B www.freenove.com D4 support@freenove.com _

Getting Started

Thank you for choosing Freenove products!

Get Support and Offer Input

Freenove provides free, responsive product and technical support, including but not limited to:
Product quality issues

Product use and build issues

Questions regarding the technology employed in our products for learning and education
Your input and opinions are always welcome

We also encourage your ideas and suggestions for new products and product improvements
For any of the above, you may send us an email to:

support@freenove.com

Safety and Precautions

Please follow the following safety precautions when using or storing this product:

® Keep this product out of the reach of children under 6 years old.

® This product should be used only when there is adult supervision present as young children lack
necessary judgment regarding safety and the consequences of product misuse.

® This product contains small parts and parts, which are sharp. This product contains electrically conductive
parts. Use caution with electrically conductive parts near or around power supplies, batteries and
powered (live) circuits.

® When the product is turned ON, activated or tested, some parts will move or rotate. To avoid injuries to
hands and fingers, keep them away from any moving parts!

® |tis possible that an improperly connected or shorted circuit may cause overheating. Should this happen,
immediately disconnect the power supply or remove the batteries and do not touch anything until it
cools down! When everything is safe and cool, review the product tutorial to identify the cause.

® Only operate the product in accordance with the instructions and guidelines of this tutorial, otherwise

parts may be damaged or you could be injured.

Store the product in a cool dry place and avoid exposing the product to direct sunlight.

After use, always turn the power OFF and remove or unplug the batteries before storing.

support@freenove.com [l

http://www.freenove.com/
mailto:support@freenove.com
mailto:support@freenove.com

n < support@freenove.com www.freenove.com [l

Car and Robot for Raspberry Pi

We also have cars and robot kit for Raspberry Pi. If you are interested in them, please visit our website for
details.

http://www.freenove.com/store.html

FNK0043 Freenove 4WD Smart Car Kit for Raspberry Pi

FEATURES CONTROL CLIENT FOR CAR

& (« Android App and gcomputer client (for Windews, Mac or Linux)
= 7 B ») A
=) <
/i \ R v
{ H“} == Y
\ / A

4 Fi

Face Obstacle
2| Tracking Avoidance

= ,\-Mumple
= Clients

Light Clorful
Tracing Light Sets

https://www.youtube.com/watch?v=42v0GZUQjZc

FNKOO50 Freenove Robot Dog Kit for Raspberry Pi

IZA TL;RE S ¢ @%

CRAWLING MOVE BODY @

g

il S a

[TWIST BODY]| Gharge on board Buzzer 1 " incasuremen H

https://www.youtube.com/watch?v=7BmI|Z8 R9d4&t=35s

B support@freenove.com

http://www.freenove.com/
mailto:support@freenove.com
http://www.freenove.com/store.html
https://www.youtube.com/watch?v=4Zv0GZUQjZc
https://www.youtube.com/watch?v=7BmIZ8_R9d4&t=35s

B www.freenove.com D4 support@freenove.com _

About Freenove

Freenove provides open source electronic products and services worldwide.

Freenove is committed to assist customers in their education of robotics, programming and electronic circuits
so that they may transform their creative ideas into prototypes and new and innovative products. To this end,
our services include but are not limited to:

Educational and Entertaining Project Kits for Robots, Smart Cars and Drones

Educational Kits to Learn Robotic Software Systems for Arduino, Raspberry Pi and micro: bit
Electronic Component Assortments, Electronic Modules and Specialized Tools

Product Development and Customization Services

You can find more about Freenove and get our latest news and updates through our website:

http://www.freenove.com

Copyright

All the files, materials and instructional guides provided are released under Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported License. A copy of this license can be found in the folder containing
the Tutorial and software files associated with this product.

This means you can use these resource in your own derived works, in part or completely, but NOT for the
intent or purpose of commercial use.

Freenove brand and logo are copyright of Freenove Creative Technology Co., Ltd. and cannot be used without
written permission.

o
/=<
FREENOVE

FREE YOUR INNOVATION

Raspberry Pi® is a trademark of Raspberry Pi Foundation (https://www.raspberrypi.org/).

support@freenove.com [l

http://www.freenove.com/
mailto:support@freenove.com
http://www.freenove.com/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://www.raspberrypi.org/

support@freenove.com www freenove.com Il
Contents
e gV TS = =T TP I
SATELY AN PrECAULIONS ..ottt ettt ettt ettt ettt ettt ee et enees |
Car and ROt fOr RASPIEITY Pi.......viiiceiceieee ettt I
ADOUT FIEENOVE ...ttt M
(OfoT)Y g To] o) SF OO [
L0707 01 =T 01 PR TTT v
o =] - T T 1
(3] 0 o= 4 Y TP 2
Installing an OPerating SYSLEM ... s ss s s s s s s se e e s s sn s s s s s snanansnsnesnnses 9
COMPONENT LISt. ...ttt ettt ettt ettt ettt ettt sttt 9
OPtIONAl COMPONENESeivieieie ettt ettt ettt ettt s ettt 11
RASPIDEITY PiOS ..ttt h et e ettt et s s bbbttt 13
Getting Started WIth RASPDEITY Pl ..ottt 17
Chapter 0 Preparation..... et resss e sasss e sessses s s e e et sessssssesesesssssassesesssssasssassesestssassssesenssasssasassens 29
LINUX COMIMIANG....tiiiitiiiit ettt s st b et b s s s bbbt s bbb bbbt b st 29
INSTAIT MVITINGPI .ttt b ettt e b bt s et bbbttt ettt e et 32
ODBtaIN the PrOJECT COUE. . ..ottt ettt ettt ettt et neeens 34
PYTNONZ & PYTNONS ...ttt bbbttt ettt 35
Projects Board fOr RASPIEITY Pi.....ci ettt 37
AASSEIMDIY ..ottt ettt ettt 38
L0 0 F=T o 1 =Yt R 1 0 PP 41
PIOJECT 1.1 BIINK..oooeieeieieccee ettt ettt ettt ettt 41
104 0 F=T o1 (< 22 o1 Lo 111V g Ve | T | o) PP 56
Project 2.1 FIOWING Water LIGNTot 56
Chapter 3 BULLONS & LEDS ... sssesesesesessssss s s s ssssssssssesesssessssssssssssssasasssssssssssssssssssssssssssassssssnansasnns 62
Project 3.1 Push BUtton SWILCh & LED ..o 62
Chapter 4 ANAIOG & PWIM.... s ssssesssesessssss s ssssssssssssesssssessssssssssssssasssssssssssssssssssssssssssssassssssnsnsnsenes 69
Project 4.1 Breathing LED......... ettt 69
Chapter 5 RGB LED......cccrrsresesesesesesssessssssssssssssssesssssessssssssssssssassssssssssasssssssasssssssssssassssssnsssssssssasssssssssssasassssnsssnsenns 77
Project 5.1 RAINDOWLED...........c.oiiiiiice ettt 78
08 T=T o =T g SN =0 7.2 Y 85
Project 6.1 DOOIDEIL ...ttt bbbt 85
PrOJECE 5.2 AlBITON ... ettt ettt ettt s sttt h et sttt b et b ettt e et e e 93
(IMportant) Chapter 7 ADC.... s s s s e e e e e e 101
Project 7.1 Read the Voltage Of POLENTIOMETETcooiiiiiiiiieieee e 101
PrOJECE 7.2 SOTL LIGNT. ..ottt ettt ettt 114
Project 7.3 COlOrTUI LIGNT ..ottt ettt 120
Chapter 8 PhotoreSiStor & LED ... ssssssss s s ssssssssssssssssssssssessssssssssssssssssssssaseses 126
ProJECE 8.1 NIGNTLAMID .ottt ettt ettt ettt 126
(04 T T oY L= g T I T o' T3 o TP 133
ProjeCt 9.1 TREIMIOMELET ..ottt ettt ettt 133

B support@freenove.com

http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com support@freenove.com

(04 g =T o1 (= it I Lo Y3 1 PP 141
PrOJECE 10.1 JOYSTICK ...ttt ettt ettt ettt et enans 141
Chapter 11 MOTOI & DIIVENcreeesescssessssssssssssssesesesessssssssssssssssssasssssesssssssssssssssssssssasassssssssssssssasssssssssasassnes 148
Project 11.1 Control a DC Motor with @ POteNTIOMELEro 148
Chapter 12 Relay & LED ...ttt et sesss s s et st sas e s se st sesssas e e sesssessssnassesssssssans 159
Project 12.1 RElAY & LEDcooioiiiieeeeeeeeeee ettt 159
08 T T o =t IR T T =Y Yo PP 167
PrOJECE 13,1 SWEEBPD ...ttt ettt et e et s ettt h e h s et ek e bR et etk ettt n et 167
PrOJECE 13.2 KNOD ..ottt ettt ettt 176
(04 g F=1 o] (= gt I 0035 1T o 011 gl 1Y Lo] o 1 o TPV 182
Project 14.1 SEEPPET IMIOTO ...ttt ettt ettt ettt 182
Chapter 15 LEDPIXEI ...t sssssss st sese e ss s s ssssasssssesssssssssess s s s ssssssssssssese st se s s s s ssssssnassnes 194
PrOJECE 15.1 LEDDIXEL.eciiiiiiiii ettt ettt ettt 194
Project 15.2 RAINDOW LIGNT ..ottt 204
Chapter 16 74HC595 & Bar Graph LED ... ssesesssesssesssesessssesessssesssssesssssssessssasessases 212
Project 16.1 FIOWING Water LIGNT.......ociiieice ettt 212
Chapter 17 74HC595 & 4-Digit 7-Segment DiSPlayccoecorerenrrrenesssesesessssesesssesessssssessssssesessssssessssssessnes 222
Project 17.1 4-Digit 7-SegmMENt DISPIAYcvoueeeieeeeeeeeeeeee e 222
Project 17.2 4-Digit 7-SegMENT DISPIAYcviueeeieeeeeee ettt 230
Chapter 18 74HCS595 & LED IMAEIX c.cococcececcrrrreresesesesesesesessesssssssasssesesesssssssssssssssssssssasssssesssssssssssssssssasassses 242
ProjECE 18.1 LED MALIIX c.oeeiiceeeeeeeee ettt ettt ettt n et enans 242
Chapter 19 LCDLB02..........cooerrerererereseseesssessssssasssssesesessssssssssssssssssssasssssesesssssssssssssssssasssssssessassssssssssssssasassnes 254
Project 19.1 12C LCDLB0Z ..ottt 254
Chapter 20 Hygrothermograph DHTLL ... sesss s sessssssesesesssesssssassssssssssans 266
Project 20.1 HygrothermMoOgraph.......cooovvivicceeeeee et 266
Chapter 21 MatrixX KEYPAU ...t sesas e sesssasseseesssesassssssesssssssassssesesssesssassesesenssesassnsssensssssans 274
Project 21 MatriX KEYPAAii ittt ettt 274
Chapter 22 Infrared MOTION SENSOT ...ttt sas s sesssas e e e sesssas e e e s sesassesssenssesssans 284
Project 22.1 PIR Infrared Motion Detector with LED INAIiCatOr........cccooioiiiiiiiiiiiiecce e 284
Chapter 23 UItrasoniC RANGINGoecececvcresrrnrsreresesesesesessesssssssssssssssesesssesessssssssssssssssssssesssssessssssssssssssasssssssssses 292
Project 23.1 UKraSoniC RANGINGcciv ettt ettt 292
Chapter 24 Attitude SENSOr MPUBODSO0 ... sssssssse s ssssssssssssssssssssesssssssssssssssssasassnes 302
Project 24.1 Read an MPUBO50 SENSOr MOAUIE.........ccovoviviiiiiiiieeeeeeeeeeeeee e 302
08 T=T o =T g2 T 2 I 5 PP 311
PrOJECE 251 RFID......iiiiiiiiieee bbbt 311
QAT V= 332

support@freenove.com [l

http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com X support@freenove.com

Preface

Raspberry Pi is a low cost, credit card sized computer that plugs into a computer monitor or TV, and uses a
standard keyboard and mouse. It is an incredibly capable little device that enables people of all ages to explore
computing, and to learn how to program in a variety of computer languages like Scratch and Python. It is
capable of doing everything you would expect from a desktop computer, such as browsing the internet,
playing high-definition video content, creating spreadsheets, performing word -processing, and playing video
games. For more information, you can refer to Raspberry Pi official website. For clarification, this tutorial will

also reference Raspberry Pi as RPi, RPI and RasPi.

In this tutorial, most chapters consist of Components List, Component Knowledge, Circuit, and Code (C
code and Python code). We provide both C and Python code for each project in this tutorial. After completing
this tutorial, you can learn Java by reading Processing.pdf.

This kit contains all the accessory electronic components and modules needed to complete the projects
described in the index. You can also use these components and modules to create projects of your own
design.

Additionally, if you encounter any issues or have questions about this tutorial or the contents of kit, you can
always contact us for free technical support at:

support@freenove.com

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
https://www.raspberrypi.org/
mailto:support@freenove.com

< support@freenove.com www.freenove.com [l

Raspberry P

So far, at this writing, Raspberry Pi has advanced to its fourth generation product offering. Version changes
are accompanied by increases in upgrades in hardware and capabilities.

The Atype and B type versions of the first generation products have been discontinued due to various reasons.
What is most important is that other popular and currently available versions are consistent in the order and
number of pins and their assigned designation of function, making compatibility of peripheral devices greatly
enhanced between versions.

Below are the raspberry pi pictures and model pictures supported by this product. They have 40 pins.
CAD image of Raspberry Pi 4 Model B:

" INEHOZ609LUL |
s| gwiooay | €12

13NY3HL3

©
o
«
o
[
@
a
a
@
©
14
©

@
o
°
2
<~
o
@
a
a
@
©
o

%

’ : (A\ﬂds‘m) 1Sa
JURRSRNRRRRNNRE
T

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com

D4 support@freenove.com

Actual image of Raspberry Pi 3 Model B+:

|

........,....:1'

J1PWR IN

n
T =Avdsia [
-

_‘\illllilllllllll/

CAD image of Raspberry Pi 3 Model B+:

NN

13NY3HLT

&

pberry Pi 3 Model B+
aspberry Pi 2017

(Av1dsia) Isa

Actual image of Raspberry Pi 3 Model B:

WA A\ A

8
=
&
>
2
S
fis

1D: 2ABCS

CAD image of Raspberry Pi 3 Model B:

NN

L3INY3IHLI

o =
)

= .u
3 -

CSI (CAMERA)

Model Bv1.2
y Pi 2015

(AV1dSIQ) ISC
LT €

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Actual image of Raspberry Pi 2 Model B: CAD image of Raspberry Pi 2 Model B:
. - - R

Raspberry Pi 2 Model B
© Raspberry Pi 2014

it i www saspbecrypi.org

Avesia

TTITTITTIIIIIIIL

(AV1ds10) I1ISa
RENRRRNERENNEND

CAD image of Raspberry Pi 1 Model B+:
1

it Jiwww raspbecrypi.org

N
-
>
+
m
°
o
<]
=
o
)
£
@
Q
Q
7]
©
o

<
-
o
3
a
2
E
@
Q
a
@
[\
o
(@]

3 AesTo 3
REEARETERENTEELS

(AV1dS10) I1ISa
RENNRRNERENNEND

L

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Actual image of Raspberry Pi 3 Model A+: CAD image of Raspberry Pi 3 Model A+:

-~z -

CSI (CAMERA)

|

=
<
o
o
s}
=
)
o
2
=
[}
2
aQ
w
©
o

© Raspberry Pi 2018

rypi.org

hitp:/fwaw raspber

(Av1dsia) Isa

‘ BERENRENEREE

1V Hhd
i), L),

3

NN

=
<
-
-

-
s
b4

&
<V
EF’
o
B
=g
gz
>
£3
2%
%m
4
x o

GPIO

AV1ds1a

TITEEEIIIIIIINY

(Av1dsia) ISa

. BERRENNNNENNEND
L L

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

m < support@freenove.com www.freenove.com [l

Actual image of Raspberry Pi Zero W: CAD image of Raspberry Pi Zero W:

B

Raspberry Pi Zero W

(LY PR
GHDTH® *

e
@
N
o
@
a
o
@
T
o

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Hardware interface diagram of RPi 4B:
e

““““““““““

GPIO

Connector Raspberry Pi 4 Model B
© Raspberry Pi 2018

Ethernet
Connector

ETHERNET

Display
Connector

USB
Connector x4

Power
Power
Connector g

CSI (CAMERA)
|

Micro HDMI
Connector x2

Camera

Connector Connector

Hardware interface diagram of RPi 3B+/3B/2B/1B+:
e

GPIO
Raspberry Pi 3 Model Bv1.2
Connector © Raspberry Pi 2015

USB
Connector

Display
Connector

DSI (DISPLAY)

Ethernet
Connector

ETHERNET

Power

(Y¥3UVD) ISD

Connector

HDMI
Connector

Camera

Connector

Connector

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

m < support@freenove.com www.freenove.com [l

Hardware interface diagram of RPi 3A+/A+:

s

CPIO ..

