

Home

 Kits are available for this project from
Talking Electronics for $10.00 plus postage.

Plus you will need:
6pin to 5pin adapter @ $2.50

You will also need:

Chip Programmer - PICkit2 from Modtronix
(MPASM and MPLAB come with PICkit2)

- it includes USB lead but not: 6pin to 5pin adapter.

PIC12F629 Data Sheet (.pdf 4,926KB)

Instruction Set for PIC12F629
blank12F629.asm template

PIC12F629.inc

See more projects using micros:
Elektor,EPE,Silicon Chip

Notepad2.zip Notepad2.exe

Library of Sub-routines "Cut and Paste"
Library of routines: A-E E-P P-Z

This is a great game to test your skills.

http://www.talkingelectronics.com/te_interactive_index.html
mailto:talking@tpg.com.au?Subject=Buying%20components%20for%20Stroop%20Game&Body=Please%20e-mail%20the%20cost%20of%20components%20for%20the%20Stroop%20Game%20on%20prototype%20PC%20board%20by%20air%20mail%20to%20my%20country:___________________%20%20and%20send%20details%20of%20how%20I%20can%20pay%20for%20it.%20My%20name%20is:________
http://www.modtronix.com/product_info.php?products_id=257

The complete STROOP GAME

The surface-mount resistors are mounted near the IC socket

This project has been adapted from an experiment by John Ridley Stroop, who published his
work in 1935. Basically it is a "trick." It is a trick in that you are required to answer a question at a
"second level of thinking."
In our test we have three tri-coloured LEDs and below each is a push-button.
When a LED illuminates, your immediate response is to push the button below the LED.
But this is not the requirement.
The LED will illuminate as one of three colours. Red, Orange or Green.
You are required to push the first button for red, the middle button for orange and the third button
for green.
In other words you have to divorce yourself from the urge to push the closest push-button and
work on the colour-requirement.
Obviously you will become more-adept at this over a period of time but the most important results
will come from the first few attempts.
That's why it will be interesting to have your friends take a test.
The "Stroop effect" has been used to investigate the psychological capacities of a person. In fact
it introduces capabilities that have never been investigated before. Although I don't believe in
anything to do with psychology, this test is considered to measure selective attention, cognitive
flexibility and processing speed. About the only word I understand is "processing speed" and
that's how our game works. It runs for 20 seconds and gives a score on the 7-segment display.
You are required to get as many matches as possible in 20 seconds.
The game comes on by displaying the letters "S-t-r-o-o-P" on the 7-segment display and then sits
ready for your first try.
The single digit display can actually display up to 99 as it flashes the tens digit first and then the
units. It repeats this three times and turns off, ready for the second game. Push any button to
start.

The CIRCUIT
The circuit consists of three push-buttons, three tri-coloured LEDs and a 7-segment display made
from individual LEDs. All the "timing," outputting and switch-detection is done in the PIC16F628
microcontroller.
The board contains 5 pins for In-Circuit Programming so the program can be changed and
modified at any time.
The resistor values for the LEDs have been chosen to get the maximum brightness, using the
25mA available from each output.
The 7-segment display is made up of 14 individual LEDs, with two LEDs in series for each

segment. This gives a voltage drop of approx 3.4v and a 22R current-limit resistor is needed.
RB7 is used for the switch inputs and this is also used as the data line when programming. To
allow the data to enter the chip while programming, a 2k2 resistor has been added as the 100n
upsets the data line if it is connected directly to the programming pin.
The resistor values for the switches have been chosen to separate the timing for each switch and
make it easy to recognise in the program.

STROOP GAME CIRCUIT
The 7-segment display actually has 2 yellow LEDs in series for each segment

CONSTRUCTION
You can build the circuit on any type of Proto board or design your own PC board.
Use 3 - AAA cells and not button cells as button cells do not have low enough impedance to keep
the voltage high when all the LEDs are illuminated and the chip hic-cups and flashes the display.

The PROGRAM
The program has been kept simple to make it easy to understand. Very few Boolean expressions
have been used as they take a lot of understanding and "working out" as to the the outcome of
the instruction.
We note that a simpler program was written in "C" and it failed to compile into the 1024 memory
locations, so I don't know how the inefficiency of higher-level programming would relate to this
project.
In any case, we have used the 35 instructions that come with the chip and this makes fault-finding
very easy as you know the fault lies in the code you have generated.
As long as you only introduce a small amount of code at a time, you will be able to gradually get a
program up-and-running.

