
1

GPS Guided Autonomous Rover

ELEN3017

Josh Berman 320856

Group: 16

Partners: Terry Bugai, Kent Salmon, Mayur Chiba

Date: 24 May 2013

School of Electrical & Information Engineering,

University of the Witwatersrand,

Private Bag 3,

2050,

Johannesburg,

South Africa

Abstract

This document provides the development and implementation of a GPS (Global Positioning System) guided rover.

The rover is to compete in a race on a pre-defined track consisting of vertices made up of GPS coordinates. The

design is comprised of a perspex base, battery pack, servo motors, Ublox GPS module and an ATMega328 Arduino

microcontroller. The microcontroller receives the input from the GPS module in string format through serial

communication. This data is then sent through our path finding algorithm and the direction is calculated. The rover

runs through the course with minor mishaps. Improvement recommendations include alternate algorithms and

additional sensors.

1. INTRODUCTION

Critical to this project, a Ublox GPS unit is mounted on

the highest point on the rover’s surface. Location data is

converted to a usable form and a path is then calculated

using our path finding Algorithm. The rover determines

its location and direction in order to estimate how many

degrees to rotate. It then rotates accordingly, drives

forward and re-calibrates. This process continues until the

rover has reached its destination.

Section 2 defines the constraints versus requirements of

this autonomous rover. The physical circuit

implementation is discussed in section 3 and the

construction and implementation in section 4. The

stability of the physical structure of the rover is discussed

in section 5, the algorithm is discussed in section 6 with

all results in section 7. The concluding statements with

recommendations appear in section 8.

2. CONSTRAINTS AND REQUIREMENTS

2.1. General Assumption and Constraints

 The continuous servo motors given must be used

to drive and steer the rover.

 The battery pack must be the sole power supply

for the rover. The rover must hence be able to

provide enough torque to carry the batter pack.

 The Ublox GPS module must be used to control

the direction of the rover.

 The Perspex provided must be used in the

construction of the rover

 No power tools are to be used throughout the

construction of the rover.

2.2. Success Criteria

 Navigate through a track consisting of vertices

made of GPS coordinates in the quickest

possible time without veering off course.

2.3. Component Constraints

For the purposes of this autonomous rover, a standardised

issuing of components to be used as power supplies and

tracking modules forms the basic constraints of the

subsequent system. It is around these components in table

1, that the subsequent design must meet all the

requirements.

2

Table 1: Issued components and relevant ratings

Components Relevant

Ratings

2 Continuous Rotation Servo

Motors

1 Battery pack

6V

6V 2.8Ah

50 300mm Perspex sheet N/A

2 Rubber/plastic wheels (not

issued)

9cm diameter

1 Track ball (not issued) N/A

3. DESIGN APPROACH

3.1. General Design Approach

When comparing the constraints and requirements of the

design the following two options for the drive mechanism

of the rover are presented. One way is to use a single

continuous rotation servo to produce the driving force

acting on the rear axle of the rover and to use a 0-180°

semi rotational servo to direct the front wheel which

controls the direction. Another way is to use two

continuous rotation servos to drive each wheel

independently. This would allow us to turn on our axis by

rotating the wheels in opposite directions. The latter

option became the chosen one as the rover needs to make

immediate turns when advancing passed coordinates.

The choice of the microprocessor used is dependent on a

number of factors. The microprocessor must contain

enough memory to house our entire code. The processing

speed must be enough to calculate in real time before the

rover crosses the next point. The micro must contain

enough input/output pins so that the GPS and servo

motors can be connected.

The Arduino ATMega328 fits all this criteria and is

readily available at most electronic suppliers. The

‘sketch’ is coded in ‘c’ providing an easier platform than

PIC’s requiring ‘assembly’ or ‘mipps’.