COI’meC‘[OF Raspberry Pi Model A+
© Raspberry Pi 2014

USB
Connector

Display
Connector

DSI (DISPLAY)

(v43Wv0) IS0

Power
Connector

HDMI
Connector

Audio
Connector

Camera

Connector

Hardware interface diagram of RPi Zero/Zero W:

GPIO

Connector
Raspberry Pi Zero W

Camera
Connector

USB Power

Connector

HDMI
Connector

Connector

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

DX support@freenove.com _

B www.freenove.com

Installing an Operating System

The first step is to install an operating system on your RPi so that it can be programmed and function. If you
have installed a system in your RPi, you can start from Chapter O Preparation.

Component List

Required Components

5V/3A Power Adapter. Note: Different versions of
Raspberry Pi have different power requirements
(please check the power requirements for yours
on the chart in the following page.)

Any Raspberry Pi

& Rosgbercy Pi 4 Model B
©Raspberry Pi 2016

na M 1904

Trxcom® |-
CNUS

I TRIGO926HENL |

?
3 Chi.

Micro SD Card (TF Card) x1, Card Reader x1

SAMSUNG 0'’zgsn

D asoronw

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Power requirements of various versions of Raspberry Pi are shown in following table:

Product Recommended | Maximum total USB Typical bare-board
PSU current peripheral current draw active current
capacity consumption

Raspberry Pi Model A 700mA 500mA 200mA

Raspberry Pi Model B 1.2A 500mA 500mA

Raspberry Pi Model A+ 700mA 500mA 180mA

Raspberry Pi Model B+ 1.8A 600mMA/1.2A (switchable) 330mA

Raspberry Pi 2 Model B 1.8A 600mA/1.2A (switchable) 350mA

Raspberry Pi 3 Model B 2.5A 1.2A 400mA

Raspberry Pi 3 Model A+ 2.5A Limited by PSU, board, and 350mA

connector ratings only.

Raspberry Pi 3 Model B+ = 2.5A 1.2A 500mA

Raspberry Pi 4 Model B 3.0A 1.2A 600mA

Raspberry Pi Zero W 1.2A Limited by PSU, board, and 150mA

connector ratings only.

Raspberry Pi Zero 1.2A Limited by PSU, board, and 100mA

connector ratings only
For more details, please refer to https.//www.raspberrypi.org/help/fags/#powerRegs

In addition, RPi also needs an Ethernet network cable to connect it to a WAN (Wide Area Network).

All these components are necessary for any of your projects to work. Among them, the power supply of at
least 5V/2.5A, because a lack of a sufficient power supply may lead to many functional issues and even
damage your RPi, we STRONGLY RECOMMEND a 5V/2.5A power supply. We also recommend using an SD
Micro Card with a capacity of 16GB or more (which, functions as the RPI's “hard drive”) and is used to store
the operating system and necessary operational files.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://www.raspberrypi.org/help/faqs/#powerReqs

B www.freenove.com D4 support@freenove.com

Optional Components

Under normal circumstances, there are two ways to login to Raspberry Pi: 1) Using a stand-alone monitor. 2)
Using a remote desktop or laptop computer monitor “sharing” the PC monitor with your RPi.

Required Accessories for Monitor

If you choose to use an independent monitor, mouse and keyboard, you also need the following accessories:
1. A display with a HDMI interface
2. A Mouse and a Keyboard with an USB interface

As to Pi Zero and Pi Zero W, you also need the following accessories:
1. A Mini-HDMI to HDMI Adapter and Cable.

2. A Micro-USB to USB-A Adapter and Cable (Micro USB OTG Cable).
3. A USB HUB.

4. USB to Ethernet Interface or USB Wi-Fi receiver.

For different Raspberry Pi Modules, the optional items may vary slightly but they all aim to convert the
interfaces to Raspberry Pi standards.

. . Pi Zero . . Pi .
Pi Zero Pi A+ Pi3A+ PiB+/2B Pi 4B
W 3B/3B+
Monitor Yes (All)
Mouse Yes (All)
Keyboard Yes (All)
Micro-HDMI to HDMI
Yes No Yes No No No No
Adapter & Cable
Micro-HDMI to HDMI
No Yes
Adapter & Cable
Micro-USB to USB-A
Adapter & Cable
) Yes No Yes No
(Micro USB OTG
Cable)
USB HUB Yes Yes Yes Yes No No
USB to Ethernet = select one from) Internal
optional . .
Interface two or select two Integration Internal Integration
USB Wi-Fi Receiver from two Internal Integration optional

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Required Accessories for Remote Desktop

If you do not have an independent monitor, or if you want to use a remote desktop, you first need to login
to Raspberry Pi through SSH, and then open the VNC or RDP service. This requires the following accessories.

Pi Zero PiZeroW PiA+ Pi 3A+ Pi B+/2B Pi 3B/3B+/4B
Micro-USB to USB-A Yes Yes No
Adapter & Cable
(Micro USB OTG
Cable) NO
USB to Ethernet Yes Yes Yes

interface

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Raspberry Pi OS

Automatically

You can follow the official method to install the system for raspberry pi via visiting link below:
https://projects.raspberrypi.org/en/projects/raspberry - pi-setting-up/2
In this way, the system will be downloaded automatically via the application.

Manually

After installing the Imager Tool in the link above. You can also download the system manually.

Visit https://www.raspberrypi.org/downloads/

Downloads

Raspberry Pi OS (previously called Raspbian) is our official operating system
for all models of the Raspberry Pi.

Use Raspberry Pi Imager for an easy way to install Raspberry Pi OS and other
operating systems to an SD card ready to use with your Raspberry Pi:

e

[F]

aspberry Pi Imager for Windows

Eul

(.

aspberry Pi Imager for mac0S

aspberry Pi Imager for Ubuntu

Eul

Alternatively, use the links below to download OS images which can be manually
copied to an SD card.

Raspberry Pi 05 (previously called
Raspbian)

NOOBS

QOperating System - based on Debian
R

susier

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/2
https://www.raspberrypi.org/downloads/

< support@freenove.com www.freenove.com [l

Raspberry Pi 0S (32-bit) with Raspberry Pi OS (32-bit) with
desktop and recommended desktop
software Image with desktop based an Debian
Image with desktop and recommended Buster
software based on Debian Buster Wersion: May 2020
\ersion: May 2020 Release date: 2020-05-27
Release date: 2020-05; Kernel version: 4.19
Kernel version: 4.18 Size: 1128 MB

ze: 2583 Eelease notes

Release notes
- [® Download Torrent | @ Download ZIP
[Download Torrent | 3 Download ZIP i - S
SHA- b9a5c5321b3145e605b3bcd297cadffc350echlB4488

SHA- fdbdé£5h5hTelfa5e724bdeT47c51055014422920014 236 0afdEfb75a758%0Tbd04
2565: 4d0a19%41c9e73c93dde1

Raspberry Pi 05 (32-bit) Lite

Minimal image based on Debian Buster

Version: May 2020
Release date: 2020-05-27
ernel version: 4.19
ize: 432 MB

Release motes

[® Download Torrent | & Download ZIP

And then the zip file is downloaded.

Write System to Micro SD Card
First, put your Micro SD card into card reader and connect it to USB port of PC.

SAMSUNG 0'zgsn

D asoronw

-

Then open imager tool. Choose system that you just downloaded in Use custom.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

' Raspberry Pi lmager v1.2 — *

Raspberry Pi

Operating System SD Card

CHOOSE 0s CHOOSE SD CARD

' Raspberry Pi Imager v1.2 — x

Operating System X

ST TSmO aassy 1TT1U.'HEE

LibreELEC >
A Kodi Entertainment Center distribution

Ubuntu >
Choose from Ubuntu Core and Server images

Misc utility images
EEFROM recovery, etc.

Erase
Format card as FAT32

Use custom
Select a custom .img from your computer

D = f® ¢

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Choose the SD card. Then click “WRITE”".

'\ Raspberry Pi Imager v1.2 — >

Raspberry Pi

Operating System SD Card

2020-02-13-RASPBIAN-BUSTER-FULL.ZIP CHOOSE SD C...

Enable ssh

If you don't have a separate monitor, after the system is written successfully, create a folder named “ssh”
under generated boot disk of Micro SD Card.

- boot [H2) ssh

Then remove SD card from card reader and insert it into Raspberry Pi.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Getting Started with Raspberry Pi

Monitor desktop

If you do not have a spare monitor, please skip to next section Remote desktop & VNC. If you have a spare

monitor, please follow the steps in this section.

After the system is written successfully, take out Micro SD Card and put it into the SD card slot of RPi. Then
connect your RPi to the monitor through the HDMI port, attach your mouse and keyboard through the USB
ports, attach a network cable to the network port and finally, connect your power supply (making sure that it
meets the specifications required by your RPi Module Version. Your RPi should start (power up). Later, after
setup, you will need to enter your user name and password to login. The default user name: pi; password:

raspberry. After login, you should see the following screen.
] | 3 T oss

Congratulations! You have successfully installed the RASPBERRY Pl OS operating system on your RPi.

Raspberry Pi 4B, 3B+/3B integrates a Wi-Fi adaptor. You can use it to connect to your Wi-Fi. Then you can
use the wireless remote desktop to control your RPi. This will be helpful for the following work. Raspberry Pi
of other models can use wireless remote desktop through accessing an external USB wireless card.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Remote desktop & VNC

If you have logged in Raspberry Pi via display, you can skip to VNC Viewer.

If you don't have a spare display, mouse and keyboard for your RPi, you can use a remote desktop to share
a display, keyboard, and mouse with your PC. Below is how to use:

MAC OS remote desktop and Windows OS remote desktop.

Connect your pi and computer to the router via a network cable.

Network cable Network cable

Raspberry Pi

Computer

MAC OS Remote Desktop

Open the terminal and type following command. If this command doesn’t work, please move to next page.
ssh pi@raspberrypi.local

The password is raspberry by default, case sensitive.

@ Terminal Shell Edit View Window Help

®@ 0 %" freenove — ssh pi@raspberrypi.local — 80x24

Last login: Wed Jul 22 16:44:
[freenove@PandeMacBook-Air ~ ssh pi@raspberrypi.local]
piRraspberrypi.local's passw

You may need to type yes during the process.

@ Terminal Shell Edit View Window Help

® (' ® - freenove — pi@raspberrypi: ~— ssh pi@raspberrypi.local — 80x24

Last login: Wed Jul 22 16:49:43 on ttys000 =]
[freenove@PandeMacBook-Air ~ % ssh pi@raspberrypi.local]
[pi@raspberrypi.local's password:]
Linux raspberrypi 4.19.58-v7+ #1245 SMP Fri Jul 12 17:25:51 BST 2019 armv7l

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.

Last login: Wed Jul 22 09:56:01 2020 from fe80::82d:356d:4027:2fc5%wlan®

SSH is enabled and the default password for the 'pi' user has not been changed.

This is a security risk - please login as the 'pi' user and type 'passwd' to set
a new password.

pi@raspberrypi:~ $ JJ

When you see pi@raspberrypi:~ $, you have logged in Pi successfully. Then you can skip to next section.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com

You can also use the IP address to log in Pi.
Enter router client to inquiry IP address named “raspberry pi”. For example, | have inquired to my RPi IP
address, and it is “192.168.1.131".

Open the terminal and type following command.
ssh pi@192.168.1.131

@ Terminal Shell Edit View Window Help

@® @ freenove — pi@raspberrvoi: ~ — ssh pi@192.168.1.131 — 81x44

[freenove@PandeMacBook-Air ~ %|ssh pi@192.168.1.131 B
The authenticity of host '192.168.1.131 (192.168.1.131)' can't be established.
ECDSA key fingerprint is SHA256:95hc761SxQ/+z9TGG57136senETX60yaAaqds1ENpE4.

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

| Warning: Permanently added '192.168.1.131' (ECDSA) to the list of known hosts.
[pi192.168.1.131's password:

Linux raspberrypi 4.19.58-v7+ #1245 SMP Fri Jul 12 17:25:51 BST 2019 armv71l

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Wed Jul 22 09:56:32 2020 from fe80::82d:356d:4027:2fc5%wlan®

SSH is enabled and the default password for the 'pi' user has not been changed.
This is a security risk — please login as the 'pi' user and type 'passwd' to set
a new password.

[pi@raspberrypi:~ $ sudo raspi-config

Raspberry Pi 3 Model A Plus Rev 1.0

Raspberry Pi Software Configuration Tool (raspi-config)

1 Change User Password Change password for the current user

2 Network Options Configure network settings

3 Boot Options Configure options for start-up

4 Localisation Options Set up language and regional settings to match your
5 Interfacing Options Configure connections to peripherals

6 Overclock Configure overclocking for your Pi

7 Advanced Options Configure advanced settings

8 Update Update this tool to the latest version

9

About raspi-config Information about this configuration tool

<Finish>

<Select>

Then you can skip to VNC Viewer.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Windows OS Remote Desktop

The windows built-in application remote desktop corresponds to the Raspberry Pi xrdp service.
Download the tool software Putty. Its official address: http://www.putty.org/

Or download it here: http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Then use net cable to connect your RPi to the same router with your PC. Then put the system Micro SD Card
prepared before into the slot of the RPi and turn on the power supply. Enter router client to inquiry IP address
named “raspberry pi”. For example, my RPi IP address is “192.168.1.108".

Then open Putty, enter the address, select SSH, and then click "OPEN", as shown below:

B® PUTTY Configuration *
Categony:
B- Sgssion | Basic options for your PuTTY session |
Dk Logging) . .
Stepl: enter &3 Temin Specify the destination you want to connect to Stepz
“‘—-Kﬂﬁbﬂﬂid\ Hast Name (or IP address) Sel SSH
the IP address o —T19218 1 108 elect
- Features Connection type:
- Window (O Raw (O Telnet () Rlogin @ S5H () Serial
.g.ppea!ance Load, save or delete a stored session
- Behawviour
... Translation Saved Sessions
- Selection | |
- Colours "
Default Settings
[=)- Connection ¢ Load
- Data Save
- Prongy
- Telnet Delete
- Rlogin
- S5H StepB'
 Senial Close window on exit: . B . R
(O Mways () MNever (® Only on clean exit Click “OPEN
About Cpen Cancel
There will appear a security warning at first login. Just click “YES".
PuTTY Security Alert X

WARNING - POTENTIAL SECURITY BREACH!

The server's host key does not match the one PuTTY has
cached in the registry. This means that either the

server administrator has changed the host key, or you
have actually connected to another computer pretending
to be the server,

The new rsa2 key fingerprint is:

ssh-rsa 2048 7a:e1:50:ba:dc:01:87: 1 bia5:f9:d2:d41 2:dG:feiab
If you were expecting this change and trust the new key,
hit Yes to update PuTTY's cache and continue connecting.
If you want to carry on connecting but without updating
the cache, hit No.

If you want to abandon the connection completely, hit
Cancel. Hitting Cancel is the OMLY guaranteed safe
choice.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
http://www.putty.org/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Then there will be a login interface. Login as: pi; password: raspberry. When you enter the password, there
will be no display on the screen. This is normal. After the correct input, press “Enter” to confirm.

I PuTTY (inactive) — O >

Then enter the command line of RPi, which means that you have successfully logged in to RPi command line
mode.

; pi@raspberrypi: ~ — O W

Next, install an xrdp service, an open source remote desktop protocol(xrdp) server, for RPi. Type the following
command, then press enter to confirm:
sudo apt-get install xrdp

pi@raspberrypi: ~ — O it

Enter "Y", press key “Enter” to confirm.

After the installation is completed, you can use Windows remote desktop applications to login to your RPi.
Use "WIN+R" or search function, open the remote desktop application "mstsc.exe” under Windows, enter the
IP address of RPi and then click “Connect”.

mailto:support@freenove.com
http://www.freenove.com/

z) Remote Desktop Connection =

| Remote Desktop
1<) Connection

Computer; | W
Username: Mone specified

fou will be asked for credentials when you connect.

= Show Optio... Connect Help

Later, there will be xrdp login screen. Enter the user name and password of RPi (RPi default user name: pi;
password: raspberry) and click “OK”.

Login to =rdp

Module |sesman-Xvnc |

Lsername |pi

password |xammaaml1

Ok | Cancell Help

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Later, you can enter the RPi desktop system.
$ &=

thinclient driv
es

Here, you have successfully used the remote desktop login to RPi.

Raspberry Pi 4B/3B+/3B integrates a Wi-Fi adaptor. You can use it to connect to your Wi-Fi. Then you can
use the wireless remote desktop to control your RPi.
$ &=

thinclient driv
es

Connect WiFi

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

D4 support@freenove.com www freenove.com Il

VNC Viewer & VNC
Type the following command. And select 5 Interfacing Options=>P3 VNC 2>Yes—>OK->Finish. Here Raspberry
Pi may need be restarted, and choose ok. Then open VNC interface.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Then set resolution.
<Back>-> 7 Advanced Options=>A5 Resolution=>1280x720->OK->Finish.
You can also set other resolutions. If you don’t know what to set, you can set it as 1280x720 first.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Then download and install VNC Viewer according to your computer system by click following link:
https://www.realvnc.com/en/connect/download/viewer/

After installation is completed, open VNC Viewer. And click File = New Connection. Then the interface is
shown below.