The interesting feature of the program is the overall timing. The micro is counting in the
background via timer1 and this consists of two files (registers) capable of counting to 65,536. A
prescaler has been added to increase the count to 524,288. This is about half a second.
When the timer overflows, the program-execution is interrupted and the micro goes to location 4
(called the Interrupt location where it finds an instruction to go to a sub-routine called: "isr." At
isr, another file is decremented (_20Secs) thirty-nine times and this produces the 20 seconds
duration for each game.
(Point to remember: Timer0 does not produce a long delay, so Timer1 has to be used).

The buttons are detected by charging the 100n and waiting 20mS to see if the capacitor has
discharged. We know the cap will discharge in less than 8mS if a button is pushed.
The program now knows if a button is pushed or not.
It makes a second pass, if a button is pushed, to work out which button has been pressed.
The first button will discharge the cap in less than 2mS, the second button will discharge the cap
in less than 4mS and the third button will discharge the cap in less than 8mS.
The program now performs a 1mS loop, looking for a LOW on the detecting pin.
It will exit with a value of 1-8.
The program now decrements the count file and and if it is zero after one or two decrements,
button 1 has been pressed. It continues with decrements until it finds the button.

RANDOM NUMBER
The most difficult thing to produce on a computer is a random number.
You can combine and XOR various files or use a table. but nothing generates a truly random
result.
We have used the "waiting time" when a player waits to provide an answer and this generates a
new random number, while the program is actually using a previously generated number for the
play in progress. That's why the random number has to be generated in a sub-routine called
"Create," and this number is passed to the Random Number file for use in the next try.

The program contains a number of very important subroutines that you will be able to "cut and
paste" for projects in the future.

MORE
For more details on modifying the program and burning the PIC chip, see Talking Electronics
website and click on Elektor,EPE,Silicon Chip in the index.
You can find details of: PICkit-2 and Adapter connected for In-Circuit Programming at this link.

Here is the file you will need for "burning" your chip and/or modifying the program. It comes as
.asm, .txt and .hex for using as a file to modify, or to read, or to burn a new chip:
Stroop.asm
Stroop.txt
Stroop.hex
The kit comes with a pre-programmed PIC chip, see parts list below.

;**
;Started 18/6/2009
;STROOP GAME - Press button according to the colour of the LED
;
;Port A drives 3 tri-coloured LEDs
;Port B drives 7 segment display and keys
;**

 list P = 16F628 ;microcontroller
 include ;registers for F628

 __Config _cp_off & _lvp_off & _pwrte_on
 & _wdt_off & _intRC_osc_noclkout & _mclre_off

;code protection - off
;low-voltage programming - off

http://www.talkingelectronics.com./

;power-up timer - on
;watchdog timer - off
;use internal RC for 4MHz - all pins for in-out

;**
; variables - names and files
;**

 ;Files for F628 start at 20h

temp1 equ 20h ;for delay
temp2 equ 21h ;for delay
count equ 22h ;counts loops for switch
Random equ 23h ;random number file
units equ 24h ;
tens equ 25h ;
Sw_Flag equ 26h ;
_20Secs equ 27h ;file for counting up to 20 seconds
loops equ 28h ;loops for number display
Produce equ 29h ;produce random number
temp3 equ 2Ah ;for 500mS delay

;**
;Equates
;**
status equ 0x03
cmcon equ 0x1F
rp1 equ 0x06
rp0 equ 0x05
portA equ 0x05
portB equ 0x06

z equ 0x02

;**
;Beginning of program
;**

Start org 0x00 ;program starts at location 000
 goto Stroop ;goto Stroop
 nop
 nop ;NOPs to get past reset vector address
 org 4
 goto isr

SetUp bsf status,rp0
 movlw b'00000000' ;Make RA output
 movwf 05h ;trisA
 clrf 06h ;trisB Make all RB output
 movlw b'10000000';

 movwf OPTION_REG ; x000 0000 x=1 = weak pull-ups
disabled
 bcf status,rp0 ;select programming area - bank0
 movlw b'00000000' ;6,7=0 disables all interrupts
 movwf INTCON ;until we want timing to commence
 clrf Sw_Flag
 movlw 07h ;turn comparators off
 movwf cmcon
 clrf portA
 clrf portB
 clrf units
 clrf tens
 clrf Random ;random will be 1-9
 movlw .39
 movwf _20Secs
 goto Main

