
MR-Creations © 2019

P I C v 1 . 0 I P D o c u m e n t a t i o n P a g e 1 | 15

Programmable Interrupt

Controller (PIC) v1.0

- IP Documentation

 October 2019

MR-Creations © 2019

P I C v 1 . 0 I P D o c u m e n t a t i o n P a g e 2 | 15

Contents

S no. Title Page no.

1 Specifications 3

2 Overview 4

3 RTL Diagram 6

4 Port Descriptions 7

5 Interrupt Flow 8

6 Modes of Operation 9

7 PIC Registers 10

8 Timing Diagrams 13

9 Important Notes 14

10 Licensing Notice 15

MR-Creations © 2019

P I C v 1 . 0 I P D o c u m e n t a t i o n P a g e 3 | 15

Specifications

Programmable Interrupt Controller (PIC) is a fully parameterised, configurable and portable

soft IP core. It is a bare RTL design with AHB3-Lite interface to communicate with the host

processor.

 AHB3-Lite interface.

 Statically configurable parameters:

 No. of external interrupt sources; supports up to 63 interrupts.

 No. of priority levels; supports up to 63 levels.

 No. of nesting levels; supports up to 8 level of nesting.

 Bus width; 32 or 64.

 Globally and locally maskable interrupts.

 Dynamically configurable priority level for each interrupt.

 Two modes of operation – Fully Nested Mode and Equal Priority Mode, see here.

 Supports active-high level sensitive interrupts.

 Supports only a single core of processor.

MR-Creations © 2019

P I C v 1 . 0 I P D o c u m e n t a t i o n P a g e 4 | 15

Overview

Programmable Interrupt Controller (PIC) receives multiple interrupts from external

peripherals and merges them into a single interrupt output to a target processor core. All

PIC registers are memory mapped, and accessed through AHB3-Lite bus interface.

Fig.1 shows the top-level block diagram of PIC.

Fig 1: PIC Block Diagram

 PIC Register Bank: Contains all set of control and status registers. They are accessed

through AHB3-Lite bus interface, see here.

 BTC: Binary-Tree-Comparators module is responsible for finding the ID of highest-

priority-pending Interrupt (HPPINTR).

 Priority Resolver: Responsible to generate interrupt to the target core. It resolves the

priorities of HPPINTR and the interrupt which is being currently serviced, and makes

decision on whether to assert the irq line or not. It takes care of nesting of interrupts

as well.

MR-Creations © 2019

P I C v 1 . 0 I P D o c u m e n t a t i o n P a g e 5 | 15

 External Interrupts: Various interrupt lines from external peripherals.

 Irq: Interrupt line to the target processor core.

Interrupt IDs and Priorities

Each interrupt in PIC has an ID associated with it. The ID is hardcoded for each pin in

ext_intr_i.

For SOURCES = N, the external interrupt ports are grouped from ext_intr_i(1) to

ext_intr_i(N), where 1 to N are their respective IDs.

‘0’ is reserved ID, which means ‘no interrupt’.

Each interrupt can be assigned a priority level via corresponding prreg. The priority value

ranges from 0 to PRLEVELS.

Priority level increases with value. Thus, ‘1’ has the least priority and PRLEVELS has the

highest priority. If two interrupts have same priority, then the one with lower ID gets

precedence over the other.

Priority level of ‘0’ is special. It means ‘never interrupt’. It is effectively another way of

masking the interrupt.

MR-Creations © 2019

P I C v 1 . 0 I P D o c u m e n t a t i o n P a g e 6 | 15

RTL Diagram

Fig 2. shows the top-level ports of the IP Core with AHB3-Lite slave interface.

Fig 2: RTL Diagram of PIC

MR-Creations © 2019

P I C v 1 . 0 I P D o c u m e n t a t i o n P a g e 7 | 15

Port Descriptions

Parameters

S.No Name Description

1 SOURCES No. of interrupt sources to be supported (1 to 63)

2 PRLEVELS No. of priority levels to be supported (1 to 63)

3 NESTLEVELS
No. of nesting levels needed; 1 to 8

1 → No nesting …

4 BWIDTH Data/Address bus widths for AHB3-Lite interface; 32 or 64

Signals

S.No Name Direction Width Description

1 hclk in 1 Global clock signal

2 hresetn in 1 Active-low global sync. reset

3 hsel in 1 Slave select signal

4 hready in 1 Ready signal from Master

5 haddr in BWIDTH Address to be accessed

6 hwdata in BWIDTH Data to be written to PIC

7 hwrite in 1 Write/Read signal

8 htrans in 2 Transfer type

9 hsize in 3 ** Not used **

10 hburst in 3 ** Not used **

11 hprot in 4 ** Not used **

12 hmastlock in 1 ** Not used **

13 hrdata out BWIDTH Data read from PIC

14 hreadyout out 1 Transfer finish signal

15 hresp out 1 Response status signal

16 ext_intr_i in SOURCES External interrupt sources

17 irq_o out 1 Interrupt to Processor Core

Table 1: Top-level Ports of the PIC

MR-Creations © 2019

P I C v 1 . 0 I P D o c u m e n t a t i o n P a g e 8 | 15

Interrupt Flow

Interrupt Flow in PIC can be categorised into four stages.