 ASSEMBLY AND PHYSICAL FEATURES

3.2. Power supply

The Battery pack provided has an output voltage

measured to be 6.3V when fully charged. This is the sole

supply for the rover and must provide enough current to

power the servo motors, GPS unit and Arduino

microprocessor. The optimum voltage for maximum

torque of the servos is 7.2V [1], but as little as a 4V

supply can be used. The GPS module requires 3.3V [2]

and is regulated through the Arduino. The microprocessor

requires a 5V supply but anything up to 8V can be used as

the PCB board contains its own 5Vdc regulator [3]. These

values are measured experimentally using a controlled

variable power supply and displayed in table 2 as

minimum values for acceptable levels of performance.

Table 2: Tested load characteristics of rover under normal

conditions.

Component Voltage(V) Load

Current(A)

Load

Power

(W)

Arduino 5.0 80m 0.4

GPS 3.3 40m 0.13

Servos 6.0 190m 1.14

Rover in motion

(under no load)

6.0 360m 2.16

Rover in motion

(under load)

6.0 420m 2.52

Load currents are tested using a DC power supply and

reading off the current drawn. These test results show that

the rover requires at least a 6V supply at <1Amp.

3.3. Servo Motors

Two FS5109R standard continuous rotation servos are

used to drive and steer the rover. A PWM signal

generated by the microprocessor controls the angle of

rotation. Since our servos are continuous rotation, the

angle is used to determine the wheel direction once off,

i.e. forwards or backwards. The servos continue to rotate

until a new command is given as they do not contain a

limiting potentiometer. In order to turn the rover, the

servos must be set to rotate the wheels in opposite

directions. The duty cycle of the PWM determines the

direction of the rotation of the servos and the frequency

determines the speed of rotation. Our frequency is set in

order to get maximum speed of rotation while still

providing enough torque to carry the battery pay load.

This frequency is set to be 333.3 Hz rated at the

maximum our plastic gears can handle. The normal

operational frequency is between 50-60 Hz [4]. The

rovers speed is noticeably faster.

Table 3: Servo Motor Ratings from datasheet

Components Ratings Ratings

Power

Speed

Torque

4.8V

0.16sec/60°

6.5kg/cm

6V

0.16sec/60°

9.5kg/cm

Weight 52g N/A

Size 40.8*20.1*38.0mm N/A

Application robot N/A

3.4. The Wheels

The diameter of the wheels is a crucial factor to the speed

of the rover. As the servos are now rotating at a fixed

speed, Assuming enough torque is provided through

entire operation, we can assume the larger the wheels the

greater the speed. This is limited to availability of

attachable wheels and as mentioned the servo torque.

3

Different sets of wheels are tried and tested until the load

on the servos is minimised and the speed of the rover is

maximised. A final wheel of diameter 9cm is chosen. The

wheels are taken from an old Mecano/Lego set and are

fixed in place using rods. Glue is used to secure these

rods. A table of varying size wheels and their respective

speed is shown below.

Table 4: Wheel diameter and resultant speed/time

diameter Perimeter Rotations

per meter

Time to

cover a meter

(sec/meter)

4cm

6cm

9cm

12.5cm

18.85cm

28.27cm

8

5.3

3.53

7.68

5.08

3.39

Speed is the Inverse of the time taken to cover a meter.

3.5. The Chassis

A 6mm thick sheet of Perspex measure to be 300x500mm

is issued and must contribute to the structure of the rover.

The Perspex is light in comparison to a metal structure

but heavy when considering the added weight of the

battery pack. Perspex is used as it can be easily cut using

a saw or bored using a hand drill. Cut out pieces can be

attached using a glue gun. Aesthetic additions such as a

wind deflector are added for our own amusement. The

Chassis is a single sheet of Perspex with side sections

removed for the wheels to fit. Holes are drilled for the

Arduino to be secured and the front track ball to be

mounted. The base plate dimensions can be found in

Appendix A, Figure 1.

3.6. GPS Module

The Global Positioning System comprises of multiple

Satellite networks orbiting the earth. These satellites

transmit data or “timestamps” depending on their position

in space. The data is received by a GPS receiver where

there is an unobstructed line of sight. This is accessible to

anyone from military personnel to civilians. The most

common GPS receivers are located in land mapping

devices used in cars and cell phones [5].