;*************************************
;* Tables *
;*************************************

table1 addwf PCL,F ;02h,1
 nop ;display random LED colour
 retlw b'00000001' ; Led A - red
 retlw b'00000011' ; Led A - orange
 retlw b'00000010' ; Led A - green
 retlw b'00000100' ; Led B - red
 retlw b'00001100' ; Led B - orange
 retlw b'00001000' ; Led B - green
 retlw b'01000000' ; Led C - red
 retlw b'11000000' ; Led C - orange
 retlw b'10000000' ; Led C - green

table2 addwf PCL,F ;02h,1 add W to program counter
 retlw b'00111111' ; "0" -|F|E|D|C|B|A
 retlw b'00000110' ; "1" -|-|-|-|C|B|-
 retlw b'01011011' ; "2" G|-|E|D|-|B|A
 retlw b'01001111' ; "3" G|-|-|D|C|B|A
 retlw b'01100110' ; "4" G|F|-|-|C|B|-
 retlw b'01101101' ; "5" G|F|-|D|C|-|A
 retlw b'01111101' ; "6" G|F|E|D|C|-|A
 retlw b'00000111' ; "7" -|-|-|-|C|B|A
 retlw b'01111111' ; "8" G|F|E|D|C|B|A
 retlw b'01101111' ; "9" G|F|-|D|C|B|A

;************************************
;* Sub routines *
;************************************

Attract ;flash all red, orange green then random LED

 movlw b'01000101' ; all red
 movwf portA
 call _250mS
 movlw b'11001111' ; all orange

 movwf portA
 call _250mS
 movlw b'10001010' ; all green
 movwf portA
 call _250mS
 clrf portA
 call _250mS
 call _250mS
 retlw 00

 ;produce random number

Create incf Produce,f
 movlw .10 ;put ten into w
 xorwf Produce,0 ;compare Random file with ten
 btfss status,2 ;zero flag in status. Set if
Random = ten
 goto $+3
 clrf Produce
 incf Produce,f
 retlw 00

 ;Delays

_1mS nop
 decfsz temp1,f
 goto _1mS
 retlw 00

_10mS movlw 0Ah
 movwf temp2
_b nop
 decfsz temp1,f
 goto _b
 decfsz temp2,f
 goto _b
 retlw 00

_100mS movlw .100
 movwf temp2
_c nop
 decfsz temp1,f
 goto _c
 decfsz temp2,f
 goto _c
 retlw 00

_250mS movlw .240
 movwf temp2
_d nop
 decfsz temp1,f
 goto _d
 decfsz temp2,f
 goto _d

 retlw 00

_500mS movlw 02
 movwf temp3
 call _250mS
 decfsz temp3,f
 goto $-2
 retlw 00

_3Sec movlw .12
 movwf temp3
 call _250mS
 decfsz temp3,f
 goto $-2
 retlw 00

;interrupt service routine

isr nop
 bsf status,rp0 ;Bank 1
 bsf PIE1,0 ;,0 1=enables TMR1 interrupt
 bcf status,rp0 ;bank 0
 bcf PIR1,0 ;clear TMR1 overflow flag
 bsf INTCON,7 ;This instruction is needed
HERE!!!
 bsf INTCON,6 ;1=enable all peripheral
interrupts
 decfsz _20Secs,f ;creates 20Sec delay for each
game.
 retfie

 bcf PIE1,0 ;,0 0=disables TMR1 interrupt
 bcf INTCON,6 ;0=disable all peripheral
interrupts

 decf tens,f
 incf tens,f
 movlw .10
 subwf units,f
 btfsc status,0 ;test carry bit for borrow
 goto $-4
 movlw .10
 addwf units,f

 movlw 03
 movwf loops

 movf tens,w
 btfsc status,z
 goto $+.18 ;If 0-9, display single digit
 call table2
 movwf portB
 call _500mS
 call _250mS
 clrf portB

 call _250mS
 movf units,w
 call table2
 movwf portB
 call _500mS
 call _250mS
 clrf portB
 call _500mS
 call _500mS
 decfsz loops,f
 goto $-.18
 goto SetUp

 movf units,w
 call table2
 movwf portB
 call _3Sec
 goto SetUp

 ; show Stroop

Stroop bsf status,rp0
 clrf 06h ;trisB Make all RB output
 movlw b'10000000';
 movwf OPTION_REG ; x000 0000 x=1= weak pull-ups
disabled
 bcf status,rp0 ;select programming area - bank0
 movlw 07h ;turn comparators off
 movwf cmcon
 clrf portA

 movlw b'01101101' ; "S"
 movwf portB
 call _500mS
 clrf portB
 call _250mS
 movlw b'01111000' ; "t"
 movwf portB
 call _500mS
 clrf portB
 call _250mS
 movlw b'01010000' ; "r"
 movwf portB
 call _500mS
 clrf portB
 call _250mS
 movlw b'01011100' ; "o"
 movwf portB
 call _500mS
 clrf portB
 call _250mS
 movlw b'01011100' ; "o"
 movwf portB
 call _500mS
 clrf portB

 call _250mS
 movlw b'01110011' ; "P"
 movwf portB
 call _500mS
 clrf portB
 goto SetUp