o Interrupt Request

An external interrupt asserts interrupt. This is known as ‘Interrupt Request’. The interrupt

is then latched as pending. Further requests from the source are blocked by PIC hereafter,

until the current request gets serviced. Thus, only outstanding request can be pending at

a time from the same source.

o Interrupt Notification

Each interrupt has ID ranging from 0 to SOURCES, and can be assigned a priority from 0

to PRLEVELS, see here. Each interrupt can be globally or locally enabled/masked as well.

Only pending and enabled interrupts are candidates for getting notified to the Processor.

The priority levels of all such interrupts are compared and ID register is updated with the

highest-priority-pending interrupt (HPPINTR) every clock cycle. If HPPINTR has a priority

level greater than the one being currently serviced by the Processor, then the irq_o line

to the Processor is asserted. This is known as ‘Interrupt Notification’.

o Interrupt Claim-Response

After receiving Interrupt Notification, the Processor will send a read request for ID register.

This is known as ‘Interrupt Claim’. PIC responds with the value in ID register. This is known

as ‘Response’. On claiming, the corresponding pending bit is cleared and the servicing bit

is set, signifying that the interrupt is being serviced right now. The irq_o line goes low as

well until a higher priority interrupt is qualified to pre-empt.

o Interrupt Completion

After the complete execution of ISR, the Processor signals ‘Interrupt Completion’ to PIC by

writing to ID register. PIC then clears the corresponding servicing bit and unblocks the

source to forward further requests. The value written to ID register is irrelevant.

MR-Creations © 2019

P I C v 1 . 0 I P D o c u m e n t a t i o n P a g e 9 | 15

Modes of Operation

PIC has two primary modes of operation which can be configured via cfreg – Fully Nested

Mode and Equal Priority Mode. They are described below.

o Fully Nested Mode

This is the default mode of operation of PIC after reset. In this mode, all interrupts can be

assigned different priorities and hence can be nested up to NESTLEVELS , if the Processor

core supports nesting and pre-emption. In this mode of operation, it is assumed that the

last claimed/acknowledged interrupt is the first one to be completed.

o Equal Priority Mode

In this mode, all interrupts have the same priority level regardless of what value is written

on their prregs. No nesting is hence possible with this mode. All interrupts are polled

from ID 0 to SOURCES each time and the first pending interrupt is claimed and serviced.

MR-Creations © 2019

P I C v 1 . 0 I P D o c u m e n t a t i o n P a g e 10 |

15

PIC Registers

PIC has 6 set of memory-mapped control and status registers which can be accessed

through AHB3-Lite interface.

o Config Register (cfreg)

It is a R/W register of width BWIDTH. It is used to configure the mode of operation of

PIC and control global masking. Reset value of the register is 0x0.

R E S E R V E D MODE GIE

BWIDTH-1 1 0

GIE: ‘1’ => All interrupts are globally enabled, ‘0’ => All interrupts are globally masked.

MODE: ‘1’ => Equal Priority Mode, ‘0’ => Fully Nested Mode.

o Interrupt Enable Registers (iereg)

They are R/W registers of width BWIDTH. It is used to enable/disable interrupts from

individual sources. Reset value of the registers is 0x0.

ID BWIDTH-1 ID 1 ID 0

BWIDTH-1 1 0

Each interrupt can be enabled and disabled by setting or clearing respective bits in

iereg. If all interrupts are globally masked, then the enable bit has no effect. If all

interrupts are globally enabled, then the enable bit decides whether the interrupt is

masked or not. The number of ieregs in PIC depends on SOURCES and BWIDTH.

N = [[(SOURCES+1)/ BWIDTH]] , where [[x]] is the least integer greater than or equal to

x.

The iereg and the bit to be accessed to enable/disable an interrupt ID can be found

as:

Reg index = [ID/BWIDTH], where [x] is the greatest integer less than or equal to x.

Bit index = (ID mod BWIDTH).

Reg index varies from 0 to N-1 and Bit index varies from 0 to BWIDTH-1.

MR-Creations © 2019

P I C v 1 . 0 I P D o c u m e n t a t i o n P a g e 11 |

15

o Interrupt Pending Registers (ipreg)

They are Read-only registers of width BWIDTH. Only PIC can write to this register. It

keeps the pending status of each interrupt. Reset value of the registers is 0x0.