The data set or information from GPS receiver is called

NMEA, which stands for National Marine Electronics

Association. These data strings based on ASCII are

communicated at a rate of 38400 bits per second [6]

which is equivalent to the baud rate of 38400 characters

per-second. The data is transmitted in sentence codes and

is decoded into string format which we then manipulate to

find our required information. The GPS data is normally

received and transmitted in a standard NMEA-0183

format. This GPS continuously outputs NMEA sentence

codes such as RMC and VTG. In this case, the only

concerned is the ($GPRMC) sentence, which represents

the Global Positioning Recommended Minimum Specific

GPS/Transit Data.

A serial communication port is set up in the software of

the Arduino in order to receive the desired data. Once this

data is received we can use string manipulation to extract

the latitude and longitude. Checks need to be performed

in order to make sure data is being received else the

information is insufficient.

The GPS module takes roughly 30 seconds to begin

receiving information and therefore initial loops need to

be put in place to prevent the rover from moving forward

before this information is received. The Latitude and

longitude are displayed with five decimal places in order

to depict an accuracy of 1.1 meters [6]. The accuracy

during final tests was less than this and caused minor path

variations for this rover. With a larger antenna and the

storage of latitude and longitude in integer format as

opposed to floats, we can reduce this error significantly.

There was not enough time to incorporate this fix in the

code and hence the error was relatively high. The GPS

output can be found in Appendix B.

4. CONSTRUCTION

The rover is pieced together using assorted screws and a

glue gun. The Servos are attached in opposite directions

to the underside of the Perspex base plate. The wheels are

then attached independently to each servo using the

screws and the servo arms that are supplied with the

servos. The track ball is fixed using the holes in the front

of the chassis that were drilled previously. The battery

pack is strategically placed and secured in the center of

the chassis for optimum weight distribution. The GPS unit

is placed on top of the battery pack and the TX and RX

pins are connected to pin 3 and 5 of the Arduino

respectively. The Vcc and GND are connected directly to

the 3.3V output of the Arduino and the GND pin of the

Arduino respectively. The Arduino is secured in front of

the battery pack and the supply voltage is connected

directly, via a power diode, into the power connector. The

servo signal inputs are connected to PWM pins 6 and 10

of the Arduino and their respective ground and supply are

connected to the battery supply rail. The rear spoiler is

added for aesthetic reasons, and a rear leg is then secured.

The construction of the rover is complete and the Arduino

sketch containing the path finding algorithm can be

uploaded.

5. DESIGN INSTABILITY

The performance of the rover is heavily susceptible to

wind resistance and uneven surfaces. The small trackball

in the front can get lodged in a crack in the surface of the

track thus altering the direction of movement. More

calculations need to be done in order to get the rover back

on track as it is no longer moving along its desired path.

The Battery pack is large and heavy and puts a great deal

of strain on the servos. The battery is located slightly

forward on the chassis. Ideally one would like to have a

50:50 weight distribution but as a result of the vibration

caused by the uneven surface, the weight is constantly

shifted and the rover can topple backwards. A support bar

4

protruding from the rear of the rover prevents the rover

from toppling backwards if the weight is shifted

drastically.

The wheels need to be perfectly aligned as a slight degree

of inaccuracy can cause a large change in direction when

travelling over large distances. This takes copious trials

and error. Additionally the servos can be tweaked by

altering their variable resistors; this can slow down a

servo independently allowing the rover to tend towards a

certain direction. This is used for correction of alignment

and compensation of independent speed inaccuracy.

6. PATH FINDING ALGORITHM

The path finding algorithm is initially drafted in sudo

code to get a better understanding of the objective

required. The code is then simulated in Matlab which

provides a visual representation of the calculated angles

and their respective paths. These simulated results can be

seen in Appendix C. Once the algorithm is tried and

tested on Matlab, it is then coded in ‘c’ and used on the

Arduino to output the required results.

The algorithm begins with finding the direction required

for the rover to move. This can only be done with two sets

of reference coordinates. Thus the rover must move

forward initially to retrieve these two sets of coordinates.

The coordinates are passed to a function that calculates

the angle of movement and the rover is rotated

accordingly. The rover must continuously loop through

this set of instructions until the desired point is reached.

