Arduino IDE set-up for DCC controller

Step 1. IDE environment set-up. Load the ESP boards.

When you first instal the Arduino IDE, it only supports ARM based boards. We need to add support
for ESP based boards. Navigate to File... Preferences

© ESP_DCC_Controller | Arduino 1.8.13
File Edit Sketch Tools Help

New Ctrl+N

Open... Ctrl+O

Open Recent >
Sketchbook >
Examples >
Close Ctrl+W

Save Ctrl+S

Save As... Ctrl+Shift+S

Page Setup  Ctrl+Shift+P
Print Ctrl+P

Preferences  Ctrl+ Comma

Quit Ctrl+Q

Preferences

Settings Network

Sketchbook location:

C:\users‘pommentsWdunno Browse
Editor language: System Default v | (requires restart of Arduino)
Editor font size: 12

Interface scale: [ Automatic | 100 T % (requires restart of Arduino)
Theme: Default theme « | (requires restart of Arduino)
Show verbose output during: [] compilation [] upload
Compiler warnings: None

[] Display line numbers [[] Enable Code Folding

[ Verify code after upload [[] use external editor

[ Check for updates on startup Save when verifying or uploading

tly in the file

be ec file

C:\IJser‘AppData\Local\Arduinolereferences.b(t

(edit only when Arduino is not running)

OK Cancel

Type this line below into the Additional Boards Manager URLS box. Note there are underscores in it,
no spaces.

http://arduino.esp8266.com/stable/package esp8266com index.json,https://dl.espressif.com/dl/p
ackage esp32 index.json

Also check the box that says Show Verbose during compilation. This gives us more information if
something fails during the compilation.



Note that the line above adds support for both esp8266 devices and the newer esp32. The two json
strings are separated by a comma.

Now select board version 2.7.4 from boards manager

Tools Help

| Auto Format Ctrl+T
Archive Sketch

)| Fix Encoding & Reload

Manage Libraries... Ctrl+Shift+|
Serial Monitor Ctrl+Shift+M
Serial Plotter Ctrl+Shift+L

WiFi101 / WiFiNINA Firmware Updater

ESP Exception Decoder
1 ESP8266 Sketch Data Upload

Board: "Arduino Nano" 3 Boards Manager...

@ Boards Manager X

Type Al v esp8266

esp8266 A
by ESP8266 Community version 2.7.4 INSTALLED

Boards included in this package:

Generic ESP8266 Module, Generic ESP8285 Module, Lifely Agrumino Lemon v4, ESPDuino (ESP-13 Module), Adafruit Feather
HUZZAH ESP8266, WiFi Kit 8, Invent One, XinaBox CW01, ESPresso Lite 1.0, ESPresso Lite 2.0, Phoenix 1.0, Phoenix 2.0,
NodeMCU 0.9 (ESP-12 Module), NodeMCU 1.0 (ESP-12E Module), Olimex MOD-WIFI-ESP8266(-DEV), SparkFun ESP8266 Thing,
SparkFun ESP8266 Thing Dev, SparkFun Blynk Board, SweetPea ESP-210, LOLIN(WEMOS) D1 R2 & mini, LOLIN(WEMOS) D1 mini
(clone), LOLIN(WEMOS) D1 mini Pro, LOLIN(WEMOS) D1 mini Lite, LOLIN(WeMos) D1 R1, ESPino (ESP-12 Module),
ThaiEasyElec's ESPino, WifInfo, Arduino, 4D Systems gen4 IoD Range, Digistump Oak, WiFiduino, Amperka WiFi Slot, Seeed
Wio Link, ESPectro Core, Schirmilabs Eduino WiFi, ITEAD Sonoff, DOIT ESP-Mx DevKit (ESP8285).