ID BWIDTH-1 ID 1 ID 0

BWIDTH-1 1 0

The number of ipregs in PIC depends on SOURCES and BWIDTH.

N = [[SOURCES+1/ BWIDTH]] , where [[x]] is the least integer greater than or equal to x.

The ipreg and the bit that stores the pending status of an interrupt ID can be found

as:

Reg index = [ID/BWIDTH], where [x] is the greatest integer less than or equal to x.

Bit index = (ID mod BWIDTH).

Reg index varies from 0 to N-1 and Bit index varies from 0 to BWIDTH-1.

o Interrupt Service Registers (isreg)

They are Read-only registers of width BWIDTH. Only PIC can write to this register. Each

bit in the register indicates whether the corresponding interrupt is being serviced or not.

Reset value of the registers is 0x0.

ID BWIDTH-1 ID 1 ID 0

BWIDTH-1 1 0

The number of isregs in PIC depends on SOURCES and BWIDTH.

N = [[SOURCES+1/ BWIDTH]] , where [[x]] is the least integer greater than or equal to x.

The isreg and the bit that stores the pending status of an interrupt ID can be found

as:

Reg index = [ID/BWIDTH], where [x] is the greatest integer less than or equal to x.

Bit index = (ID mod BWIDTH).

Reg index varies from 0 to N-1 and Bit index varies from 0 to BWIDTH-1.

MR-Creations © 2019

P I C v 1 . 0 I P D o c u m e n t a t i o n P a g e 12 |

15

o Priority Registers (prreg)

They are R/W registers of width BWIDTH. They store the priority levels of each interrupt.

Reset value of the registers is 0x01.

The number of prregs in PIC, N = SOURCES+1.

prreg[x] corresponds to interrupt ID = x.

o ID Register (idreg)

It is a Read-only register of width BWIDTH. It stores the ID of HPPINTR. A read access to

ID register is deemed as ‘Interrupt Claim’. Writing access to this register is deemed as

‘Interrupt Completion’. However, the written value will not be reflected here as only PIC

can write to this register. Reset value of the register is 0x0 or ‘no interrupt’.

The register map for all the PIC registers are given in Table 2.

S. No Register Address Range (12-bit Addresses)

1 cfreg 0x000

2 iereg
0x100 to 0x1[N-1]

Least significant 2 bytes –> Reg Index

3 ipreg
0x200 to 0x2[N-1]

Least significant 2 bytes –> Reg Index

4 isreg
0x300 to 0x3[N-1]

Least significant 2 bytes –> Reg Index

5 prreg
0x400 to 0x4[SOURCES]

Least significant 2 bytes –> Reg Index = ID

6 idreg 0x500

Table 2: Register Address Map

MR-Creations © 2019

P I C v 1 . 0 I P D o c u m e n t a t i o n P a g e 13 |

15

Timing Diagrams

All PIC register accesses (read and write) are zero-wait accesses via AHB3-Lite bus.

Following figures show the timing diagram for read and write to a register in PIC, assuming

a 32-bit bus.

Fig 3: Reading a PIC Register

Fig 3: Writing to a PIC Register

Interrupt generated by a source takes td = two clock cycles before getting asserted at

irq_o.

Hence, Interrupt Latency added by PIC is = td + one read cycle for claim.

MR-Creations © 2019

P I C v 1 . 0 I P D o c u m e n t a t i o n P a g e 14 |

15

Important Notes

o Logical complexity in the critical path in binary tree of comparators that update ID

register every cycle can be approximated as:

C = log2[𝑆OURCES]

where [x] is the largest integer which is a power of 2, and which is less than or equal

to x.

Hence, the performance of PIC heavily depends on the value of SOURCES.

o Interrupt level supported at ext_intr_i is active-high. If using positive edge-

triggered interrupts, note that only one outstanding request can be pending at an given

time.

o Interrupt gets registered as pending on the very first assertion from the peripheral. It

cannot be retracted by de-asserting the line before claim. However, it can still be

masked so that BTC and Priority Resolver ignores it.

o NESTLEVELS >1, gives support for nesting only if PIC is in Fully Nested Mode and only

if the Processor allows it. In code, nesting can still be disabled by clearing gie when

entering ISR.

o Re-entrancy is not supported in Fully Nested Mode.

MR-Creations © 2019

P I C v 1 . 0 I P D o c u m e n t a t i o n P a g e 15 |

15

Licensing Notice

Programmable Interrupt Controller v1.0 © 2019

Open-source licensed

Developer: Mitu Raj, iammituraj@gmail.com

	Contents
	Specifications
	Overview
	IDP
	RTL_Diagram
	Port_Descriptions
	Interrupt_Flow
	Modes
	PIC
	PIC_Registers
	Timing_Diagrams
	Important_Notes