& raspberry pi - Properties - O X

General QOptions Expert

VNC Server: [192.168.1.117 |

Name: |raspberr_|,r pi| |

Labels

To nest labels, separate names with a forward slash (/)

Enter a label name, or press Down to apply existing labels |

Security

Encryption: Let VMC Server choose V|

[#] Authenticate using single sign-on (550) if possible

!Aulhenlicate using a smartcard or certificate store if
possible

Privacy
Update desktop preview automatically

Enter IP address of your Raspberry Pi and fill in a name. Then click OK.
Then on the VNC Viewer panel, double-click new connection you just created,

BB vNC Viewer - O b4

File View Help

|EnteraVNC Server address or search | ‘gignin... A

raspberry pi

and the following dialog box pops up.

m Authentication X

VNC Server: 192.168.1.117:5900

Username: |pi |

Password: |......... |

Remember password

Catchphrase: Sister logo octopus. Giraffe Gloria time.

Signature: 8b-6b-40-50-f6-9d-8b-f8

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://www.realvnc.com/en/connect/download/viewer/

B www.freenove.com D4 support@freenove.com

Enter username: pi and Password: raspberry. And click OK.
LN |

Here, you have logged in to Raspberry Pi successfully by using VNC Viewer

In addition, your VNC Viewer window may zoom your Raspberry Pi desktop. You can change it. On your
VNC View control panel, click right key. And select Properties->Options label->Scaling. Then set proper
scaling.

I8 raspberry pi - Properties - O *
General Options Expert

General

Picture quality: | Automatic ~
[View-only

Scaling

100% ~

Preserve aspect ratio

Keys
Pass media keys directly to VNC Server
Pass special keys directly to VNC Server

raspbe Connect
Rename F2
Delete
Duplicate Ctrl+D
Properties... Alt+Enter Cancel

Here, you have logged in to Raspberry Pi successfully by using VNC Viewer and operated proper setting.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Raspberry Pi 4B/3B+/3B integrates a Wi-Fi adaptor.If you haven't connected Pi to WiFi, you can connect it to
wirelessly control the robot.
NN |

thinclient_driy.
es

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

Why “Chapter 0"? Because in program code the first number is 0. We choose to follow this rule. In this chapter,

we will do some necessary foundational preparation work: Start your Raspberry Pi and install some necessary
libraries.

Raspberry Pi OS is based on the Linux Operation System. Now we will introduce you to some frequently used
Linux commands and rules.

First, open the Terminal. All commands should be run in Terminal.

> Terminal

When you click the Terminal icon, following interface appears.

File Edit Tabs Help

pi@raspberrypl:

mailto:support@freenove.com
http://www.freenove.com/

Note: The Linux is case sensitive.
First, type “Is” into the Terminal and press the “Enter” key. The result is shown below:

File Edit Tabs Help

plfraspberrypi:

The "Is” command lists information about the files (the current directory by default).

Content between “$" and "pi@raspberrypi:” is the current working path. “~" represents the user directory,
which refers to “/home/pi” here.

pl@raspberrypi:

pl@raspberrypi:
pi@raspberrypi:

Later in this Tutorial, we will often change the working path. Typing commands under the wrong directory
may cause errors and break the execution of further commands.

Many frequently used commands and instructions can be found in the following reference table.

Is Lists information about the FILEs (the current directory by default) and entries
alphabetically.

cd Changes directory

sudo + cmd Executes cmd under root authority

S Under current directory

gcc GNU Compiler Collection

git clone URL Use git tool to clone the contents of specified repository, and URL in the repository address.
There are many commands, which will come later. For more details about commands. You can refer to:
http://www.linux-commands-examples.com

mailto:support@freenove.com
http://www.freenove.com/
http://www.linux-commands-examples.com/

Now, we will introduce several commonly used shortcuts that are very useful in Terminal.

1. Up and Down Arrow Keys: Pressing “1” (the Up key) will go backwards through the command history and
pressing “V" (the Down Key) will go forwards through the command history.

2. Tab Key: The Tab key can automatically complete the command/path you want to type. When there is only
one eligible option, the command/path will be completely typed as soon as you press the Tab key even you
only type one character of the command/path.

As shown below, under the '~ directory, you enter the Documents directory with the “cd” command. After
typing “cd D", pressing the Tab key (there is no response), pressing the Tab key again then all the files/folders
that begin with “D” will be listed. Continue to type the letters "oc" and then pressing the Tab key, the
“Documents” is typed automatically.

mailto:support@freenove.com
http://www.freenove.com/

WiringPi is a GPIO access library written in C language for the BCM2835/BMC2836/BMC2837 used in the
Raspberry Pi. It is released under the GNU LGPLv3 license and is usable from C, C++ and many other
languages with suitable wrappers (See below). It is designed to be user friendly for those people who have
had prior experience with the Arduino “wiring” system. (for more details, please refer to http://wiringpi.com/)

To install the WiringPi library, please open the Terminal and then follow the steps and commands below.
Note: For a command containing many lines, execute them one line at a time.

Enter the following command in the terminal to install WiringPi:

sudo apt—-get update

git clone https://github.com/WiringPi/WiringPi

cd WiringPi

./build

And then the installation will complete quickly as shown below.

Vel

& O ﬁ_ > K9

File Edit Tabs Help

pi@raspberrypi: git clone https://github.com/WiringPi/WiringP1i
into 'Wiri

pifraspberrypi: cd WiringPi1

pli@raspberrypi: ./build

ALl Done.

MOTE: To compile programs with wirin
-lwir Pi

mailto:support@freenove.com
http://www.freenove.com/
http://wiringpi.com/
https://github.com/WiringPi/WiringPi

Run the gpio command to check the installation:
gpio -v
That should give you some confidence that the installation was a success.

¥ NO WARRANTY

mailto:support@freenove.com
http://www.freenove.com/

M support@freenove.com www.freenove.com [l

Obtain the Project Code

After the above installation is completed, you can visit our official website (http://www.freenove.com) or our
GitHub resources at (https://github.com/freenove) to download the latest available project code. We provide
both C language and Python language code for each project to allow ease of use for those who are skilled
in either language.

This is the method for obtaining the code:
In the pi directory of the RPi terminal, enter the following command.

(There is no need for a password. If you get some errors, please check your commands.)

After the download is completed, a new folder "Freenove_Ultimate_Starter_Kit_for_Raspberry_Pi" is generated,
which contains all of the tutorials and required code.

This folder name looks a little too long. We can simply rename it by using the following command.

"Freenove Kit" is now the new and much shorter folder name.

$ @ B Fewea

File Edit View Sort Go Tools
D5k 886 ‘ [n & /> | /home/pi/Freenove_Kit -
= [Name Size Modified Description -
» [| Code [ICode Saturday, December 28,2019 17:39 folder
» D Datasheet l:l Datashest Saturday, December 28,2019 17:39 folder
> |:| Processing l:l Processing Saturday, December 28,2019 17:39 folder
» D Freenove_Three-wheeled_Smart_Ca | | & List_Ultimate_RPi_Kit jpg 939.8 KiB Saturday, December 28,2019 17:39 JPEG image
» D MagPi = readmemd 2.4 KiB Saturday, December 28,2019 17:39 Markdown document
» D mu_code E Processing pdf 13.1 MiB Saturday, December 28, 2019 17:39 PDF document
b Music E Read Me First pdf 643.8 KiB Saturday, December 28, 2018 17:39 PDF document
> [zal Pictures E Tutorial pdf 16.3 MIB Saturday, December 28,2019 17:39 PDF document
» D Processing = LICENSE.txt 19.1 KiB Saturday, December 28, 2019 17:39 plain text document

If you have no experience with Python, we suggest that you refer to this website for basic information and
knowledge.
https://python.swaroopch.com/basics.html

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
http://www.freenove.com/
https://github.com/freenove
https://github.com/Freenove/Freenove_Projects_Kit_for_Raspberry_Pi.git
https://python.swaroopch.com/basics.html

If you only use C/C++, you can skip this section.

Python code, used in our kits, can now run on Python2 and Python3. Python3 is recommended. If you want
to use Python2, please make sure your Python version is 2.7 or above. Python2 and Python3 are not fully
compatible. However, Python2.6 and Python2.7 are transitional versions to python3, therefore you can also
use Python2.6 and 2.7 to execute some Python3 code.

You can type “python2” or “python3” respectively into Terminal to check if python has been installed. Press
Ctrl-Z to exit.
17:33:09)
ts" or "license" for more information.

Jan 19 2817, 14:11:04)

copyright”, "credits" or "license" for more information.

17:33:09)

or "license" for more information.

If you want to use Python3 in Raspberry Pi, it is recommended to set python3 as default Python by following

the steps below.

1. Enter directory /usr/bin

cd /usr/bin

2. Delete the old python link.

sudo rm python

3. Create new python links to python3.

sudo ln -s python3 python

4. Execute python to check whether the link succeeds.

python
raspberrypi:
raspberrypi:
raspberrypi:/u _

n 3.5.3 (de 14:11:04)

or "license" for more information.

mailto:support@freenove.com
http://www.freenove.com/

If you want to use Python2, repeat the steps above and just change the third command to the following:
sudo ln -s python2 python

pifiraspberrypi

F .13 11 . NC 2017, 17:33:09)

"license" T

We will only use the term “Python” without reference to Python2 or Python3. You can choose to use either.
Finally, all the necessary preparations have been completed! Next, we will combine the RPi and electronic
components to build a series of projects from easy to the more challenging and difficult as we focus on
learning the associated knowledge of each electronic circuit.

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D<l support@freenove.com

Projects Board for Raspberry Pi

GPIO Indicator LED Power Switch LED Matrix 4-digit 7-segement LED Bar Graph
LED display

BCM Numbering
E]

d
) © ¢
il

toggle
switch

Vs S relay

ON

Active
Buzzer

OFF [3]4]5] 6 (7]8]9 il (019 Re L 4

Passive

Buzzer Passive Buzze Actve Buzze v PR

MPU6050 : ;] o 3

ADC Module Joystick Touch Button Potentiometer RFID External Port

Functionl Function2 Function3 ADC Pin Function
GPIO2/SDA LCD1602-SDA MPUGB050_SDA Thermistor
GPIO3/SCL LCD1602-SCL MPUG050-SCL Photoresistor

GPIO4 Passive Buzzer

GPIO17 Blue LED

GPI1027 Digital Tube

GPI1022 LED Matrix
GPI010/MOSI RFID-RC522
GPIO9/MISO RFID-RC522
GPIO11/SCLK RFID-RC522
GPIO0/ID_SD

GPIOS Stepping Motor-IN4 Keypad

GPIO6 Stepping Motor-IN3 Keypad

GPIO13 Stepping Motor-IN2 Keypad
(el [ok WV (el Stepping Motor-IN1 Keypad

GPIO26 Keypad
GPI021/SCLK Keypad
GP1020/MOSI Keypad
GPIO16/CE2# Keypad

GPIO12 Active Buzzer Relay
GPIO1/ID_SC
GPIO7/CE1# Joystick-z
GPIO8/CEO# RFID-RC522

GPIO25 RFID-RC522

GPlO24

GPIO23

GPIO18 Servo

GPIO15/RXD0
GPI014/TXD0

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com

www.freenove.com Il

Assembly

Install the brass standoffs.

e
7 b K
FREENDVE
www. freenove.com
Freenove Projects Board for Raspberry Pi

LA AR EE
A AR EEET)

- L\
R X e —r———s

Seeeeer o

Fi

reenove Projects Board for Raspber!

Pi v1.0

www.freenove.com

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com

D4 support@freenove.com

Install the Raspberry Pi.

Freenove Projects Board for Raspber

Midddd

e
o

334444
!

FRESSS350398505983205559508883800 000000,

BlisLe trie) 9-LED Bar Graph _

> LED Bar Graph
4-Digh, 7-Segment LED Display

[aneaT
@7-Stepping Molor D My
®2.Bution
3-Active Buzzer
= 4-Relay

Pi vio @&

Install the acrylic part

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com

www.freenove.com [l

Finish

Biue LED
()

7-LED Matrix
8- 7-Segment LED
9-LED Bar Graph

Active Buzzer ®

A8
cf s AS

e
I I
:
B
ADS7830

Freenove Projects Board for Raspberry Pi vi.0 @& www.freenove.com

.
o w
- more|
2
8 MOKG)
H

W
iz
3N
%

O
£

12CLCD1602

7

Potentiometer

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Chapter 1 LED

This chapter is the Start Point in the journey to build and explore RPi electronic projects. We will start with
simple “Blink” project.

Project 1.1 Blink

In this project, we will use RPi to control blinking a common LED.

GPIO

GPIO: General Purpose Input/Output. Here we will introduce the specific function of the pins on the Raspberry
Pi and how you can utilize them in all sorts of ways in your projects. Most RPi Module pins can be used as
either an input or output, depending on your program and its functions.

When programming GPIO pins, there are 3 different ways to reference them: GPIO Numbering, Physical
Numbering and WiringPi GPIO Numbering.

BCM GPIO Numbering

The Raspberry Pi CPU uses Broadcom (BCM) processing chips BCM2835, BCM2836 or BCM2837. GPIO pin
numbers are assigned by the processing chip manufacturer and are how the computer recognizes each pin.
The pin numbers themselves do not make sense or have meaning as they are only a form of identification.
Since their numeric values and physical locations have no specific order, there is no way to remember them,
so you will need to have a printed reference or a reference board that fits over the pins.

Each pin’s functional assignment is defined in the image below:

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com

www.freenove.com Il

Pin 1
+3V3 +5Y
GPIOZ [SDAL +5V
GPIO3 [SCL1 GND
GPIO4 TXDO / GPIO 14
GND RXDO / GPIO 15
GPIO17 GPIO 18
GPIOZT GND
DSI (DISPLAY) @ GPIO22 GPIO 23
@ . o +3V3 GPIO 24
GPIOL0 / MOSI GND
— GFI03 | MISO GPIO 25
g of GPIO11 / SCLK CEO0# / GPIOB
3% GND CE1# | GPIOT
;% GPIOD /1D _5D ID 5C{ GRIOL
b GPIOS GND
GPIOG GPIO12
A= GPIO13 GND
gmm;ig GPIO19 / MISO CE2# / GPIO16
GPIO26 MOSI / GPIO20
GND SCLK / GPI021

Pin 39 Pin 40

For more details about pin definition of GPIO, please refer to http://pinout.xyz/

PHYSICAL Numbering
Another way to refer to the pins is by simply counting across and down from pin 1 at the top left (nearest to

the SD card). This is 'Physical Numbering', as shown below:

0000000000000

0000 PO000000>00D000 =

Raspberry Pi A+ / B+ and Raspberry Pi 2 physical pin numbers

(erio @Ground ()sav @sv (o

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
http://pinout.xyz/

B www.freenove.com D4 support@freenove.com

WiringPi GPIO Numbering
Different from the previous two types of GPIO serial numbers, RPi GPIO serial number of the WiringPi are
numbered according to the BCM chip used in RPi.

wiringPi BCM BCM wiringPi
Pin GPIO Name Header Name GPIO Pin
— — 3.3v 1]2 oSV — — =T
8 R1:0/R2:2 SDA 3|4 5v — — Ei,
9 R1:1/R2:3 SCL 5|6 Ov — —
7 4 GPIO7 7|8 14 15 [=
— — Ov 910 15 16 o o
0 17 GPIOO = 11112 GPIO1 18 1 =
2 R1:21/R2:27 GPIO2 = 13|14 Ov — — g
3 22 GPIO3 = 15116 GPIO4 23 4 = o
— — 3.3v 17|18 | GPIO5 24 5 o &
12 10 MOSI = 19]20 Ov — — o
13 9 MISO = 21|22 GPIO6 25 6 0
14 11 SCLK | 23|24 CEO 8 10 -
— — Ov | 25|28 CEf 7 11 o
30 0 SDAO 27|28 SCL.O 1 31 +
21 5 GPlIO.21 | 29|30 oV ‘;b
22 6 GPIO022 31|32 GPIO26 12 26 0
23 13 GPIO.23 = 33|34 oV N
24 19 GPIO24 35|36 GPIO27 16 27 ?
25 26 GPIO25 37|38 GPIO28 20 28 —

oV 39140 GPIO29 21 29 O

wirir?gPi BCM Name Header Name BCM wirir_19Pi

Pin GPIO GPIO Pin

(For more details, please refer to https://projects.drogon.net/raspberry-pi/wiringpi/pins/)

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/

You can also use the following command to view their correlation.
gpio readall

ool

GPI

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
| GPIO

S S
Mame | Mode | V | Physical
+---+---P1

below):

nable to determine &

This is because the official version of the library supporting RPI 4B, as of this writing, has not yet been released.
This results in some commands not functioning properly. However, the following projects will not be affected.
This problem can be solved by installing a patch. Just execute the commands below in the Terminal.

wget https://project-downloads.drogon.net/wiringpi-latest.deb

sudo dpkg -i wiringpi-latest.deb

For more details about wiringPi, please refer to http://wiringpi.com/ .

mailto:support@freenove.com
http://www.freenove.com/
http://wiringpi.com/

B www.freenove.com

support@freenove.com _

Component List

Raspberry Pi

Passive Buzzer

‘ O .
I

Freenove Projects Board for Raspberry Pi

o4

Active Buzzer =

BCM Numbering

FREENOVE™

Blue LED
(GPIOT7)
@

os(§

74HC595

LED Matrix

4 1-Stepping Motor
® 2-Button
W 3-Active Buzzer
u 4-Relay
5-Blue LED
8-Motor
7-LED Matrix
8-7-Segment LED
9-LED Bar Graph

Shift Clock(GPIO17)

= GND
Data Input(GP1022) 5 .. 5V
= GND

Storage Register Clock(GPI027)

GPIO18
. 5V
GND

GPIO18

WS2812 LED

IM Sen

(GPIO15)

4-Digit, 7-Segment LED Display (GPIO14)

un

Stepping

un2

- R
06

(GPIO12)

= GPIO16
" GPIO20
" GPIO21
" GPIO26

sV

= GPIO19
» GPIO13

Keypad ® ¢ Ultrasol

GPIO13(8]
GPIOB(G)

»
L]

JoyStick Button #

vi.0

RGBLED ¢ Photoresistor

* GPIOB GPIOS(R)

RP1 GPIOS
RFID-RC522
(A2) SCL

» SDA

Thermistor

Potentiometer

12CLCD1602

WWW.freenove.com

GPIO Ribbon Cable

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

support@freenove.com www.freenove.com [l

Schematic diagram

LEDI

5;(}0 Blue (525nm)
GPI0T7)—— A\ > It
AN
GPIO Resistor LED GND

Hardware connection:
Turn ON the power switch and NO.5 toggle switch.
Power switch should be turned ON in all the projects.