Online Help

More Info

Install Update Remove

Install version 2.7.4. This works. Version 3.0.0 and higher does not work for this project.
Now, back in the Tools menu, select the board you will be using. For this project it will be either a
nodeMCU 1.0 or a WeMos D1R1



Tools Help

Auto Format Ctrl+T
Archive Sketch
Fix Encoding & Reload
Manage Libraries... Ctrl+Shift+|
Serial Monitor Ctrl+Shift+M
Serial Plotter Ctrl+Shift+L
WiFi101 / WiFiNINA Firmware Updater .
Generic ESP8266 Module
ESP Exception Decoder Generic ESP8285 Module
ESP8266 Sketch Data Upload ESPDuino (ESP-13 Module)
Board: *Arduino Nano® ,: o ‘éoa;ds Ma;lager... — Adafruit Feather HUZZAH ESP8266
Processor: "ATmega328P" 3 Arduino AVR Boards AentOne
Port | ESP32 Arduino N o
Get Board Info ESPR266 Boards (2.7.4) ’: ESPresso Lite 1.0
T - | ESPresso Lite 2.0
Programmer: "AVRISP mkll" > = el Phoenix 1.0
Burn Bootloader i el Phoenix 2.0
NodeMCU 0.9 (ESP-12 Module)
NodeMCU 1.0 (ESP-12E Module)
Olimex MOD-WIFI-ESP8266(-DEV)
SparkFun ESP8266 Thing
SparkFun ESP8266 Thing Dev
SparkFun Blynk Board
SweetPea ESP-210
LOLIN(WEMOS) D1 R2 & mini
LOLIN(WEMOS) D1 mini Pro
T ttps://git .com/r merl igui T LOLIN(WEMOS) D1 mini Lite
I eMos DRI |

Here we select the WeMos D1R1. (changing this from the Nano)

Step 2. IDE environment set-up. Load ESP8266 Sketch Data Upload add-in.

We need to load this add-in to allow us to publish (put) HTML pages and other files on the ESP
device. These live in the data folder inside your project folder

https://github.com/esp8266/arduino-esp8266fs-plugin/releases

Go to the URL above and download ESP8266FS-0.5.0.zip

Create a Tools folder inside your Arduino folder. Unzip the contents of the zip file to this Tools
folder. You should end up with this;

— e .
v [« 801445008 () > Users > > Documents > Arduin 5 Tools > ESPA266FS 5 tool v o

. ~

5| Documents QA Name Date modified Type Size

W ESE_REE Cantes | ] espaatbfs.jar 6/12/2021 9:27 PM JAR File 7KB

And a new menu option will appear under Tools...



VNG | TS e

Tools Help

Auto Format Ctrl+T
Archive Sketch

Fix Encoding & Reload

Manage Libraries... Ctrl+Shift+|
Serial Monitor Ctrl+Shift+M
Serial Plotter Ctrl+Shift+L

WiFi101 / WiFiNINA Firmware Updater

ESP Exception Decoder

ESP8266 Sketch Data Upload

Board: "WeMos D1 R1" >
Upload Speed: "921600" >

If you invoke that menu option, the IDE will upload the contents of the data folder to the board.

Ok so that’s the IDE environment set up for general ESP8266 use, now we need to add some libraries
to the Arduino/Libraries folder for this specific project.

Step 3. Download libraries and manually instal.
We need to download these libraries from Github;

https://github.com/me-no-dev/ESPAsyncTCP

(3 Clone ®

HTTPS GitHub CL

https://github.com/me-no-dev/ESPAsyncTcP.¢ | (O

Use Git or checkout with SVN using the web URL.

&) Open with GitHub Desktop

[?) Download ZIP

Click on code, and then download zip. It will go to your downloads folder.

Go into downloads, find the zip, open it and drag the content folder “ESPAsyncTCP” to
Arduino/libraries.

If the folder name ends with “-master”, then rename it to remove “-master” from the end.

i.e. from downloads



This PC > TI80144500E (C:) » Users > noob > Downloads »

A

2 Name Date modified Type Size
¢ ArduinoJson-5.13.5 6/12/2021 8:56 PM Compressed (zipp...
‘ ArduinoJson-6.x 6/12/2021 8:50 PM Compressed (zipp...
¢ ESP_DCC_Controller-main 6/12/2021 8:20 PM Compressed (zipp...
' ESP8266FS-0.5.0 6/12/2021 9:27 PM Compressed (zipp...

