means access points are supported (see reference 1 for details).


Creating the virtual interfaces 
The plan is to create a fake interface called ap0 to handle our access point stuff (connecting 
and handling devices that want to use our raspberry pi network) and route its traffic to wlan0, 
the actual internet connection. wlan0 is what you usually use for wifi based connections.


udev is a device manager (for linux? raspberry pi only? I dunno). We need to define some rules 
about these new interfaces. Insert the following into “/etc/udev/rules.d/70-persistent-
net.rules” (edit this file with sudo nano /etc/udev/rules.d/70-persistent-net.rules):


http://www.0xf8.org/2016/02/using-your-raspberry-pi-zeros-usb-wifi-adapter-as-both-wifi-client-and-access-point/
http://www.0xf8.org/2016/02/using-your-raspberry-pi-zeros-usb-wifi-adapter-as-both-wifi-client-and-access-point/
http://www.0xf8.org/2016/02/using-your-raspberry-pi-zeros-usb-wifi-adapter-as-both-wifi-client-and-access-point/
https://www.karlrupp.net/en/computer/nat_tutorial
https://www.raspberrypi.org/forums/viewtopic.php?f=36&t=138730&start=25


SUBSYSTEM=="ieee80211", ACTION=="add|change", ATTR{macaddress}=="xx:xx:xx:xx:xx:xx", 
KERNEL=="phy0", \ 
    RUN+="/sbin/iw phy phy0 interface add wlan1 type __ap", \ 

This deletes wlan0 as an interface (it comes back anyway though for some reason) to make 
way for the access point interface. Make sure to replace "xx:xx:xx:xx:xx:xx" with the mac 
address of your raspberry pi zero w’s wlan0 device. Find it by typing “ifconfig.” It’s the entry 
titled “HWaddr”.


After you reboot (which you shouldn’t do yet), your file should look like this (udev inserts its 
own rules into this file):

——————————————————————/etc/udev/rules.d/70-persistent-net.rules——————————————————————— 

SUBSYSTEM=="ieee80211", ACTION=="add|change", ATTR{macaddress}=="yy:yy:yy:yy:yy:yy", 
KERNEL=="phy0", \ 
    RUN+="/sbin/iw phy phy0 interface add wlan1 type __ap", \ 

# Unknown net device (/devices/platform/soc/20300000.mmc/mmc_host/mmc1/mmc1:0001/
mmc1:0001:1/net/wlan0) (brcmfmac_sdio) 
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{address}=="xx:xx:xx:xx:xx:xx", 
ATTR{dev_id}=="0x0", ATTR{type}=="1", KERNEL=="wlan*", NAME="wlan0" 

# USB device 0x:0x (rtl8192cu) 
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{address}=="yy:yy:yy:yy:yy:yy", 
ATTR{dev_id}=="0x0", ATTR{type}=="1", KERNEL=="wlan*", NAME="wlan1" 

—————————————————————————————————————————————————————————————————————————————————————— 

Configuring the virtual interfaces 
Now we need to define the behavior of these interfaces. The raspberry pi zero w will assign an 
ip address of 192.168.200.1 on its own access point so I can log in through ssh if necessary 
and search for any wifi networks using wpa_supplicant. We’ll be editing the file “/etc/network/
interfaces”.


In the end my file looked like this:


————————————————————————————————/etc/network/interfaces——————————————————————————————— 

iface default inet dhcp 

auto lo 
iface lo inet loopback 

allow-hotplug wlan1 
iface wlan1 inet static 
    address 192.168.200.1 
    netmask 255.255.255.0 
    hostapd /etc/hostapd/hostapd.conf 

auto wlan0 
allow-hotplug wlan0 
iface wlan0 inet manual 
    wpa-roam /etc/wpa_supplicant/wpa_supplicant.conf 

—————————————————————————————————————————————————————————————————————————————————————— 



Configure the access point 
Now we need to define the behavior the of access point. This configuration file is in “/etc/
hostapd/hostapd.conf”. 


———————————————————————————————/etc/hostapd/hostapd.conf—————————————————————————————— 

#ctrl_interface=/var/run/hostapd 
#ctrl_interface_group=0 
interface=wlan1 

# put the network name you want here 
ssid= 

# Change this (see the crda(8) and regulatory.bin(5) man pages) 
country_code=US 

ieee80211d=1 
ieee80211h=1 
ieee80211n=1 
hw_mode=g 

# Put the channel you found in the beginning here.  
channel=1 

macaddr_acl=0 
wmm_enabled=1 
wpa=2 

# put a passphrase >=8 characters here 
wpa_passphrase= 

wpa_key_mgmt=WPA-PSK 
wpa_pairwise=CCMP 

—————————————————————————————————————————————————————————————————————————————————————— 

The reason the channel number must match the beginning is because the access point is the 
using the same hardware as wlan0. It can only be operating at one frequency at a time. So if 
you put a different channel, nothing happens and you don’t see your network.