BCM Numbering

s

9 | 9pop ¥ I Ausqdsey
WS2812 LED ®

Sen

8102 Id Aueqdsed @

LED Matrix

Al
MPUB050 AQ yStick Button & Patentiometer

Freenove Projects Board for Raspberry Pi 10 WWW.freenove.com

Function Selection Switch
R12 Ri14R15 HI1GHET =T

1-Stepping Motc

2-Button

J-Active Buzzer

4-Relay

5-Blue LED

B-Motor

7T-LED Matrix

8-T-Segment LED
| EC Bar Graph

Modules with same mark can‘t be used as the same time.

If you have any concerns, please send an email to: support@freenove.com

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Component knowledge

LED

An LED is a type of diode. All diodes have two Poles and only work if current is flowing in the correct direction.
An LED will only work (light up) if the longer pin (+) of LED is connected to the positive output from a power
source and the shorter pin is connected to the negative (-) output, which is also referred to as Ground (GND).
This type of component is known as “Polar” (think One-Way Street).

All common 2 lead diodes are the same in this respect. Diodes work only if the voltage of its positive electrode
is higher than its negative electrode and there is a narrow range of operating voltage for most all common
diodes of 1.9 and 3.4V. If you use much more than 3.3V the LED will be damaged and burnt out.

-

/y LED Voltage Maximum current Recommended current

21 2 Red 1.9-22V 20mA 10mA

Green 29-34V 10mA 5mA

- - Blue 29-34V 10mA 5mA
-+ Volt ampere characteristics conform to diode

Note: LEDs cannot be directly connected to a power supply, which usually ends in a damaged component. A
resistor with a specified resistance value must be connected in series to the LED you plan to use.

Resistor

Resistors use Ohms (Q) as the unit of measurement of their resistance (R). 1IMQ=1000kQ, 1kQ=1000Q.

A resistor is a passive electrical component that limits or regulates the flow of current in an electronic circuit.
On the left, we see a physical representation of a resistor, and the right is the symbol used to represent the
presence of a resistor in a circuit diagram or schematic.

1

The bands of color on a resistor is a shorthand code used to identify its resistance value. For more details of
resistor color codes, please refer to the card in the kit package.

With a fixed voltage, there will be less current output with greater resistance added to the circuit. The
relationship between Current, Voltage and Resistance can be expressed by this formula: 1=V/R known as
Ohm'’s Law where | = Current, V = Voltage and R = Resistance. Knowing the values of any two of these allows
you to solve the value of the third.

In the following diagram, the current through R1 is: I=U/R=5V/10kQ=0.0005A=0.5mA.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com

www.freenove.com [l

WARNING: Never connect the two poles of a power supply with anything of low resistance value (i.e. a

metal object or bare wire). This is a Short and results in high current that may damage the power supply and
electronic components.

Note: Unlike LEDs and Diodes, Resistors have no poles and re non-polar (it does not matter which direction
you insert them into a circuit, it will work the same)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D<l support@freenove.com

Code

According to the circuit, when the GPIO17 of RPi output level is high, the LED turns ON. Conversely, when the
GPIO17 RPi output level is low, the LED turns OFF. Therefore, we can let GPIO17 cycle output high and output
low level to make the LED blink. We will use both C code and Python code to achieve the target.

C Code 1.1 Blink

First, enter this command into the Terminal one line at a time. Then observe the results it brings on your
project, and learn about the code in detail.

If you want to execute it with editor, please refer to section Code Editor to configure.

If you have any concerns, please send an email to: support@freenove.com

It is recommended to execute the code via command line.

1. If you did not update wiring pi, please execute following commands one by one.

sudo apt-get update

git clone https://github.com/WiringPi/WiringPi

cd WiringPi

./build

2. Use cd command to enter 1_Blink directory of C code.

cd ~/Freenove_Kit/Code/C_Code/1_Blink

3. Use the following command to compile the code “Blink.c” and generate executable file “Blink”.

“I” of “lwiringPi” is low case of “L".

gcc Blink.c -o Blink -lwiringPi

4. Then run the generated file “blink”.

sudo ./Blink

Now your LED should start blinking! CONGRATUALTIONS! You have successfully completed your first RPi
circuit!

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

M support@freenove.com

www.freenove.com Il

You can also use the file browser. On the left of folder tree, right-click the folder you want to enter, and click

"Open in Terminal”.

File Edit View Sort Go Tools

"alIndn | [w] & ™ /home/pi/Freenove_Kit/Code/C_Code/1_Blink e
[#] Home Folder 7
(2 Filesystem Root f—

Blink

< [| Freenove Kit

~ | |Code
v []C_Code

I 1 _8iink
[]2_FlowingLight
[]3_ButtonLED
[] 4_BreathingLED
[]5_RainbowlLED
[]6_1_Doorbell
[]6_2_Alertor
[17.1_ADC
[]7_2_softlight
[]7_3_colorfulSoftlight

[18 Nightlamp

I m

Open in New Window

Open in Terminal

File Manager
Open With...

Add to Bookmarks
Compress...

Paste

Copy Path(s)
Rename...

Properties
|

You can press “Ctrl+C” to end the program. The following is the program code:

#include <wiringPi.h>
#include <stdio.h>
fidefine ledPin

void main(void)

{

printf ("Program is starting ...

wiringPiSetup () ;

pinMode (ledPin, OUTPUT) ;//Set the pin mode
printf ("Using pin%d\n”, ledPin) ;

while (1) {

digitalWrite(ledPin, HIGH) ;
printf (“led turned on >>>\n”);

delay (1000) ;

digitalWrite(ledPin, LOW);
printf (“led turned off <<<{\n”);

delay (1000) ;

0 //define the led pin number

//Initialize wiringPi.

\n");

//Output information on terminal

//Make GPIO output HIGH level

//Output information on terminal
//Wait for 1 second

//Make GPIO output LOW level

//Output information on terminal

//Wait for 1 second

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com

D4 support@freenove.com

In the code above, the configuration function for GPIO is shown below as:

output modes.

This sets the mode of a pin to either INPUT, OUTPUT, PWM_OUTPUT or GPIO_CLOCK. Note that only
wiringPi pin 1 (BCM_GPIO 18) supports PWM output and only wiringPi pin 7 (BCM_GPIO 4) supports CLOCK

This function has no effect when in Sys mode. If you need to change the pin mode, then you can do it with
the gpio program in a script before you start your program

Writes the value HIGH or LOW (1 or 0) to the given pin, which must have been previously set as an output.

For more related wiringpi functions, please refer to http://wiringpi.com/reference/

GPIO connected to ledPin in the circuit is GPIO17 and GPIO17 is defined as 0 in the wiringPi numbering. So
ledPin should be defined as 0 pin. You can refer to the corresponding table in Chapter 0.

- #tdefine 1ledPin 0 //define the led pin number

GPIO Numbering Relationship

WingPi BCM(Extension)
3.3V
SDA1
SCL1
GPIO4
GND
GPIO17
GPIO27
GPIO22
3.3V
GPIO10/MOSI)
GPIO9/MOIS
GPIO11/SCLK
GND
GPIO0/SDAO
GPIO5
GPIO6
GPIO13
GPIO19
GPI026
GND

BCM(Extension) | WingPi

5V
5V
GND
GP1014/TXD0O
GPIO15/RXD0
GPIO18
GND
GP1023
GP1024
GND
GPIO25
GPIO8 /CEO
GPIO7 CE1
GPIO1 /SCLO
GND
GPIO12
GND
GPIO16
GPI1020
GP1021

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/
http://wiringpi.com/reference/

< support@freenove.com www.freenove.com [l

In the main function main(), initialize wiringPi first.

- wiringPiSetup(); //Initialize wiringPi. ‘

After the wiringPi is initialized successfully, you can set the ledPin to output mode and then enter the while
loop, which is an endless loop (a while loop). That is, the program will always be executed in this cycle, unless
it is ended because of external factors. In this loop, use digitalWrite (ledPin, HIGH) to make ledPin output high
level, then LED turns ON. After a period of time delay, use digitalWrite(ledPin, LOW) to make ledPin output low
level, then LED turns OFF, which is followed by a delay. Repeat the loop, then LED will start blinking.

pinMode (1edPin, OUTPUT) ;//Set the pin mode

printf ("Using pin%d\n”, %ledPin) ; //Output information on terminal

while (1) {
digitalWrite(ledPin, HIGH): //Make GPIO output HIGH level
printf (“led turned on >>>\n”) ; //Output information on terminal
delay (1000) ; //Wait for 1 second
digitalWrite(ledPin, LOW); //Make GPIO output LOW level
printf (“led turned off <<<\n”); //Output information on terminal
delay (1000) ; //Wait for 1 second

}

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

Now, we will use Python language to make a LED blink.

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please send an email to:

1. Use cd command to enter 1_Blink directory of Python code.

cd ~/Freenove_Kit/Code/Python_Code/1_Blink

2. Use python command to execute python code blink.py.

python Blink.py

The LED starts blinking.

pifraspberrypi

Program 1s starting

You can press “Ctrl+C” to end the program. The following is the program code;

1 import RPi.GPIO as GPIO

2 import time

3 GPIO. setwarnings (False)

4 ledPin = 11 # define ledPin

5 def setup() :

6 GPI0. setmode (GPT0. BOARD) # use PHYSICAL GPIO Numbering

7 GPIO. setup(ledPin, GPIO.OUT) # set the ledPin to OUTPUT mode

8 GPIO. output (ledPin, GPIO.LOW) # make ledPin output LOW level

9 print (using pin%d’ %ledPin)

10

11 | def loop():

12 while True:

13 GPIO. output (ledPin, GPIO.HIGH) # make ledPin output HIGH level to turn on led
14 print (led turned on >>>’) # print information on terminal
15 time. sleep (1) # Wait for 1 second

16 GPIO. output (ledPin, GPIO.LOW) # make ledPin output LOW level to turn off led
17 print (led turned off <<<7)

18 time. sleep (1) # Wait for 1 second

19

20 | def destroy():

21 GPIO0. cleanup () # Release all GPIO

22

23 if name == main : # Program entrance

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

print (Program is starting ... \n’)

setup ()

try:
loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.
destroy ()

About RPi.GPIO:

This is a Python module to control the GPIO on a Raspberry Pi. It includes basic output function and input
function of GPIO, and functions used to generate PWM.

Sets the mode for pin serial number of GPIO.

mode=GPIO.BOARD, which represents the GPIO pin serial number based on physical location of RPi.
mode=GPIO.BCM, which represents the pin serial number based on CPU of BCM chip.

Sets pin to input mode or output mode, “pin” for the GPIO pin, “mode” for INPUT or OUTPUT.

Sets pin to output mode, “pin” for the GPIO pin, “mode” for HIGH (high level) or LOW (low level).
For more functions related to RPi.GPIO, please refer to:
https://sourceforge.net/p/raspberry-gpio-python/wiki/Examples/

“import time” time is a module of python.
https://docs.python.org/2/library/time.html?highlight=time%20time#module -time

In subfunction setup(), GPIO.setmode (GPIO.BOARD) is used to set the serial number for GPIO based on
physical location of the pin. GPIO17 uses pin 11 of the board, so define ledPin as 11 and set ledPin to output
mode (output low level).
ledPin = 11 # define ledPin
def setup():
GPI0. setmode (GPI0. BOARD) # use PHYSICAL GPIO Numbering
GPIO. setup(ledPin, GPIO.OUT) # set the ledPin to OUTPUT mode
GPIO. output (ledPin, GPIO.LOW) # make ledPin output LOW level
print (using pin%d’ %ledPin)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://sourceforge.net/p/raspberry-gpio-python/wiki/Examples/
https://docs.python.org/2/library/time.html?highlight=time%20time#module-time

B www.freenove.com D4 support@freenove.com

GPIO Numbering Relationship
WingPi BCM(Extension) Physical BCM(Extension) | WingPi
3.3V 5V 5V
SDA1 5V 5V
SCL1 GND GND
GPIO4 GP1014/TXD0O 15
GND GPIO15/RXDO0O 16
GPIO17 GPIO18
GPIO27 GND
GP1022 GP1023
3.3V GP1024
GP1010/MOSI) GND
GPIO9/MOIS GPI1025
GPIO11/SCLK GPIO8 /CEO
GND GPIO7 CE1
GPIO0/SDAO GPIO1 /SCLO
GPIO5 GND
GPIO6 GPIO12
GPIO13 GND
GPIO19 GPIO16
GPI1026 GPI1020
GND GP1021

In loop(), there is a while loop, which is an endless loop (a while loop). That is, the program will always be
executed in this loop, unless it is ended because of external factors. In this loop, set ledPin output high level,
then the LED turns ON. After a period of time delay, set ledPin output low level, then the LED turns OFF, which
is followed by a delay. Repeat the loop, then LED will start blinking.
def loop():
while True:
GPIO. output (ledPin, GPIO.HIGH) # make ledPin output HIGH level to turn on led

print (led turned on >>>) # print information on terminal

time. sleep (1) # Wait for 1 second

GPIO. output (ledPin, GPIO.LOW) # make ledPin output LOW level to turn off led
print (led turned off <<<7)

time. sleep (1) # Wait for 1 second

Finally, when the program is terminated, subfunction (a function within the file) will be executed, the LED will
be turned off and then the IO port will be released. If you close the program Terminal directly, the program
will also be terminated but the destroy () function will not be executed. Therefore, the GPIO resources will not
be released which may cause a warning message to appear the next time you use GPIO. Therefore, do not
get into the habit of closing Terminal directly.

def destroy():
GPI0. cleanup () # Release all GPIO

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Chapter 2 FlowingLight

We have learned how to control one LED to blink. Next, we will learn how to control a number of LEDs.

Project 2.1 Flowing Water Light

In this project, we use a number of LEDs to make a flowing water light.

Component List

Freenove Projects Board for Raspberry Pi

Raspberry Pi

O
A
FREENOVE!

[

P17 . 33V
P18 [= = = GND
Shift Clock(GPIO17) Storage Register Clock(GPIO27) Data Input(GPI1022) P15 (MRS sv
74HC595 PI6 & & & = GND
i unnnn
= GPIO18 = GPIO18
us

Model Zero

WS2812LED ®

nnnnm nunnn
o4

ﬁ

]
L o
O R 0|
@ e
o

= GPIO24
= 5V

IM Sen

b

(GPIO15)
(GPIO14)
A

LED Matrix

1-Stepping Motor unt

K

® 2-Button Stepping Motor ¢

® 3-Active Buzzer i 1)

u 4-Relay ¢
5-Blue LED . .