ESPAsyncTCP-master 6/12/2021 9:01 PM Compressed (zipp...

Open the .zip for ESPAsyncTCP-master, and drag ESPAsyncTCP-master folder from inside this to
Arduino/Libraries

his PC > TI80144500E (C:) > Users > noob > Documents > Arduino » libraries »

~

Name Date modified Type Size
Adafruit_INA219 6/12/2021 11:07 PM File folder
ArduinoJson-5.13.5 6 File folder
ESPAsyncTCP 6 File folder
NewLiquidCrystal 6 File folder
WebSockets 6/12/2021 8:59 PM File folder

Note: Arduino/libraries cannot use the .zip version, you need to unzip (drag) the desired folder over.
We also need

https://github.com/fmalpartida/New-LiquidCrystal

Download the zip then drag its content to Arduino/libraries and remove -master ending.

And finally, we need ArduinoJson-5.13.5.zip from the link below

https://www.arduinolibraries.info/libraries/arduino-json

download and then drag the zip contents to Arduino/libraries

Step 4. Instal a couple more libraries using Arduino Library Manager.

We need two more libraries, and these come from the Arduino Library Manager which holds a
selection of built-in libraries. Go to Tools... Manage Libraries...

Tools Help
Auto Format Ctrl+T
Archive Sketch
! Fix Encoding & Reload
Manage Libraries... Ctrl+Shift+|



@ Library Manager

Type Al v | Topic Al v | [INA219

[ Adafruit INA219

by Adafruit Version 1.0.3 INSTALLED
INA219 Current Sensor INA21S Current Sensor
More info

Select version Insta

Use version 1.0.3 of Adafruit INA219. This works.

And also

@ Library Manager

Type Al v | Topic Al v | |websockets

| WebSockets
by Markus Sattler Version 2.1.0 INSTALLED

WebSockets for Arduino (Server + Client) use 2.x.x for ESP and 1.3 for AVR
More info

Select version Insta

Use version 2.1.0 of WebSockets from Markus Sattler, this is tested and working. | have not tested
later versions.

OK so that’s all the libraries (aka references) that the IDE needs to compile this project.

Step 5. Download the ESP_DCC_Controller project from GitHub and open in IDE.

Go to GitHub and download
https://github.com/computski/ESP DCC controller

Click on the green “Code” button, and download the zip. Then open the zip file and move its
contents to the Arduino folder. Rename the folder to remove the “-main” ending on the folder
name. You should end up with a folder ESP_DCC_controller in your Arduino folder. It will contain an
.INO file, various .H and .CPP files and a data folder.

> ThisPC > Documents > Arduino » ESP_DCC_Controller

o Name Date modified
@) WiThrottle.h 1/12/2021 10:45 PM
&*+ WiThrottle.cpp 1/12/2021 9:50 PM

Double click on the .INO file to open the project in the Arduino IDE.

Before we hit compile, we need to configure to your requirements....



Step 6. Set your requirements in Global.h

This project can support the nodeMCU or WeMos D1R1 and it also can support a number of
different power board (motor shield) options, plus it can support devices on an 12C bus such as a
current monitor, LCD display and keypad. And finally it can also support a jogwheel (rotary
encoder). The most basic build you can do is a WeMos D1R1 and L298 motor shield.

Note the easiest way to disable an option is add a lowercase n in front of its name in the #define
statement.

#define NNODEMCU_OPTION3
#define nBOARD_ESP12_SHIELD
#define WEMOS_D1R1_AND_L298 SHIELD

For example, above NODEMCU_OPTION3 has been disabled with n, the same for
nBOARD_ESP12_SHIELD. WEMOS_D1R1_AND_L298 SHIELD is the active option, and this will cause
the compiler to use the configuration for this as listed lower down.

To walk through this config:
#elif defined(WEMOS_D1R1_AND_L298 SHIELD)

/*Wemos D1-R1 stacked with L298 shield, note that the D1-R2 is a newer model with different pinouts*/
/*Cut the BRAKE jumpers on the L298 shield. These are not required and we don't want them driven by the 12C
pins as it will corrupt the DCC signal.