The rover then checks for the next vertices and re-

evaluates its position.

7. RESULTS

7.1. Test day

Assumptions are made for the testing of the rover: the

course is assumed to be smooth, the GPS module would

constantly provide accurate information and that the

power supply would be constant. This is an ideal case.

During testing however these factors come into play and

cause variations in the results. The rover completed the

course but overshot one or two vertices on occasion. The

speed and direction was hindered by the uneven surface

which caused the rover to veer off the path towards the

end. After much initial tests prior to the demonstration,

the battery output voltage was lower than its initial value

and the rover had to be connected directly to a PC in

order to provide enough current for all the components.

The rover did manage to complete the entire path at a

relatively fast pace with all the constraints adhered to.

8. IMPROVEMENTS

The rover’s improvements can be made in the form of

additional sensors such as sonar or a gyroscope. The

sonar sensor can measure the distance to an object in its

path and hence trigger an object avoidance algorithm. An

example of this algorithm is shown in Appendix D. The

gyroscope can be used to measure the angle of rotation.

This would be preferable as the current design requires

the rover to move forward and retrieve new coordinates

and hence calculate its angle.

The rover build quality was of high standard but the

uneven surface can cause undesired results. The rover can

be built with a wider base and thicker tires to absorb

bumps in the track.

An antenna can be added to improve the GPS signal and

therefore reduce the time taken to retrieve coordinates;

this would noticeably speed up the rover’s algorithm. To

add theses improvements the connection diagram in

Appendix E can be used for reference.

9. CONCLUSION

A GPS guided autonomous rover was designed, constructed and tested. The system followed a strict set of constraints

with regards to the structure of the Rover as well as the implementation. The employed system autonomously navigates

its way through a path set out in GPS coordinates powered by a single 6.3V battery pack. The accuracy of the GPS

module was questioned and the desired outcome was hindered. The algorithm that was initially drafted in Matlab did

not function as well as expected when converted to ‘c’, but the overall construction and implementation produced the

required result. This project is a prime example of an intelligent autonomous vehicle.

.

5

REFERENCES

[1] Servo Voltage, FS5109R Data-sheet.

[2] GPS Operating Voltage, http://www.openimpulse.com/blog/products-page/product-category/ublox-neo-6m-gps-

module/ ,June 2013

[3] Arduino Operating Voltage , http://arduino.cc/en/Main/arduinoBoardUno, June 2013

[4] Servo Frequency, http://pcbheaven.com/wikipages/How_RC_Servos_Works/ , June 2013.

[5] GPS information, http://en.wikipedia.org/wiki/Global_Positioning_System , May 2013.

[6] Implementation of GPS for Location Tracking , 2011 IEEE Control and System Graduate Research Colloquium,

Shah Alam, Malaysia

Appendix A

Figure 1: Perspex Chassis Dimensions

 Figures 2: Side View of Rover Figures 3: Top View of Rover

http://www.openimpulse.com/blog/products-page/product-category/ublox-neo-6m-gps-module/
http://www.openimpulse.com/blog/products-page/product-category/ublox-neo-6m-gps-module/
http://arduino.cc/en/Main/arduinoBoardUno
http://pcbheaven.com/wikipages/How_RC_Servos_Works/
http://en.wikipedia.org/wiki/Global_Positioning_System

6

Figures 4: Rear View of Rover

Appendix B

Figure 1: GPS Output Stream Using Serial Communication

Appendix C

Figure 1: Flow Diagram of the Path Finding Algorithm

7

Sudo code:

General order

Initialisation

 Find goal

 drive forward

 determine "direction"

 goalFind = 0

Running

 turn & drive

 if goalFind = 1

 find goal + 1

 goalFind =0

 end

 acquire position

 check angle

 check if success

 if success

 goal = goal + 1

 goalFind = 1

 end

Issue that may arise in order of probability:

Check angle after movement, else every turn/drive adds an error

Crossing goal latitude/longitude

if condition: latP > latS

 if latP >= latG

 latG = max(latC,latB)

 end

if condition: latP < latS

 if latP <= latG

 longG = min(latC,latB)

 end

similarly for longitude.