Start the service with: “sudo service hostapd start”. This should be a one time command.


Add networks to connect to 
Add any networks you’d like to connect to in “/etc/wpa_supplicant/wpa_supplicant.conf”. This 
is where you should enter any credentials for any new networks you’d like to connect to. This 
file is pretty standard, but here’s what mine looks like:


————————————————————————/etc/wpa_supplicant/wpa_supplicant.conf——————————————————————— 
ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev 
update_config=1 
country=US 

network={ 
 ssid="somenetwork" 



 psk="somepassword" 
 key_mgmt="" 
} 

—————————————————————————————————————————————————————————————————————————————————————— 

It’s recommended that you generate “psk” by typing: “sudo wpa_passphrase yourSSID 
yourPassword” and pasting the output into this file.


Configure DNS server 
The access point isn’t quite done yet. This is where dnsmasq comes in. This library will assign 
IP addresses to devices that connect. We just need to tell it how we want it to be done. Open 
this file: “/etc/dnsmasq.conf”. It’s a big file, so I won’t paste the whole thing in. The only entries 
I changed were the following:


———————————————————————————————————/etc/dnsmasq.conf—————————————————————————————————— 

interface=lo,wlan1 
dhcp-range=wlan1,192.168.200.5,192.168.200.200,255.255.255.0,48h 

—————————————————————————————————————————————————————————————————————————————————————— 

This tells dnsmasq which interface to assign IPs through and what values it should set. The 
dhcp-range parameters parses as “interface, lower IP value, upper IP value, mask, connection 
lease time”


Start the service with: “sudo service dnsmasq start”. This should be a one time command.


Route traffic between wlan0 and wlan1 
All that’s left is to connect the two interfaces. Open “/etc/sysctl.conf” and uncomment the line 
that says “net.ipv4.ip_forward=1” (or add it if it’s not there).


Open “/etc/rc.local” and the following line before the “exit 0” command (if it’s there):

iptables -t nat -A POSTROUTING --out-interface wlan0 -j MASQUERADE 
iptables -A FORWARD --in-interface wlan1 -j ACCEPT 

The second link at the top explains how postrouting works. Essentially, packets are now being 
routed to the access point IP addresses.


Restart the pi and you should see your network! I made a lot of mistakes in getting this process 
to work because I wasn’t reading carefully. Make sure you did all the steps.


Troubleshooting 
If you can connect to the network fine, but there’s no internet, make sure the pi is actually 
connected to a network. If that isn’t it, check if you can run the iptables command.


If you don’t see your network, check hostapd.conf to see if all the entries are fine. The channel 
thing is really important.




If you see your network, but are just waiting to connect, dnsmasq probably isn’t handing out an 
IP address. Check dnsmasq.conf.


If it says it failed to load rc.local when the RPi boots up, make sure “#!/bin/sh -e” is the very 
first line (no whitespace)


If “rfkill list all” says phy0 is soft blocked, run “sudo rfkill unblock all”


I recommend installing wicd-curses: “sudo apt-get install wicd-curses". It’s a command line 
interface for connecting to wifi. If you can’t connect, try disabling dhcpcd: “sudo systemctl 
disable dhcpcd” (after testing this probably doesn’t work…)


If the RPi can’t see your interface for some reason, try “sudo ip addr flush dev wlan1”. “rfkill list 
all” will show it’s soft blocked, so you’ll have to run “sudo rfkill unblock all”


If you find the internet interface (wlan0) is disconnecting after some long stretch of time, try 
disabling power save mode by adding “wireless-power off” to your /etc/network/interfaces file:


auto wlan0 
allow-hotplug wlan0 
iface wlan0 inet manual 
    wpa-roam /etc/wpa_supplicant/wpa_supplicant.conf 
    wireless-power off 

Summary of files

/etc/udev/rules.d/70-persistent-net.rules

/etc/hostapd/hostapd.conf

/etc/dnsmasq.conf

/etc/network/interfaces

/etc/wpa_supplicant/wpa_supplicant.conf

/etc/rc.local