A 6-Motor =] 2 X
7-LED Matrix 3 i

8-7-Segment LED
OLED bar Grapn | (GFI012) Relaya
" GND
GPIO15 .
GPIO14
sV
= GPIO16
" GPIO20
GPIO21
" GPIO26
" GPIO19
GPIO13
* GPIOS
" GPIOS

82

RFID-RC522

" 5V
» GPIOTHE)

O6(G)
GPIOS(R)

Keypad » ¢ Ultrasonic p

RGB LED @ Photol

scL
» SDA
. 5V
= GND

MPU6050 JoyStick Button & Potentiometer

12CLCD1602
Thermistor
2

‘el

WWW.freenove.com

GPIO Ribbon Cable

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com

Schematic diagram

L
|

N

0Q
AW
AW
5900
AW
0Q
AW
20Q
AW
0Q
MWW

= =] S

I - Q T = 20 2 DN =& o8

[~ 0] =~] = = 0 | =N &N = a0 | =~]
vm o ~ O] o~ et O o~ O 0 (=]
=1 - - - - o~ ~N ~ m M M <
S ’9 ‘9‘ S S ’9 9‘ S ’9 9| ’9 ‘9‘
a a a a a o a o a o o a
(L) (U] 9 (U] (U] (U] (U] (U] (U] 9 (U] 9

Hardware connection.

BEM Numbering

LED Matrix

»

00000000 *

r

MPUG0S0 AD Button Potentiometer

Freenove Projects Board for Raspberry Pi WWW.freenove.com

If you have any concerns, please send an email to: support@freenove.com

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

M support@freenove.com

www.freenove.com Il

Code

C Code 2.1 LightWater
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please send an email to: support@freenove.com
1. Use cd command to enter 2_FlowingLight directory of C code.

2. Use the following command to compile “LightWater.c” and generate executable file “LightWater".

3. Then run the generated file “LightWater".

You can see the LEDs lighting from top to bottom and then back from bottom to top.

The following is the program code:

#include <wiringPi.h>
#include <stdio.h>

#define ledCounts 12
int pins[ledCounts] = {15, 16, 1, 4, 5, 6, 10, 11, 26, 27, 28, 29} ;

void main(void)

{
int i;

printf ("Program is starting ... \n”);

wiringPiSetup(); //Initialize wiringPi.

for (i=0; i<ledCounts;i++) { //Set pinMode for all led pins to output

pinMode (pins[i], OUTPUT);

J
while (1) {

for (i=0;i<ledCounts;i++){ // move led(on) from top to bottom

digitalWrite(pins[i], LOW);

delay (100) ;

digitalWrite(pins[i], HIGH) ;
}

for (i=ledCounts-1;i>-1;i—){ // move led(on) from bottom to top

digitalWrite(pins[i], LOW);
delay (100) ;
digitalWrite(pins[i], HIGH) ;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

In the “while” loop, apply two “for” loop to achieve the flowing water light lighting from top to bottom and
then back from bottom to top.
while (1) {
for (i=0;i<ledCounts;i++){ // move led(on) from top to bottom
digitalWrite(pins[i], LOW);
delay (100) ;
digitalWrite(pins[i], HIGH) ;

}

for (i=ledCounts—1;i>-1;i—){ // move led(on) from bottom to top
digitalWrite(pins[i], LOW);
delay (100) ;
digitalWrite(pins[i], HIGH) ;

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

Il o< support@freenove.com www freenove.com [l

Python Code 2.1 LightWater

First observe the project result, and then learn about the code in detail.

If you have any concerns, please send an email to: support@freenove.com
1. Use cd command to enter 2_FlowingLight directory of Python code.

2. Use Python command to execute Python code “LightWater.py”.

You can see the LEDs lighting from top to bottom and then back from bottom to top.

The following is the program code:
import RPi.GPIO as GPIO

import time

ledPins = [8, 10, 12, 16, 18, 22, 24, 26, 32, 36, 38, 40]

def setup():
GPI0. setmode (GPI0. BOARD) # use PHYSICAL GPIO Numbering
GPI0. setup (ledPins, GPI0.0UT) # set all ledPins to OUTPUT mode
GPIO. output (ledPins, GPIO.HIGH) # make all ledPins output HIGH level, turn off all led

def loop():
while True:

for pin in ledPins: # make led(on) move from top to bottom
GPIO. output (pin, GPIO. LOW)
time. sleep(0.1)
GPIO. output (pin, GPIO. HIGH)

for pin in ledPins[::-1]: # make led(on) move from bottom to top
GPIO. output (pin, GPIO. LOW)
time. sleep(0.1)
GPIO. output (pin, GPIO. HIGH)

def destroy():

GPIO0. cleanup () # Release all GPIO
if name == main : # Program entrance
print (Program is starting...’)
setup ()
try:
loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

In the “while” loop, apply two “for” loop to achieve the flowing water light lighting from top to bottom and
then back from bottom to top.
def loop():

while True:

for pin in ledPins: # make led(on) move from top to bottom
GPIO. output (pin, GPIO. LOW)
time. sleep(0.1)
GPIO. output (pin, GPIO. HIGH)
for pin in ledPins[::-1]: # make led(on) move from bottom to top
GPIO. output (pin, GPIO. LOW)
time. sleep(0.1)
GPIO. output (pin, GPIO. HIGH)

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Chapter 3 Buttons & LEDs

Usually, there are three essential parts in a complete automatic control device: INPUT, OUTPUT, and CONTROL.
In last section, the LED module was the output part and RPI was the control part. In practical applications, we
not only make LEDs flash, but also make a device sense the surrounding environment, receive instructions
and then take the appropriate action such as turn on LEDs, make a buzzer beep and so on.

Next, we will build a simple control system to control an LED through a push button switch.

Project 3.1 Push Button Switch & LED

In the project, we will control the LED state through a Push Button Switch. When the button is pressed, our
LED will turn ON, and when it is released, the LED will turn OFF. This describes a Momentary Switch.

Component knowledge

Push Button Switch
This type of Push Button Switch has 4 pins (2 Pole Switch). Two pins on the left are connected, and both left

and right sides are the same as per the illustration:

o
1 2 1 2

When the button on the switch is pressed, the circuit is completed (your project is Powered ON).

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com

support@freenove.com

Component List

Raspberry Pi

Passive Buzzer

‘ O .
I

Freenove Projects Board for Raspberry Pi

o4

Active Buzzer =

BCM Numbering

FREENOVE™

Blue LED
(GPIOT7)
@

os(§

74HC595

LED Matrix

4 1-Stepping Motor
® 2-Button
W 3-Active Buzzer
u 4-Relay
5-Blue LED
8-Motor
7-LED Matrix
8-7-Segment LED
9-LED Bar Graph

Shift Clock(GPIO17)

= GND
Data Input(GP1022) 5 .. 5V
= GND

Storage Register Clock(GPI027)

GPIO18
. 5V
GND

GPIO18

WS2812 LED

IM Sen

(GPIO15)

4-Digit, 7-Segment LED Display (GPIO14)

un

Stepping

un2

- R
06

(GPIO12)

= GPIO16
" GPIO20
" GPIO21
" GPIO26

sV

= GPIO19
» GPIO13

Keypad ® ¢ Ultrasol

GPIO13(8]
GPIOB(G)

»
L]

JoyStick Button #

vi.0

RGBLED ¢ Photoresistor

* GPIOB GPIOS(R)

RP1 GPIOS
RFID-RC522
(A2) SCL

» SDA

Thermistor

Potentiometer

12CLCD1602

WWW.freenove.com

GPIO Ribbon Cable

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

support@freenove.com www.freenove.com [l

Circuit

Schematic diagram

Rl LED1
2200 Blue (525nm)

GPIO17 AW Bl “l

[epio26 4‘—Y‘ .
|_._‘

Hardware connection.
Switch ON NO.5 switch and the four switches of NO.2.

Raspberry Pi

BCM Numbering

9 | 9pop ¥ I Ausqdsey

8102 Id Aueqdsed @

LED Matrix

Stepping Motor #

P11

assive Buzzer Active Buzzer =

mmnn ¥

00000000 *

NN '/
RP1
A2) a RFID-RC522

Potentiometer

Freenove Projects Board for Raspberry Pi 10 WWW.freenove.com

=

MPUG0S0 / K Bution =

If you have any concerns, please send an email to: support@freenove.com

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Code

This project is designed for learning how to use Push Button Switch to control an LED. We first need to read
the state of switch, and then determine whether to turn the LED ON in accordance to the state of the switch.
C Code 3.1 ButtonLED

First, observe the project result, then learn about the code in detail.

If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 3_ButtonLED directory of C code.

cd ~/Freenove_Kit/Code/C_Code/3_ButtonLED

2. Use the following command to compile the code “ButtonLED.c” and generate executable file “ButtonLED”
gcc ButtonLED.c -o ButtonLED -lwiringPi

3. Then run the generated file “ButtonLED".

sudo ./ButtonLED

Later, the terminal window continues to print out the characters “led off-". Press the S4 button, then LED is
turned on and then terminal window prints out the "led on'--". Release the button, then LED is turned off and
then terminal window prints out the "led off-". You can press "Ctrl+C" to terminate the program.

The following is the program code:

#include <wiringPi.h>
#include <stdio.h>

#tdefine ledPin 0 //define the ledPin
#defline buttonPin 25 //define the buttonPin

void main(void)
{

printf ("Program is starting ... \n”);

wiringPiSetup(); //Initialize wiringPi.

pinMode (1edPin, OUTPUT):; //Set ledPin to output
pinMode (buttonPin, INPUT);//Set buttonPin to input

pul1UpDnControl (buttonPin, PUD UP); //pull up to HIGH level
while (1) {
if(digitalRead (buttonPin) == LOW){ //button is pressed
digitalWrite(ledPin, HIGH); //Make GPIO output HIGH level

printf ("Button is pressed, led turned on >>>\n”); //Output information on
terminal
}
else { //button is released
digitalWrite(ledPin, LOW); //Make GPIO output LOW level
printf ("Button is released, led turned off <<{\n”); //Output information on

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

m < support@freenove.com www.freenove.com [l

terminal

Define ledPin and buttonPin as 0 and 25 respectively.
#tdefine ledPin 0 //define the ledPin
#define buttonPin 25 //define the buttonPin

L]

In the while loop of main function, use digitalRead(buttonPin) to determine the state of Button. When the
button is pressed, the function returns low level, the result of “if” is true, and then turmn on LED. Or, turn off
LED.

if(digitalRead (buttonPin) == LOW) { //button is pressed
digitalWrite(ledPin, HIGH); //Make GPIO output HIGH level

printf ("Button is pressed, led turned on >>>\n”); //Output information on
terminal
1
else { //button is released
digitalWrite(ledPin, LOW); //Make GPIO output LOW level
printf ("Button is released, led turned off <<<\n”); //Output information on

terminal

Reference:

This function returns the value read at the given pin. It will be “HIGH” or “LOW”(1 or 0) depending on the
logic level at the pin.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Python Code 3.1 ButtonLED

First, observe the project result, then learn about the code in detail. Remember in code “button” = switch
function

If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 3_ButtonLED directory of Python code.

2. Use Python command to execute btnlLED.py.

Then the Terminal window continues to show the characters “led off--", press the switch button and the LED
turns ON and then Terminal window shows "led on-". Release the button, then LED turns OFF and then the
terminal window text "led off--" appears. You can press "Ctrl+C" at any time to terminate the program.
The following is the program code:

import RPi.GPIO as GPIO

ledPin = 11 # define ledPin
buttonPin = 37 # define buttonPin

def setup() :

GPI0. setmode (GPT0. BOARD) # use PHYSICAL GPIO Numbering
GPIO. setup(ledPin, GPIO.OUT) # set ledPin to OUTPUT mode
GPIO. setup (buttonPin, GPIO. IN, pull up down=GPIO.PUD UP) # set buttonPin to PULL UP

INPUT mode

def loop():
while True:

if GPIO. input (buttonPin)==GPI0.LOW: # if button is pressed
GPIO. output (1edPin, GPIO. HIGH) # turn on led
print (led turned on »>>") # print information on terminal

else : # if button is relessed
GPIO. output (1edPin, GPI0. LOW) # turn off led
print (led turned off <<<)

def destroy():
GPIO0. output (ledPin, GPIO.LOW) # turn off led

GPI0. cleanup () # Release GPIO resource
if name == main : # Program entrance
print (Program is starting...’)
setup ()
try:
loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

m < support@freenove.com www.freenove.com [l

In subfunction setup (), GPIO.setmode (GPIO.BOARD) is used to set the serial number of the GPIO, which is
based on physical location of the pin. Therefore, GPIO17 and GPIO26 correspond to pinll and pin37
respectively in the circuit. Then set ledPin to output mode, buttonPin to input mode with a pull resistor.
ledPin = 11 # define ledPin
buttonPin = 37 # define buttonPin

def setup():

GPI0. setmode (GPI0. BOARD) # use PHYSICAL GPIO Numbering

GPIO. setup(ledPin, GPIO.OUT) # set ledPin to OUTPUT mode

GPIO. setup (buttonPin, GPIO. IN, pull up_ down=GPIO.PUD UP) # set buttonPin to PULL UP
INPUT mode

The loop continues endlessly to judge whether the key is pressed. When the button is pressed, the
GPIO.input(buttonPin) will return low level, then the result of “if” is true, ledPin outputs high level, LED is turned
on. Otherwise, LED will be turned off.
def loop():
while True:
if GPIO. input (buttonPin)==GPI0.LOW: # if button is pressed
GPIO. output (1edPin, GPIO. HIGH) # turn on led

print C led turned on »>>") # print information on terminal

else : # if button is relessed
GPIO0. output (1edPin, GPIO. LOW) # turn off led
print (led turned off <<<7)

Execute the function destroy (), close the program and release the occupied GPIO pins.

def destroy():
GPIO. output (ledPin, GPIO.LOW) # turn off led
GPI0. cleanup () # Release GPIO resource

About function GPIO.input ():

This function returns the value read at the given pin. It will be “HIGH” or “LOW"(1 or 0) depending on the
logic level at the pin.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com m

Chapter 4 Analog & PWM

In previous chapters, we learned that a Push Button Switch has two states: Pressed (ON) and Released (OFF),
and an LED has a Light ON and OFF state. Is there a middle or intermediated state? We will next learn how to
create an intermediate output state to achieve a partially bright (dim) LED.

First, let us learn how to control the brightness of an LED.

Project 4.1 Breathing LED

We describe this project as a Breathing Light. This means that an LED that is OFF will then turn ON gradually
and then gradually turn OFF like "breathing”. Okay, so how do we control the brightness of an LED to create
a Breathing Light? We will use PWM to achieve this goal.

Component Knowledge

Analog & Digital

An Analog Signal is a continuous signal in both time and value. On the contrary, a Digital Signal or discrete-
time signal is a time series consisting of a sequence of quantities. Most signals in life are analog signals. A
familiar example of an Analog Signal would be how the temperature throughout the day is continuously
changing and could not suddenly change instantaneously from 0°C to 10°C. However, Digital Signals can
instantaneously change in value. This change is expressed in numbers as 1 and O (the basis of binary code).
Their differences can more easily be seen when compared when graphed as below.

ANALOG DIGITAL

AN AN
7t 7t

Note that the Analog signals are curved waves and the Digital signals are “Square Waves”.

In practical applications, we often use binary as the digital signal, that is a series of 0's and 1's. Since a binary
signal only has two values (0 or 1) it has great stability and reliability. Lastly, both analog and digital signals
can be converted into the other.

PWM

PWM, Pulse-Width Modulation, is a very effective method for using digital signals to control analog circuits.
Digital processors cannot directly output analog signals. PWM technology makes it very convenient to achieve
this conversion (translation of digital to analog signals).

PWM technology uses digital pins to send certain frequencies of square waves, that is, the output of high
levels and low levels, which alternately last for a while. The total time for each set of high levels and low levels

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

support@freenove.com www.freenove.com Il

is generally fixed, which is called the period (Note: the reciprocal of the period is frequency). The time of high
level outputs are generally called “pulse width”, and the duty cycle is the percentage of the ratio of pulse
duration, or pulse width (PW) to the total period (T) of the waveform. The longer the output of high levels last,
the longer the duty cycle and the higher the corresponding voltage in the analog signal will be. The following
figures show how the analog signal voltages vary between 0V-5V (high level is 5V) corresponding to the pulse
width 0%-100%:

ANALOG
DIGITAL
/AU
5V
0% Duty Cycle N N m
0 N
7
AN U
5V
25% Duty Cycle -‘ H 1 W H
0 > .
Period
/1 Pulse width

N U
5V
50% Duty Cycle |>
0

AN
7t
/N U
5V
75% Duty Cycle ' (
0 > t
MU
5V —
100% Duty Cycle
0 >

t

The longer the PWM duty cycle is, the higher the output power will be. Now that we understand this
relationship, we can use PWM to control the brightness of an LED or the speed of DC motor and so on.

It is evident, from the above, that PWM is not actually analog but the effective value of voltage is equivalent
to the corresponding analog value. Therefore, by using PWM, we can control the output power of to an LED
and control other devices and modules to achieve multiple effects and actions.

In RPi, GPIO18 pin has the ability to output to hardware via PWM with a 10-bit accuracy. This means that 100%
of the pulse width can be divided into 2°=1024 equal parts.