The board has an Arduino form factor, the pins are as follows

DO GPIO3 RX

D1GPIO1 TX

D2 GPIO16 heartbeat and jogwheel pushbutton (active hi)

D3 GPIO5 DCC enable (pwm)

D4 GPIO4 Jogl

D5 GPIO14 DCC signal (dir)

D6 GPIO12 DCCsignal (dir)

D7 GPIO13 DCC enable (pwm)

D8 GPIOO SDA, with 12k pullup

D9 GPIO2 SCL, with 12k pullup

D10 GPIO15 Jog2

the above are notes for humans, lets you know which ESP GPIOs will perform which functions. Note that the
Arduino D1-D10 to GPIO mappings are different to the nodeMCU D1-D10 to GPIO mappings

*/
#define USE_ANALOG_MEASUREMENT
#define ANALOG_SCALING 3.9 //when using A and B in parallel (2.36 to match multimeter RMS)

We will use the AD on the ESP and not an external I2C current monitoring device such as the INA219 disable
this with nUSE_ANALOG_MEASUREMENT if you do wish to use an INA219

#define PIN_HEARTBEAT 16 //and jogwheel pushbutton



#define DCC_PINS \

uint32 dec_info[4] = { PERIPHS_IO_MUX_MTDI_U, FUNC_GPIO12,12,0};\
uint32 enable_info[4] = { PERIPHS_IO_MUX_MTDI_U, FUNC_GPIOS,5,0};\
uint32 dec_infoA[4] = { PERIPHS_I0_MUX_MTDI_U, FUNC_GPIO14, 14,0};\
uint32 enable_infoA[4] = { PERIPHS_IO_MUX_MTDI_U, FUNC_GPI013,13,0};

Defines which pins will drive the DCC signals, we have two channels, running in-phase so we can common
them together. A-channelis dcc_info[] and B-channel is dcc_infoA[]. These are defined as macros and the
backslash is a line-continuation marker.

#define PIN_SCL 2 //12k pullup
#define PIN_SDA 0 //12k pullup
#define PIN_JOG1 4

#define PIN_JOG2 15 //12k pulldown

Define the pins (GP10s) which drive the 12C SCL/SDA and then also the jogwheel inputs 1 and 2
#define KEYPAD_ADDRESS 0x21 //pcf8574
Used for the optional 4 x 4 matrix keypad, which is scanned using a pcf8574 chip

//addr, en,rw,rs,d4,d5,d6,d7,backlight, polarity. we are using this as a 4 bit device

//my display pinout is rs,rw,e,d0-d7. only d<4-7> are used. <210> appears because bits <012> are //mapped
as EN,RW,RS and we need to reorder them per actual order on the hardware, 3 is mapped //to the backlight.
<4-7> appear in that order on the backpack and on the display.

#define BOOTUP_LCD LiquidCrystal_I2C Icd(0x27, 2,1, 0, 4, 5, 6, 7, 3, POSITIVE); //YwRobot backpack

Used to define and configure the 12C backpack that drives the 1602 LCD display (optional), this is soft-
configurable and there are several backpacks available whose pin configurations vary.

#endif

Step 7. Compile and upload to the board.

Now you have configured the board combo you intend using, you can compile the project. If you
don’t intend to use the 4x4 matrix keypad, and LCD, no problem, leave in their definitions as the
software expects to configure them. The system will work fine over WiFi without them.

On the IDE, the tick symbol (verify) is actually “Compile”. Click this and you will see various
messages appear (provided you enabled Verbose compilation) as the system compiles the various
libraries and links it all together. If all works well, and it should if you followed all steps above
exactly, then you should see a success message appear. You are now ready to hit the right-arrow
(upload) button, but before you do this, check you have selected the correct COM port for the board
under the Tools menu.

After a successful upload (use a good quality USB cable) you also need to invoke the Load ESP8266
Sketch Data menu option under Tools. This will put the contents of the data folder onto the device
(all the HTML pages).

You are done. Open the serial monitor, click the reset button and you should see the device boot
and scan for I12C devices. You can now connect to it over Wifi, and its ready to wire up to its power
board (motor shield).