Sw clrf Sw_Flag
 bsf status,rp0
 bcf 06h,7 ;trisB Make bit 7 output
 bcf status,rp0
 bsf portB,7 ;make bit 7 HIGH
 call _1mS ;create delay to charge 100n
 bsf status,rp0
 bsf 06h,7 ;trisB Make bit 7 input
 bcf status,rp0
 call _10mS
 call _10mS
 btfsc 06h,7 ;if HIGH, button not pushed
 retlw 00
 clrf count
 bsf status,rp0
 bcf 06h,7 ;trisB Make bit 7 output
 bcf status,rp0
 bsf portB,7 ;make bit 7 HIGH
 call _1mS ;create delay to charge 100n
 bsf status,rp0
 bsf 06h,7 ;trisB Make bit 7 input
 bcf status,rp0
SwA call _1mS
 call _1mS
 incf count,f
 btfsc 06h,7 ;is input HIGH?
 goto SwA ;count exits with 1-8
 bsf Sw_Flag,0 ;button has been pushed
 decfsz count,f
 goto $+3
 bsf Sw_Flag,1
 retlw 00
 decfsz count,f
 goto $+3
 bsf Sw_Flag,1
 retlw 00
 decfsz count,f
 goto $+3
 bsf Sw_Flag,2
 retlw 00
 decfsz count,f
 goto $+3
 bsf Sw_Flag,2
 retlw 00
 decfsz count,f
 goto $+3
 bsf Sw_Flag,2
 retlw 00

 bsf Sw_Flag,3
 retlw 00

 ;switch released

Sw_Rel clrf Sw_Flag
 bsf status,rp0
 bcf 06h,7 ;trisB Make bit 7 output
 bcf status,rp0
 bsf portB,7 ;make bit 7 HIGH
 call _1mS ;create delay to charge 100n
 bsf status,rp0
 bsf 06h,7 ;trisB Make bit 7 input
 bcf status,rp0
 call _10mS
 call _10mS
 btfsc 06h,7 ;if HIGH, button not pushed
 retlw 00
 bsf Sw_Flag,0
 retlw 00

;*************************************
;* Main *
;*************************************

 ;Stroop comes on "blank" looking for
button-push
Main call Create
 call Sw
 btfss Sw_Flag,0
 goto $-3 ;no
 ;button pressed and Random Number generated

 ;Stroop goes into ATTRACT mode then stops on
Random LED

 call Attract

 ;Display Random LED colour, waiting for sw
press

;**
;* Start Timer1 to count 20 seconds in the background *
;**

 bsf status,rp0 ;Bank 1
 movlw b'10000000' ;
 movwf OPTION_REG ; x000 0000 x=1= weak pull-ups
disabled
 bcf status,rp0 ;bank 0

 movlw b'11000000' ;b'11000000'
 movwf INTCON ;,0 1=RB port change interrupt

flag
 ;,1 1=RB0 interrupt occurred
 ;bcf INTCON,2 ;1=TMR0 overflowed. Clear overflow
flag
 ;bcf INTCON,3 ;1=enable RB port change interrupt
 ;bcf INTCON,4 ;1=enable RB external interrupt
 ;bsf INTCON,5 ;1=enable TMR0 overflow
(interrupt)
 ;bcf INTCON,6 ;1=enable all peripheral
interrupts
 ;bsf INTCON,7 ;1=enable all unmasked interrupts

 movlw b'00110101' ;b'00110001'
 movwf T1CON ;,7 not used
 ;,6 0=Timer1 is ON
 ;,5,4 11=8 prescale (max) 01=1:2
 ;,3 bit ignored
 ;,2 This MUST BE SET!!!!!!
 ;,1 0=int clock
 ;,0 1=enable timer1

 bsf status,rp0 ;Bank 1 (Must use Bank1)
 bsf PIE1,0 ;,0 1=enables TMR1 interrupt
 bcf status,rp0 ;bank 0
 bcf PIR1,0 ;clear TMR1 overflow flag

 clrf TMR1L ;clear the Timer1 low register
 clrf TMR1H ;clear the Timer1 high register
 ;Timer0 is not used
 ; will go to isr when overflow in
TMR1
 ;0.52 sec when prescaler=1:8
524,288uS

 bsf status,rp0 ;Bank 1 (Must use Bank1)
 bsf PIE1,0 ;,0 1=enables TMR1 interrupt
 bcf status,rp0 ;bank 0