The wiringPi library of C provides both a hardware PWM and a software PWM method, while the wiringPi
library of Python does not provide a hardware PWM method. There is only a software PWM option for Python.

The hardware PWM only needs to be configured, does not require CPU resources and is more precise in time
control. The software PWM requires the CPU to work continuously by using code to output high level and

low level. This part of the code is carried out by multi-threading, and the accuracy is relatively not high enough.

In order to keep the results running consistently, we will use PWM.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com

support@freenove.com

Component List

Raspberry Pi

Passive Buzzer

‘ O .
I

Freenove Projects Board for Raspberry Pi

o4

Active Buzzer =

BCM Numbering

FREENOVE™

Blue LED
(GPIOT7)
@

os(§

74HC595

LED Matrix

4 1-Stepping Motor
® 2-Button
W 3-Active Buzzer
u 4-Relay
5-Blue LED
8-Motor
7-LED Matrix
8-7-Segment LED
9-LED Bar Graph

Shift Clock(GPIO17)

= GND
Data Input(GP1022) 5 .. 5V
= GND

Storage Register Clock(GPI027)

GPIO18
. 5V
GND

GPIO18

WS2812 LED

IM Sen

(GPIO15)

4-Digit, 7-Segment LED Display (GPIO14)

un

Stepping

un2

- R
06

(GPIO12)

= GPIO16
" GPIO20
" GPIO21
" GPIO26

sV

= GPIO19
» GPIO13

Keypad ® ¢ Ultrasol

GPIO13(8]
GPIOB(G)

»
L]

JoyStick Button #

vi.0

RGBLED ¢ Photoresistor

* GPIOB GPIOS(R)

RP1 GPIOS
RFID-RC522
(A2) SCL

» SDA

Thermistor

Potentiometer

12CLCD1602

WWW.freenove.com

GPIO Ribbon Cable

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

support@freenove.com www.freenove.com Il

Schematic diagram

LEDI
Hlue (5Z5hm)

2200

GPIOT7 AN = I I [
Y

Hardware connection.

9 | 9pop ¥ I Ausqdsey
WS2812 LED ®

o4
03

8102 Id Aueqdsed @

4-Digit, ient LED Display

Passive Buzzer Active Buzzer =

MPUG050 / JoyStick Bution = Potentiometer

Freenove Projects Board for Raspberry Pi 10 WWW.freenove.com

If you have any concerns, please send an email to: support@freenove.com

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 4_BreathingLED directory of C code.

cd ~/Freenove_Kit/Code/C_Code/4_BreathingLED

2. Use following command to compile “BreathingLED.c” and generate executable file “BreathingLED”.
gcc BreathingLED.c -o BreathingLED -lwiringPi

3. Then run the generated file “BreathingLED"

sudo ./BreathingLED

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

After the program is executed, you'll see that LED is turned from on to off and then from off to on gradually
like breathing.

The following is the program code:

#include <wiringPi.h>
#include <stdio.h>
#include <softPwm. h>

fidefine ledPin 0

void main(void)

{

int i;

”

printf ("Program is starting ... \n”);

wiringPiSetup(); //Initialize wiringPi.

softPwmCreate (ledPin, 0, 100);//Creat SoftPWM pin

while (1) {

for (i=0;i<100;i++) { //make the led brighter
softPwmWrite (ledPin, 1i):
delay(20) ;

}

delay (300) ;

for (i=100;1>=0;i—) { //make the led darker
softPwmWrite (ledPin, 1i):
delay (20) ;

}

delay (300) ;

First, create a software PWM pin.
- softPwmCreate (ledPin, 0, 100)://Creat SoftPWM pin

There are two “for” loops in the next endless “while” loop. The first loop outputs a power signal to the ledPin
PWM from 0% to 100% and the second loop outputs a power signal to the ledPin PWM from 100% to 0%.
while(1) {
for (i=0;1i<100;i++) { //make the led brighter
softPwmWrite (ledPin, 1i):
delay (20) ;

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

delay(300) ;

for (i=100;i>=0;i——) { //make the led darker
softPwmWrite (ledPin, 1i):
delay(20) ;

}

delay (300) ;

}

You can also adjust the rate of the state change of LED by changing the parameter of the delay() function in
the “for” loop.

This creates a software controlled PWM pin.

This updates the PWM value on the given pin.
For more details, please refer http://wiringpi.com/reference/software-pwm-library/

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
http://wiringpi.com/reference/software-pwm-library/

B www.freenove.com

D4 support@freenove.com

Python Code 4.1 BreathinglLED
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 4_BreathingLED directory of Python code.

2. Use the Python command to execute Python code “BreathingLED.py”.

After the program is executed, you will see that the LED gradually turns ON and then gradually turns OFF

similar to “breathing”.

The following is the program code:

import RPi.GPIO as GPIO
import time
LedPin = 11 # define the LedPin
def setup():

global p

GPI0. setmode (GPT0. BOARD) # use PHYSICAL GPIO Numbering
GPIO0. setup(LedPin, GPIO.OUT) # set LedPin to OUTPUT mode

GPIO. output (LedPin, GPIO.LOW) # make ledPin output LOW level to turn off LED

p = GPIO. PWM (LedPin, 500) # set PWM Frequence to 500Hz

p. start (0) # set initial Duty Cycle to 0
def loop():

while True:

for dc in range (0, 101, 1): # make the led brighter
p. ChangeDutyCycle (dc)
time. sleep(0.01)

time. sleep (1)

for dc in range (100, -1, —1): # make the led darker

p. ChangeDutyCycle (dc)

time. sleep(0.01)

time. sleep (1)

def destroy():
p. stop() # stop PWM
GPIO. cleanup() # Release all GPIO

if name == main # Program entrance
print (Program is starting ... ')
setup ()
try:

set dc value as the duty cycle

set dc value as the duty cycle

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Loop ()

except KeyboardInterrupt: # Press ctrl-c¢ to end the program.

destroy ()

The LED is connected to the IO port called GPIO17. The LedPin is defined as pin 11 and set to output mode

according to the corresponding chart for pin designations. Then create a PWM instance and set the PWM

frequency to 500HZ and the initial duty cycle to 0%.
LedPin = 11 # define the LedPin

def setup():
global p
GPI0. setmode (GPTI0. BOARD) # use PHYSICAL GPIO Numbering
GPIO. setup(LedPin, GPIO.OUT) # set LedPin to OUTPUT mode
GPIO. output (LedPin, GPIO.LOW) # make ledPin output LOW level to turn off LED

p = GPIO. PWM(LedPin, 500) # set PWM Frequence to 500Hz
p. start (0) # set initial Duty Cycle to 0

There are two “for” loops used to control the breathing LED in the next endless “while” loop. The first loop
outputs a power signal to the ledPin PWM from 0% to 100% and the second loop outputs a power signal to
the ledPin PWM from 100% to 0%.
def loop():
while True:
for dec in range(0, 101, 1): # make the led brighter

p. ChangeDutyCycle (dc) # set dc value as the duty cycle
time. sleep(0.01)

time. sleep (1)

for dc in range (100, -1, —1): # make the led darker
p. ChangeDutyCycle (dc) # set dc value as the duty cycle
time. sleep(0.01)

time. sleep (1)

The related functions of PWM are described as follows:

To create a PWM instance:

To start PWM, where dc is the duty cycle (0.0 <= dc <= 100.0)

To change the frequency, where freq is the new frequency in Hz

To change the duty cyclewhere 0.0 <= dc <= 100.0

To stop PWM.
For more details regarding methods for using PWM with RPi.GPIO, please refer to:
https://sourceforge.net/p/raspberry-gpio-python/wiki/PWM/

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://sourceforge.net/p/raspberry-gpio-python/wiki/PWM/

B www.freenove.com D4 support@freenove.com

Chapter 5 RGB LED

In this chapter, we will learn how to control an RGB LED.

An RGB LED has 3 LEDs integrated into one LED component. It can respectively emit Red, Green and Blue
light. In order to do this, it requires 4 pins (this is also how you identify it). The long pin (1) is the common
which is the Anode (+) or positive lead, the other 3 are the Cathodes (-) or negative leads. A rendering of an
RGB LED and its electronic symbol are shown below. We can make RGB LED emit various colors of light and
brightness by controlling the 3 Cathodes (2, 3 & 4) of the RGB LED

W 1
R G B
I Rt
2] 3 2 3 4
Red, Green, and Blue light are called 3 Primary Colors when discussing light (Note: for pigments such as paints,
the 3 Primary Colors are Red, Blue and Yellow). When you combine these three Primary Colors of light with

varied brightness, they can produce almost any color of visible light. Computer screens, single pixels of cell
phone screens, neon lamps, etc. can all produce millions of colors due to phenomenon.

RGB

If we use a three 8 bit PWM to control the RGB LED, in theory, we can create 2°2°+2°=16777216 (16 million)
colors through different combinations of RGB light brightness.
Next, we will use RGB LED to make a multicolored LED.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com Il

Project 5.1 RainbowLED

In this project, we will make a multicolored LED, which we can program the RGB LED to automatically change

colors.

Component List

Freenove Projects Board for Raspberry Pi

Raspberry Pi

Blue LED
(GPIO17)

33V
= GND

ft Clock(GPIO17) ~ Storage Register Clock(GPIO27) -

= GND

= GPIO18 = GPIO18
= 5V = 5V
= GND = GND

WS2812LED @

= GND = GND
= GPIO24 = GPIO23
" 5V = 5V

IM Sen

(GPIO15)
(GPIO14)

LED Bar Graph

LED Matrix E

fnRnnnna

Stepping Motor ¢

O 0 Q
I

1-Stepping Motor wron
-Button
Pit
-Active Buzzer oo
Model B/B+ (GPIO13)
7-LED Matrix 0

8.7-Sogment LED | (piot2) Rl
O.LED Bar Graph | (CF'012) Relaym

GND
GPIO15
GPIO14
sV

GPIO16
" GPIO20
GPIO21
GPIO26
" GPIO19
GPIO13
* GPIOB
= GPIOS

182

Passive Buzzer

- SV

= GPIO13(8)
GPIOB(G)
GPIOS(R)

Keypad » ¢ Ultrasonic p-
RGB LED & Photoresistor

RP1

(A2) RFID-RC522 oL
SDA

= 5V

= GND

(»5)

JoyStick Button & Potentiometer

WWW.freenove.com

12CLCD1602

Raspberry Pi GPIO Ribbon Cable

Jumper Wire RGBLED Module

@® RGBLED Module

- @ == O R1
O R2
O R3

1

*

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com

Circuit

Schematic diagram

(GPIOS 11 Red
GPIO6 - Green
GPIO13 > 31 Blue

41 vee

RGBLED Module

Hardware connection.

Freenove Projects Board for Raspberry Pi o www.freénove.com

i
Hm
i

@npow 03190y

If you have any concerns, please send an email to: support@freenove.com

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
mailto:support@freenove.com

IR o< support@freenove.com www freenove.com [l

Code

We need to use the software to make the ordinary GPIO output PWM, since this project requires 3 PWM and
in RPi only one GPIO has the hardware capability to output PWM,

C Code 5.1 RainbowlLED

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 5_ RainbowLED directory of C code.

2. Use following command to compile “RainbowLED.c” and generate executable file “RainbowLED".
Note: in this project, the software PWM uses a multi-threading mechanism. So “-Ipthread” option need
to be add to the compiler.

3. And then run the generated file “ColorfulLED".

After the program is executed, you will see that the RGB LED shows lights of different colors randomly.

The following is the program code:

#include <wiringPi.h>
#include <softPwm. h>
#include <stdio. h>
#include <stdlib.h>

#define ledPinRed 21
#define ledPinGreen 22
#define ledPinBlue 23

void setupLedPin (void)

{
softPwmCreate (ledPinRed, 0, 100); //Creat SoftPWM pin for red
sof tPwmCreate (ledPinGreen, 0, 100); //Creat SoftPWM pin for green
softPwmCreate (ledPinBlue, 0, 100); //Creat SoftPWM pin for blue

void setLedColor(int r, int g, int b)

{
softPwmWrite (ledPinRed, 1); //Set the duty cycle
sof tPwmWrite (ledPinGreen, ¢); //Set the duty cycle
sof tPwmWrite (ledPinBlue, b); //Set the duty cycle

int main(void)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

int r, g, b;

printf ("Program is starting ...\n”);

wiringPiSetup(); //Initialize wiringPi.

setupLedPin () ;

while (1) {
r=random ()%100; //get a random in (0, 100)
g=random ()%100; //get a random in (0, 100)
b=random()%100; //get a random in (0, 100)
setLedColor (r, g, b) ;//set random as the duty cycle value
printf ("r=%d, g=%d, b=%d \n”,r, g, b);
delay (1000) ;

}

return 0;

—— .

First, in subfunction of ledInit(), create the software PWM control pins used to control the R, G, B pin
respectively.

void setupLedPin (void)

{

softPwmCreate (ledPinRed, 0, 100); //Creat SoftPWM pin for red
softPwmCreate (ledPinGreen, 0, 100); //Creat SoftPWM pin for green
softPwmCreate (ledPinBlue, 0, 100); //Creat SoftPWM pin for blue

——

Then create subfunction, and set the PWM of three pins.

void setLedColor (int r, int g, int b)

{

sof tPwmWrite(ledPinRed, 1); //Set the duty cycle
softPwmWrite (ledPinGreen, g); //Set the duty cycle
softPwmWrite (ledPinBlue, b); //Set the duty cycle

—

Finally, in the "while” loop of main function, get three random numbers and specify them as the PWM duty
cycle, which will be assigned to the corresponding pins. So RGB LED can switch the color randomly all the
time.

while (1) {
r=random ()%100; //get a random in (0, 100)
g=random ()%100; //get a random in (0, 100)
b=random ()%100; //get a random in (0, 100)
setLedColor (r, g, b) ;//set random as the duty cycle value

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

printf ("r=%d, g=%d, b=%d \n”, 1, g, b);
delay (1000) ;

The related function of PWM Software can be described as follows:

This function will return a random number.

For more details about Software PWM, please refer to: http://wiringpi.com/reference/software-pwm-library/

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
http://wiringpi.com/reference/software-pwm-library/

B www.freenove.com D4 support@freenove.com

Python Code 5.1 RainbowLED
First, observe the project result, and then learn about the code in detail.
If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 5_RainbowLED directory of Python code.

2. Use python command to execute python code “ColorfulLED.py".

After the program is executed, you will see that the RGB LED randomly lights up different colors.

The following is the program code:
import RPi.GPIO as GPIO

import time

import random

pins = [29, 31, 33] # define the pins for R:29,G:31,B:33

def setup() :
global pwmRed, pwmGreen, pwmBlue
GPT0. setmode (GPT0. BOARD) # use PHYSICAL GPIO Numbering
GPIO. setup(pins, GPIO.OUT) # set RGBLED pins to OUTPUT mode
GPIO. output (pins, GPIO.HIGH) # make RGBLED pins output HIGH level
pwmRed = GPIO. P (pins[0], 2000) # set PWM Frequence to 2kHz
pwmGreen = GPIO. PWM(pins[1], 2000) # set PWM Frequence to 2kHz
pwmBlue = GPIO.PWM(pins[2], 2000) # set PWM Frequence to 2kHz
pwmRed. start (0) # set initial Duty Cycle to 0
pwmGreen. start (0)
pwmBlue. start (0)

def setColor(r val,g val,b val): # change duty cycle for three pins to r val, g val,b val
pwmRed. ChangeDutyCycle (r val) # change pwmRed duty cycle to r val
pwmGreen. ChangeDutyCycle (g val)
pwmBlue. ChangeDutyCycle (b val)

def loop():
while True :
r=random. randint (0, 100) #get a random in (0, 100)
g=random. randint (0, 100)
b=random. randint (0, 100)

setColor (r, g, b) #iset random as a duty cycle value
print C r=%d, g=%d, b=%d ~ %(r ,g, b))
time. sleep (1)

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

def destroy():
pwmRed. stop ()
pwmGreen. stop ()
pwmBlue. stop ()
GPIO0. cleanup ()

if name == main : # Program entrance
print (Program is starting ...)
setup ()
try:
Loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

In last chapter, we learned how to use Python language to make a pin output PWM. In this project, we output
to three pins via PWM and the method is exactly the same as we used in the last chapter. In the “while” loop
of “loop” function, we first generate three random numbers, and then specify these three random numbers
as the PWM values for the three pins, which will make the RGB LED produce multiple colors randomly.
def loop():
while True :

r=random. randint (0, 100) #get a random in (0, 100)

g=random. randint (0, 100)

b=random. randint (0, 100)

setColor (r, g, b) fset random as a duty cycle value
print Cr=%d, g=%d, b=%d > %(r ,g, b))

time. sleep(1)

About the randint() function :

This function can return a random integer (a whole number value) within the specified range (a, b).

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Chapter 6 Buzzer

In this chapter, we will learn about buzzers and the sounds they make. And in our next project, we will use an
active buzzer to make a doorbell and a passive buzzer to make an alarm.