Crossing wall

Check proximity to wall AC

Figure 2: Map coordinates illistration

8

Figure 3: Visual Matlab Map Simulation

MATLAB code:

clc;
%close all;
%clear all;

latIn = [28.02766, 28.02783, 28.02778, 28.02778, 28.02785, 28.02763];
longIn = [26.19165, 26.19164, 26.19159, 26.19149, 26.19139, 26.19150];
latOut = [28.02767, 28.02794, 28.02792, 28.02787, 28.02792 ,28.02798, 28.02765];
longOut = [26.19173, 26.19166, 26.19155, 26.19155, 26.19155, 26.19131,

26.19141];
latP= 28.02767;
longP = 26.19169;
longVert = [26.19165, 26.19173, 26.19164, 26.19166, 26.19155, 26.19155,

26.19159, 26.19149, 26.19155, 26.19139, 26.19131, 26.19141, 26.19150];
latVert = [28.02766, 28.02767, 28.02783, 28.02794, 28.02792, 28.02787, 28.02778,

28.02778, 28.02792, 28.02785, 28.02798, 28.02765, 28.02763];

longPath = longP;
latPath = latP;
longA = longVert(1,1);
latA = latVert(1,1);
longB = longVert(1,2);
latB = latVert(1,2);
longC = longVert(1,3);

9

latC = latVert(1,3);
longD = longVert(1,4);
latD = latVert(1,4);

longABC = [longA, longB, longC , longA];
latABC = [latA , latB , latC , latA];
longPC = [longP, longC];
latPC = [latP , latC];

if (longA - longD)^2 + (latA - latD)^2 < (longB - longD)^2 + (latB - latD)^2
 longB = longA;
 latB = latA;
end

longG = abs(longB - longC)/2 + min(longB,longC);
latG = abs(latB - latC)/2 + min(latB,latC);
longPath = [longPath, longG];
latPath = [latPath, latG];
plot(longIn, latIn, longOut, latOut, longABC, latABC, longPC, latPC, longPath,

latPath);

vertN = 5;
vertM = size(longVert) + 1;
evalResponse = input('prompt');
while vertN < vertM(1,2)
 longA = longC;
 latA = latC;
 longC = longD;
 latC = latD;
 longD = longVert(1,vertN);
 latD = latVert(1,vertN);
 vertN = vertN + 1;
 longP = longG;
 latP = latG;

 longABC = [longA, longB, longC , longA];
 latABC = [latA , latB , latC , latA];
 longPC = [longP, longC];
 latPC = [latP , latC];
 longPD = [longP, longD];
 latPD = [latP , latD];

 if (longA - longD)^2 + (latA - latD)^2 < (longB - longD)^2 + (latB - latD)^2
 longB = longA;
 latB = latA;
 end

 longG = abs(longB - longC)/2 + min(longB,longC);
 latG = abs(latB - latC)/2 + min(latB,latC);
 longPath = [longPath, longG];
 latPath = [latPath, latG];

 plot(longIn, latIn, longOut, latOut, longABC, latABC, longPC, latPC,

longPath, latPath);
 evalResponse = input('prompt');
end

longP = longG;
latP = latG;
longA = longC;
latA = latC;
longC = longD;
latC = latD;

10

longABC = [longA, longB, longC , longA];
latABC = [latA , latB , latC , latA];
longPC = [longP, longC];
latPC = [latP , latC];
longPD = [longP, longD];
latPD = [latP , latD];

longG = abs(longA - longC)/2 + min(longA,longC);
latG = abs(latA - latC)/2 + min(latA,latC);
longPath = [longPath, longG];
latPath = [latPath, latG];

plot(longIn, latIn, longOut, latOut, longABC, latABC, longPC, latPC, longPath,

latPath);
evalResponse = input('prompt');
plot(longIn, latIn, longOut, latOut, longPath, latPath);

Appendix D

Figure 1: Depiction of Object Avoidance Algorithm

Appendix E

Figure 1: Connection Diagram of rover components