 ;game has started with random LED

Main2 movf Produce,w
 movwf Random
 call table1
 movwf portA ;show random number
 ;program gets to here after 1
press

 call Create
 call Sw
 btfss Sw_Flag,0 ;has button been pressed?
 goto $-3 ;no
 ;button pressed

 movlw 01
 xorwf Random,0 ;yes
 btfss status,z ;test zero bit for compare

 goto $+5
 btfss Sw_Flag,1 ;random=1 Is sw = button1
 goto release
 incf units,f
 goto release

 movlw 02
 xorwf Random,0 ;yes
 btfss status,z ;test zero bit for compare
 goto $+5
 btfss Sw_Flag,2 ;random=2 Is sw = button2
 goto release
 incf units,f
 goto release

 movlw 03
 xorwf Random,0 ;yes
 btfss status,z ;test zero bit for compare
 goto $+5
 btfss Sw_Flag,3 ;random=3 Is sw = button3
 goto release
 incf units,f
 goto release

 movlw 04
 xorwf Random,0 ;yes
 btfss status,z ;test zero bit for compare
 goto $+5
 btfss Sw_Flag,1 ;random=4 Is sw = button1
 goto release
 incf units,f
 goto release

 movlw 05
 xorwf Random,0 ;yes
 btfss status,z ;test zero bit for compare
 goto $+5
 btfss Sw_Flag,2 ;random=5 Is sw = button2
 goto release
 incf units,f
 goto release

 movlw 06
 xorwf Random,0 ;yes
 btfss status,z ;test zero bit for compare
 goto $+5
 btfss Sw_Flag,3 ;random=6 Is sw = button3
 goto release
 incf units,f
 goto release

 movlw 07
 xorwf Random,0 ;yes
 btfss status,z ;test zero bit for compare
 goto $+5
 btfss Sw_Flag,1 ;random=7 Is sw = button1

 goto release
 incf units,f
 goto release

 movlw 08
 xorwf Random,0 ;yes
 btfss status,z ;test zero bit for compare
 goto $+5
 btfss Sw_Flag,2 ;random=8 Is sw = button2
 goto release
 incf units,f
 goto release

 incf units,f
 goto release

release clrf portA
 call _500mS
 goto Main2

 End

THE GAME
The game is played by switching the project on and seeing which colour is illuminated.
Press the first button if the colour is RED, the second button if the colour is Orange and the third
switch if the the colour is GREEN.
The aim is to get as many correct in 20 seconds.
The score appears on the 7-segment display. The display flashes the tens digit and then the
units. It then blanks for 2 seconds and repeats the number. It does this 3 times then turns off.

Stroop
Parts List

Cost: au$25.00 plus $7 postage
Kits are available

7 - 22R SM resistor
6 - 82R SM resistor
1 - 2k2 SM resistor
1 - 22k SM resistor
1 - 47k SM resistor
1 - 100k SM resistor

2 - 100n SM capacitors

14 - Orange SM LEDs
3 - tri-coloured LEDs

mailto:talking@tpg.com.au?Subject=Buying%20components%20for%20Stroop%20Game&Body=Please%20e-mail%20the%20cost%20of%20components%20for%20the%20Stroop%20Game%20on%20prototype%20PC%20board%20by%20air%20mail%20to%20my%20country:___________________%20%20and%20send%20details%20of%20how%20I%20can%20pay%20for%20it.%20My%20name%20is:________

1 - SPDT mini slide switch
3 - mini tactile push buttons

20cm fine enamelled wire
30cm - very fine solder
1 - 18 pin IC socket
5 - machine pins
1 - PIC16F628 chip (with Stroop routine)
3 - AAA cells (do not use button cells
 - they produce false operation)
1 - Prototype PC board

JUST THE MICRO:
Pre-programmed PIC16F628 micro
with Stroop routine $15.00 plus
$5.00 post

 18/8/09