Project 6.1 Doorbell

We will make a doorbell with this functionality: when the Push Button Switch is pressed the buzzer sounds
and when the button is released, the buzzer stops. This is a momentary switch function.

Component knowledge

Buzzer

A buzzer is an audio component. They are widely used in electronic devices such as calculators, electronic
alarm clocks, automobile fault indicators, etc. There are both active and passive types of buzzers. Active
buzzers have oscillator inside, these will sound as long as power is supplied. Passive buzzers require an
external oscillator signal (generally using PWM with different frequencies) to make a sound.

Active buzzer Passive buzzer

-+

2

AL
1
T

Active buzzers are easier to use. Generally, they only make a specific sound frequency. Passive buzzers
require an external circuit to make sounds, but passive buzzers can be controlled to make sounds of various
frequencies. The resonant frequency of the passive buzzer in this Kit is 2kHz, which means the passive
buzzer is the loudest when its resonant frequency is 2kHz.

How to identify active and passive buzzer?

1. As arule, there is a label on an active buzzer covering the hole where sound is emitted, but there are
exceptions to this rule.

2. Active buzzers are more complex than passive buzzers in their manufacture. There are many circuits and
crystal oscillator elements inside active buzzers; all of this is usually protected with a waterproof coating
(and a housing) exposing only its pins from the underside. On the other hand, passive buzzers do not
have protective coatings on their underside. From the pin holes, view of a passive buzzer, you can see
the circuit board, coils, and a permanent magnet (all or any combination of these components
depending on the model.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

support@freenove.com www.freenove.com Il

Active buzzer bottom Passive buzzer bottom

Transistors

A transistor is required in this project due to the buzzer's current being so great that GPIO of RPi’'s output
capability cannot meet the power requirement necessary for operation. A NPN transistor is needed here to
amplify the current.

Transistors, full name: semiconductor transistor, is a semiconductor device that controls current (think of a
transistor as an electronic “amplifying or switching device”. Transistors can be used to amplify weak signals,
or to work as a switch. Transistors have three electrodes (PINs): base (b), collector (c) and emitter (e). When
there is current passing between "be" then "ce" will have a several-fold current increase (transistor
magnification), in this configuration the transistor acts as an amplifier. When current produced by "be" exceeds
a certain value, "ce" will limit the current output. at this point the transistor is working in its saturation region
and acts like a switch. Transistors are available as two types as shown below: PNP and NPN,

PNP transistor NPN transistor

19283 el @ 192083 1l E
E B C E B C

In our kit, the PNP transistor is marked with 8550, and the NPN transistor is marked with 8050.

Thanks to the transistor's characteristics, they are often used as switches in digital circuits. As micro-controllers
output current capacity is very weak, we will use a transistor to amplify its current in order to drive components
requiring higher current.

When we use a NPN transistor to drive a buzzer, we often use the following method. If GPIO outputs high
level, current will flow through R1 (Resistor 1), the transistor conducts current and the buzzer will make sounds.
If GPIO outputs low level, no current will flow through R1, the transistor will not conduct currentand buzzer
will remain silent (no sounds).

When we use a PNP transistor to drive a buzzer, we often use the following method. If GPIO outputs low level,
current will flow through R1. The transistor conducts current and the buzzer will make sounds. If GPIO outputs
high level, no current flows through R1, the transistor will not conduct current and buzzer will remain silent
(no sounds). Below are the circuit schematics for both a NPN and PNP transistor to power a buzzer.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com

D4 support@freenove.com

NPN transistor to drive buzzer

-
1]
2
R1
1kQ)
Uno Pin ” '\NV\, Q1

Buzzer

PNP transistor to drive buzzer

R1
1k

Uno Pin

WW~

Buzzer

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

support@freenove.com

www.freenove.

com

Component List

Raspberry Pi

‘ O .
I

Passive Buzzer Active Buzzer =

Freenove Projects Board for Raspberry Pi

o4

FREENOVE™

JoyStick

Blue LED
(GPIOTT)
BCM Numbering os(§)

74HC595

LED Matrix

4 1-Stepping Motor
® 2-Button
W 3-Active Buzzer
u 4-Relay
5-Blue LED
8-Motor
7-LED Matrix
8-7-Segment LED
9-LED Bar Graph

»
L]

Button &

vi.0

Shift Clock(GPIO17)

Storage Register Clock(GPI027) Data Input(GPI022)

GPIO18
. 5V
GND

WS2812 LED

IM Sen

4-Digit, 7-Segment LED Display

un

Stepping

un2

- R

06

(GPIO12)

= GPIO16
" GPIO20
" GPIO21
" GPIO26
= GPIO19
» GPIO13
* GPIOB
GPIOS

Keypad ® ¢ Ultrasol

RP1

(A2) RFID-RC522

R SCL
» SDA

Potentiometer

12CLCD1602

WWW.freenove.com

GND

sV
= GND

GPIO18

(GPIO15)
(GPIO14)

sV

GPIO13(8]
GPIOB(G)
GPIOS(R)

RGBLED ¢ Photoresistor

Thermistor

GPIO Ribbon Cable

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com [|EEIIG

Schematic diagram with RPi GPIO Extension Shield
Active buzzer
111
2|l=

=

Q1

GPIO12

7T
L]

R1
10kQ

Hardware connection.

Raspberry Pi

BCM Numbering

LED Matrix

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

m < support@freenove.com www.freenove.com [l

If you have any concerns, please send an email to: support@freenove.com

Code

In this project, a buzzer will be controlled by a push button switch. When the button switch is pressed, the
buzzer sounds and when the button is released, the buzzer stops. It is analogous to our earlier project that
controlled an LED ON and OFF.

C Code 6.1 Doorbell

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 6_1_Doorbell directory of C code.

cd ~/Freenove_Kit/Code/C_Code/6_1_Doorbell
2. Use following command to compile “Doorbell.c” and generate executable file “Doorbell.c”.

gcc Doorbell.c -o Doorbell -lwiringPi
3. Then run the generated file “Doorbell”.

sudo ./Doorbell

After the program is executed, press the push button switch and the will buzzer sound. Release the push
button switch and the buzzer will stop.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com

D4 support@freenove.com

The following is the program code:

#include <wiringPi.h>
finclude <stdio. h>

#define buzzerPin 26 //define the buzzerPin
#define buttonPin 29 //define the buttonPin

void main(void)

{

printf ("Program is starting ... \n”);

wiringPiSetup () ;

pinMode (buzzerPin, OUTPUT) ;
pinMode (buttonPin, INPUT) ;

pul1UpDnControl (buttonPin, PUD UP); //pull up to HIGH level
while (1) {

if(digitalRead (buttonPin) == LOW){ //button is pressed
digitalWrite(buzzerPin, HIGH); //Turn on buzzer
printf ("buzzer turned on >>> \n”);

1

else { //button is released
digitalWrite(buzzerPin, LOW); //Turn off buzzer
printf ("buzzer turned off <<< \n”):

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

M support@freenove.com www.freenove.com [l

Python Code 6.1 Doorbell

First, observe the project result, then learn about the code in detail.

If you have any concerns, please send an email to: support@freenove.com
1. Use cd command to enter 6_1_Doorbell directory of Python code.

2. Use python command to execute python code “Doorbell.py”.
After the program is executed, press the push button switch and the buzzer will sound. Release the push
button switch and the buzzer will stop.

The following is the program code:
import RPi.GPIO as GPIO

buzzerPin = 32 # define buzzerPin
40 # define buttonPin

buttonPin

def setup() :

GPT0. setmode (GPT0. BOARD) # use PHYSICAL GPIO Numbering

GPIO. setup (buzzerPin, GPIO.OUT) # set buzzerPin to OUTPUT mode

GPIO. setup (buttonPin, GPIO. IN, pull up down=GPIO.PUD UP) # set buttonPin to PULL UP
INPUT mode

def loop():
while True:

if GPIO. input (buttonPin)==GPI0.LOW: # if button is pressed
GPIO. output (buzzerPin, GPT0. HIGH) # turn on buzzer
print (buzzer turned on >>>)

else : # if button is relessed
GPIO. output (buzzerPin, GPI0. LOW) # turn off buzzer
print (buzzer turned off <<<)

def destroy():

GPIO0. cleanup () # Release all GPIO
if name == main : # Program entrance
print (Program is starting...’)
setup ()
try:
loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com X support@freenove.com

Project 6.2 Alertor

Next, we will use a passive buzzer to make an alarm.

Component List

Freenove Projects Board for Raspberry Pi

Raspberry Pi

O/ Blue LED
/ (GPIO17)
~ BCM Numbering (
FREENOVE™ . P

s
Clock(GPIO17) Storage Register Clock(GPIO27) Data Input(GPI022)

B
Model Zero D é
£y

595
unmnn

= GPIO18

" 5V
GND

us

WS2812LED @

m nnnnn nnnnn
R R0

03

3
I
O 0 Q
1

IM Sen

(GPIO15)
(GPIO14)

4-Digit, 7-Segment LED Display LED Bar Graph

LED Matrix

4 1-Stepping Motor un

2-Button Stepping Motor ¢
® 3-Active Buzzer vz ;
u 4-Relay ¢
5-Blue LED > (
A B-Motor -] P
7-LED Matrix 06 "

8.7-Sogment LED | (piot2) Rl
O.LED Bar Graph | (CF'012) Relaym

GND
GPIO15
GPIO14

(Ad) o

GPIO16
" GPIO20
GPIO21
GPIO26
" GPIO19
GPIO13

5 / " GPIOB GPIOS(R)
RP1 " GPIOS 1
2 (A2) n RFID-RC522 T .
uto] SDA

A1l
ADS7830 JoyStick Potaniometes " sv
GND
WWW.freenove.co!

s » :
st
Active Buzzer = -
RP2
» 5V
- GPIO13(B)
GPIOB(G)

(A3)

Keypad » ¢
RGB LED & Photoresistor

2CLCD1602
Thermistor

Raspberry Pi GPIO Ribbon Cable

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

support@freenove.com

www.freenove.com [l

Schematic diagram with RPi GPIO Extension Shield

3.3V

Passive buzzer

1
2]

GPIO12 \ 4

R1
10kQ

Ql

Hardware connection.

WWW.freenove.com

If you have any concerns, please send an email to: support@freenove.com

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Code

In this project, our buzzer alarm is controlled by the push button switch. Press the push button switch and the
buzzer will sound. Release the push button switch and the buzzer will stop.

As stated before, it is analogous to our earlier project that controlled an LED ON and OFF.

To control a passive buzzer requires PWM of certain sound frequency.

C Code 6.2 Alertor

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 6_2_Alertor directory of C code.

cd ~/Freenove_Kit/Code/C_Code/6_2_Alertor

2. Use following command to compile “Alertor.c” and generate executable file “Alertor”. “-Im” and “-Ipthread”
compiler options need to added here.

gcc Alertor.c -o Alertor -lwiringPi -lm -1lpthread

3. Then run the generated file “Alertor”.

sudo ./Alertor

After the program is executed, press the push button switch and the buzzer will sound. Release the push
button switch and the buzzer will stop.

The following is the program code:

#include <wiringPi.h>
#include <stdio. h>
#include <softTone.h>
#include <math.h>

#define buzzerPin 7 //define the buzzerPin
#define buttonPin 28 //define the buttonPin

void alertor(int pin) {
int x;
double sinVal, toneVal;

for (x=0;x<360;x++) { // frequency of the alertor is consistent with the sine wave

sinVal = sin(x * (M PI / 180)); //Calculate the sine value

toneVal = 2000 + sinVal * 500; //Add the resonant frequency and weighted sine
value

softToneWrite (pin, toneVal) ; //output corresponding PWM

delay (1) ;

}

void stopAlertor (int pin) {
softToneWrite (pin, 0) ;

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

m < support@freenove.com www.freenove.com [l

}
int main(void)
{

printf ("Program is starting ... \n”);

wiringPiSetup () ;

pinMode (buzzerPin, OUTPUT) ;
pinMode (buttonPin, INPUT);
softToneCreate (buzzerPin); //set buzzerPin
pul1UpDnControl (buttonPin, PUD UP); //pull up to HIGH level
while (1) {
if (digitalRead(buttonPin) == LOW){ //button is pressed
alertor (buzzerPin); // turn on buzzer
printf ("alertor turned on >>> \n”):
1
else { //button is released
stopAlertor (buzzerPin); // turn off buzzer

printf ("alertor turned off <<< \n”):

}

return 0;

The code is the same to the active buzzer but the method is different. A passive buzzer requires PWM of a
certain frequency, so you need to create a software PWM pin though softToneCreate (buzzeRPin). Here
softTone is designed to generate square waves with variable frequency and a duty cycle fixed to 50%, which
is a better choice for controlling the buzzer.

- softToneCreate (buzzeRPin) ; ‘

In the while loop of the main function, when the push button switch is pressed the subfunction alertor() will
be called and the alarm will issue a warning sound. The frequency curve of the alarm is based on a sine curve.
We need to calculate the sine value from 0 to 360 degrees and multiplied by a certain value (here this value
is 500) plus the resonant frequency of buzzer. We can set the PWM frequency through softToneWrite (pin,
toneVal).

void alertor (int pin) {

int x;

double sinVal, toneVal;

for (x=0;x<360;x++) { //The frequency is based on the sine curve
sinVal = sin(x * (M _PI / 180)):
toneVal = 2000 + sinVal * 500;
softToneWrite (pin, toneVal) ;
delay (1) ;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

} |

If you want to stop the buzzer, just set PWM frequency of the buzzer pin to 0.

void stopAlertor (int pin) {
softToneWrite (pin, 0) ;

The related functions of softTone are described as follows:

This creates a software controlled tone pin.

This updates the tone frequency value on the given pin.
For more details about softTone, please refer to :http://wiringpi.com/reference/software-tone-library/

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
http://wiringpi.com/reference/software-tone-library/

IEEN o< support@freenove.com www freenove.com [l

Python Code 6.2 Alertor
First observe the project result, and then learn about the code in detail.
If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 6_2_Alertor directory of Python code.

2. Use the python command to execute the Python code “Alertor.py”.

After the program is executed, press the push button switch and the buzzer will sound. Release the push
button switch and the buzzer will stop.

The following is the program code:
import RPi.GPIO as GPIO

import time

import math

buzzerPin = 7 # define the buzzerPin

buttonPin = 38 # define the buttonPin

def setup() :

global p
GPI0. setmode (GPI0. BOARD) # Use PHYSICAL GPIO Numbering

GPIO. setup (buzzerPin, GPIO.OUT) # set RGBLED pins to OUTPUT mode

GPIO. setup (buttonPin, GPIO. IN, pull up_ down=GPIO.PUD UP) # Set buttonPin to INPUT mode,
and pull up to HIGH level, 3.3V

p = GPIO. P (buzzerPin, 1)

p. start (0) ;

def loop():
while True:
if GPIO. input (buttonPin)==GPI0. LOW:
alertor ()
print (Calertor turned on >>> ’)
else :
stopAlertor ()
print (alertor turned off <K<)
def alertor():

p. start (50)
for x in range (0, 361) : # Make frequency of the alertor consistent with the sine wave

sinVal = math. sin(x * (math.pi / 180.0)) # calculate the sine value
toneVal = 2000 + sinVal * 500 # Add to the resonant frequency with a Weighted
p. ChangeFrequency (toneVal) # Change Frequency of PWM to toneVal

time. sleep (0. 001)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com m

def stopAlertor():
p. stop ()

def destroy():

GPIO. output (buzzerPin, GPIO.LOW) # Turn off buzzer
GPI0. cleanup () # Release GPIO resource
if name == main_ : # Program entrance
print (Program is starting...’)
setup ()
try:
Loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program

destroy ()

BT ELLELE

The code is the same to the active buzzer but the method is different. A passive buzzer requires PWM of a
certain frequency, so you need to create a software PWM pin though softToneCreate (buzzeRPin). The way
to create a PWM was introduced earlier in the BreathingLED and RGB LED projects.
def setup():

global p

GPIO. setmode (GPIO0. BOARD) # Use PHYSICAL GPIO Numbering

GPIO. setup (buzzerPin, GPIO.OUT) # set RGBLED pins to OUTPUT mode

GPIO. setup (buttonPin, GPIO.IN, pull up down=GPIO.PUD UP) # Set buttonPin to INPUT
mode, and pull up to HIGH level, 3.3V

p = GPIO.PWM(buzzerPin, 1)

p.start(0) ;

I

In the while loop loop of the main function, when the push button switch is pressed the subfunction alertor()

will be called and the alarm will issue a warning sound. The frequency curve of the alarm is based on a sine

curve. We need to calculate the sine value from 0 to 360 degrees and multiplied by a certain value (here this

value is 500) plus the resonant frequency of buzzer. We can set the PWM frequency through softToneWrite

(pin, toneVal).

def alertor():
p. start (50)

for x in range (0, 361) : # Make frequency of the alertor consistent with the sine wave
sinVal = math. sin(x * (math.pi / 180.0)) # calculate the sine value
toneVal = 2000 + sinVal * 500 # Add to the resonant frequency with a Weighted
p. ChangeFrequency (toneVal) # Change Frequency of PWM to toneVal
time. sleep (0. 001)

When the push button switch is released, the buzzer (in this case our Alarm) will stop.

def stopAlertor():
p. stop ()

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

(Important) Chapter 7 ADC

We have learned how to control the brightness of an LED through PWM and that PWM is not a real analog
signal. In this chapter, we will learn how to read analog values via an ADC Module and convert these analog
values into digital.

Project 7.1 Read the Voltage of Potentiometer

In this project, we will use the ADC function of an ADC Module to read the voltage value of a potentiometer.

Circuit knowledge

ADC

An ADC is an electronic integrated circuit used to convert analog signals such as voltages to digital or
binary form consisting of 1s and 0s. The range of our ADC module is 8 bits, that means the resolution is
278=256, so that its range (at 3.3V) will be divided equally to 256 parts.

Any analog value can be mapped to one digital value using the resolution of the converter. So the more bits

the ADC has, the denser the partition of analog will be and the greater the precision of the resulting conversion.

DIGITAL
/N

255
254
253
252

O~ N WA

N
ov 3.3V 7 ANALOG

Subsection 1: the analog in range of 0V-3.3/256 V corresponds to digital O;

Subsection 2: the analog in range of 3.3 /256 V-2*3.3 /256V corresponds to digital 1;

The resultant analog signal will be divided accordingly.

DAC

The reversing this process requires a DAC, Digital-to-Analog Converter. The digital I/0 port can output high
level and low level (0 or 1), but cannot output an intermediate voltage value. This is where a DAC is useful.
The DAC module PCF8591 has a DAC output pin with 8-bit accuracy, which can divide VDD (here is 3.3V) into
2°=256 parts. For example, when the digital quantity is 1, the output voltage value is 3.3/256 *1 V, and when
the digital quantity is 128, the output voltage value is 3.3/256 *128=1.65V, the higher the accuracy of DAC,
the higher the accuracy of output voltage value will be.

support@freenove.com [l

101

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Component knowledge

Potentiometer

Potentiometer is a resistive element with three Terminal parts. Unlike the resistors that we have used thus far
in our project which have a fixed resistance value, the resistance value of a potentiometer can be adjusted. A
potentiometer is often made up by a resistive substance (a wire or carbon element) and movable contact
brush. When the brush moves along the resistor element, there will be a change in the resistance of the
potentiometer’s output side (3) (or change in the voltage of the circuit that is a part). The illustration below
represents a linear sliding potentiometer and its electronic symbol on the right.

»

d " 1

1 32 2

Between potentiometer pin 1 and pin 2 is the resistive element (a resistance wire or carbon) and pin 3 is
connected to the brush that makes contact with the resistive element. In our illustration, when the brush
moves from pin 1 to pin 2, the resistance value between pin 1 and pin 3 will increase linearly (until it reaches
the highest value of the resistive element) and at the same time the resistance between pin 2 and pin 3 will
decrease linearly and conversely down to zero. At the midpoint of the slider the measured resistance values
between pin 1 and 3 and between pin 2 and 3 will be the same.

In a circuit, both sides of resistive element are often connected to the positive and negative electrodes of
power. When you slide the brush “pin 37, you can get variable voltage within the range of the power supply.

. R1
Pin 3 10kQ

Rotary potentiometer
Rotary potentiometers and linear potentiometers have the same function; the only difference being the
physical action being a rotational rather than a sliding movement.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D< support@freenove.com [JEISS]

ADS7830
The ADS7830 is a single-supply, low-power, 8-bit data acquisition device that features a serial 12C interface
and an 8-channel multiplexer. The following table is the pin definition diagram of ADS7830.

SYMBOL PIN DESCRIPTION TOP VIEW
CHO 1
CH1 2
CH2 3
CH3 4 Analog input channels
CH4 5 (A/D converter) o)
CH5 6 CHO | 1 E*VDD
CH6 7 CH1 | 2 15 | SDA
CH2 | 3 14 | SCL
CH7 8
CH3 | 4 13 | A1
GND 9 Ground
CH4 | 5 12 | AO
_ Internal +2.5V Reference,
REF in/out | 10 £ | Ref | CHS E 11| COM
xternal Reference Input ors [10| REF,/ REFos
COM 11 Common to Analog Input Channel . EI GND
AO 12
Hardware address
Al 13
SCL 14 Serial Clock
SDA 15 Serial Sata
+VDD 16 Power Supply, 3.3V Nominal

[2C communication

I2C (Inter-Integrated Circuit) has a two-wire serial communication mode, which can be used to connect a
micro-controller and its peripheral equipment. Devices using 12C communications must be connected to the
serial data line (SDA), and serial clock line (SCL) (called I2C bus). Each device has a unique address which can
be used as a transmitter or receiver to communicate with devices connected via the bus.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

support@freenove.com

www.freenove.

com

Component List

Raspberry Pi

‘ O .
I

Passive Buzzer Active Buzzer =

Freenove Projects Board for Raspberry Pi

o4

FREENOVE™

JoyStick

Blue LED
(GPIOTT)
BCM Numbering os(§)

74HC595

LED Matrix

4 1-Stepping Motor
® 2-Button
W 3-Active Buzzer
u 4-Relay
5-Blue LED
8-Motor
7-LED Matrix
8-7-Segment LED
9-LED Bar Graph

»
L]

Button &

vi.0

Shift Clock(GPIO17)

Storage Register Clock(GPI027) Data Input(GPI022)

GPIO18
. 5V
GND

WS2812 LED

IM Sen

4-Digit, 7-Segment LED Display

un

Stepping

un2

- R

06

(GPIO12)

= GPIO16
" GPIO20
" GPIO21
" GPIO26
= GPIO19
» GPIO13
* GPIOB
GPIOS

Keypad ® ¢ Ultrasol

RP1

(A2) RFID-RC522

R SCL
» SDA

Potentiometer

12CLCD1602

WWW.freenove.com

GND

sV
= GND

GPIO18

(GPIO15)
(GPIO14)

sV

GPIO13(8]
GPIOB(G)
GPIOS(R)

RGBLED ¢ Photoresistor

Thermistor

GPIO Ribbon Cable

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com [IES

Schematic diagram

1 O '] % g K
ke ADSTRI0

Al " spa}——ou--—o @

AZ SO s S5CL
A3
ADSTAI0
A
A5 COMp—

Ag REFp—
Freenove

LED Bar Graph

AD PoteniiGineter

Freenove Projects Board for Raspberry Pi .10 WWW.freenove.com

If you have any concerns, please send an email to: support@freenove.com

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

The 12C interface in Raspberry Pi is disabled by default. You will need to open it manually and enable the 12C
interface as follows
Type command in the Terminal:

sudo raspi-config
Then open the following dialog box:

— 1 Raspberry Pi Software Configuration Tool (raspi-config) b——

1 Change User Password Change password for the current u

2 Network Options Configure network settings

3 Boot Options Configure options for start-up

4 Localisation Options Set up language and regional sett

5 Interfacing Options Configure connections to peripher

6 Overclock Configure overclocking for your P

7 Advanced Options Configure advanced settings

8 Update Update this tool to the latest ve

9 About raspi-config Information about this configurat
<Select> <Finish>

Choose “5 Interfacing Options” then “P5 I2C” then “Yes” and then “Finish” in this order and restart your RPI.
The 12C module will then be started.

Type a command to check whether the 1I2C module is started

lsmod | grep i2c

If the 12C module has been started, the following content will be shown. “bcm?2708" refers to the CPU model.
Different models of Raspberry Pi display different contents depending on the CPU installed:

p grep 12c

12¢) 859 0
pi@raspberrypi:

mailto:support@freenove.com
http://www.freenove.com/

Next, type the command to install [2C-Tools. It is available with the Raspberry Pi OS by default.

sudo apt-get install i2c-tools
|2C device address detection:

i2cdetect -y 1

When you are using the ADS7830 Module, the result should look like this:

pi@raspberrypi:
0 1 2 3

Here, 48 (HEX) is the 12C address of ADC Module (ADS7830).

sudo apt-get install python-smbus
sudo apt-get install python3-smbus

For C code for the ADC Device, a custom library needs to be installed.
If you have any concerns, please send an email to:

1. Use cd command to enter folder of the ADC Device library.
cd ~/Freenove_Kit/Libs/C-Libs/ADCDevice

2. Execute command below to install the library.

sh ./build.sh

A successful installation, without error prompts, is shown below:

plEraspberrypi:

opuild completed

mailto:support@freenove.com
http://www.freenove.com/

Next, we will execute the code for this project.

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via:

1. Use cd command to enter 7_1_ADC directory of C code.

cd ~/Freenove_Kit/Code/C_Code/7_1_ADC

2. Use following command to compile “ADC.cpp” and generate the executable file “ADC".
sudo g++ ADC.cpp —-o ADC -lwiringPi -1ADCDevice

3. Then run the generated file “ADC".

sudo ./ADC

After the program is executed, adjusting the potentiometer will produce a readout display of the
potentiometer voltage values in the Terminal and the converted digital content.

1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.¢

The following is the code:

1 <wiringPi. h>

2 {stdio. h>

3 <ADCDevice. hpp>

4

5 ADCDevice *adc; // Define an ADC Device class object

6

7 int main(void) {

8 adc = new ADCDevice();

9 printf("Program is starting ... \n”);

10 if (ade—>detect12C(0x48)) { // Detect the ads7830

11 delete adc; // Free previously pointed memory

12 adc = new ADS7830(0x48) : // 1f detected, create an instance of ADS7830
13 }

14 else{

15 printf("No correct 12C address found, \n”

16 "Please use command ~i2cdetect -y 1’ to check the I2C address! \n”
17 “Program Exit. \n”);

18 return —1;

19 }

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com

D4 support@freenove.com [EEISE

while (1) {

int adcValue = adc—>analogRead(2) ; //read analog value of A0 pin
float voltage = (float)adcValue / 255.0 * 5.0; // Calculate voltage
printf ("ADC value : %d ,\tVoltage : %. 2fV\n”, adcValue, voltage) ;
delay (100) ;

}

return 0;

In this code, a custom class library "ADCDevice" is used. It contains the method of utilizing the ADC Module
in this project, through which the ADC Module can easily and quickly be used. In the code, you need to first
create a class pointer adc, and then point to an instantiated object. (Note: An instantiated object is given a
name and created in memory or on disk using the structure described within a class declaration.)

ADCDevice *adc;

adc = new ADCDevice();

// Define an ADC Device class object

Then use the member function detectlC(addr) in the class to detect the 12C module in the circuit. Different
modules have different 12C addresses. The default address of ADC module ADS7830 is 0x48.

if(adc—>detectI2C(0x48)) { // Detect the ads7830

delete adc; // Free previously pointed memory

adc = new ADS7830(0x48) ; // If detected, create an instance of ADS7830
}
else

printf("No correct 12C address found, \n”
"Please use command ~i2cdetect -y 1’ to check the 12C address! \n”
“Program Exit. \n”);

return —1;

When you have a class object pointed to a specific device, you can get the ADC value of the specific channel
by calling the member function analogRead (chn) in this class

- int adcValue = adc—>analogRead(2); //read analog value of A2 pin

Then according to the formula, the voltage value is calculated and displayed on the Terminal.

float voltage = (float)adcValue / 255.0 * 5.0; // Calculate voltage
printf ("ADC value : %d ,\tVoltage : %. 2fV\n”, adcValue, voltage) ;

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Reference

This is a base class. All ADC module classes are its derived classes. It has a real function and a virtual

function.

int detectI2C(int addr) ;
This is a real function, which is used to detect whether the device with given 12C address exists. If it exists,

return 1, otherwise return 0.

virtual int analogRead(int chn) ;
This is a virtual function that reads the ADC value of the specified channel. It is implemented in a derived

class.

These classes are derived from the ADCDevice class and mainly implement the function analogRead(chn).

int analogRead(int chn) ;
This returns the value read on the supplied analog input pin.
Parameter ADS7830, the range of is 0,1, 2, 3,4, 5,6, 7.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

For Python code, ADCDevice requires a custom module which needs to be installed.
If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter folder of ADCDevice.
cd ~/Freenove_Kit/Libs/Python-Libs

2. Unzip the file.

tar zxvf ADCDevice-1.0.4.tar.gz

3. Open the unzipped folder.

cd ADCDevice-1.0.4

4. Install library for python2 and python3.

sudo python2 setup.py install

sudo python3 setup.py install

A successful installation, without error prompts, is shown below:

ages/ADCDevice-1.0.4-py3.7.eqgg

1. 4
\DCDevice==1.0.4

Execute the following command. Observe the project result and then learn about the code in detail.
If you have any concerns, please contact us via:

1. Use cd command to enter 7_1_ADC directory of Python code.

cd ~/Freenove_Kit/Code/Python_Code/7_1_ADC

2. Use the Python command to execute the Python code “ADC.py".

sudo python ADC.py

After the program is executed, adjusting the potentiometer will produce a readout display of the
potentiometer voltage values in the Terminal and the converted digital content.

i e e B e B e e B S B
ol =il =gl gl gl gl el el

The following is the code:

1 import time

from ADCDevice import *

2
3
4 adc = ADCDevice (0x48) # Define an ADCDevice class object
5

mailto:support@freenove.com
http://www.freenove.com/
mailto:support@freenove.com

< support@freenove.com www.freenove.com [l

def setup() :

global adc

if (adc. detectI2C(0x48)) :
adc = ADS7830 (0x48)

else:
print ("No correct I2C address found, \n”
"Please use command ~i2cdetect -y 1’ to check the I2C address! \n”
“Program Exit. \n”);

exit(-1)

def loop():
while True:
value = adc. analogRead(2) # read the ADC value of channel 2
voltage = value / 255.0 * 5.0 # calculate the voltage value
print (C ADC Value : %d, Voltage : % 2f %(value, voltage))
time. sleep (0. 1)

def destroy():

adc. close ()

if name == main ’: # Program entrance
print (Program is starting ...)
try:
setup ()
loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

In this code, a custom Python module "ADCDevice" is used. It contains the method of utilizing the ADC
Module in this project, through which the ADC Module can easily and quickly be used. In the code, you need
to first create an ADCDevice object adc.

|: adc = ADCDevice(0x48) # Define an ADCDevice class object

Then in setup(), use detecticlC(addr), the member function of ADCDevice, to detect the 12C module in the
circuit. The default address of ADS7830 is 0x48.
def setup():
global adc
if (adc. detectI2C(0x48)) :
adc = ADS7830 (0x48)

else:

print ("No correct I2C address found, \n”

"Please use command ’i2cdetect —y 1’ to check the I2C address! \n”
“Program Exit. \n”);

exit(-1)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

When you have a class object of a specific device, you can get the ADC value of the specified channel by
calling the member function of this class, analogRead(chn). In loop(), get the ADC value of potentiometer.

value = adc. analogRead(2) # read the ADC value of channel 2

i

Then according to the formula, the voltage value is calculated and displayed on the terminal monitor.
voltage = value / 255.0 % 5.0 # calculate the voltage value
print (C ADC Value : %d, Voltage : % 2f %(value, voltage))

time. sleep (0. 1)

Reference
About smbus Module:

W

The System Management Bus Module defines an object type that allows SMBus transactions on hosts
running the Linux kernel. The host kernel must support 12C, I2C device interface support, and a bus adapter
driver. All of these can be either built-in to the kernel, or loaded from modules.

In Python, you can use help(smbus) to view the relevant functions and their descriptions.
bus=smbus.SMBus(1): Create an SMBus class object.

bus.read_byte_data(address,cmd+chn): Read a byte of data from an address and return it.
bus.write_byte_data(address,cmd,value). Write a byte of data to an address.

class ADCDevice (object) |
This is a base class.

int detectI2C(int addr);

This is a member function, which is used to detect whether the device with the given 12C address exists. If

it exists, it returns true. Otherwise, it returns false.

These classes are derived from the ADCDevice class and mainly implement the function analogRead(chn).

int analogRead(int chn) ;
This returns the value read on the supplied analog input pin.
Parameter chn: For ADS7830, therange is 0,1, 2, 3,4, 5,6, 7.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

www.freenove.com [l

< support@freenove.com

Project 7.2 Soft Light

In this project, we will make a soft light. We will use an ADC Module to read ADC values of a potentiometer
and map it to duty cycle ratio of the PWM used to control the brightness of an LED. Then you can change the
brightness of an LED by adjusting the potentiometer.

Component List

Freenove Projects Board for Raspberry Pi

Raspberry Pi

Blue LED
(GPIO17)

o
/ ~ BCM Numbering

FREENOVE™
i 33v

= GND

74HCS95 : Shift Clock(GPIO17) Storage Register Clock(GPIO27) Data Input(GPIO22)

sV
= GND

o 5] 74HC595 74HC595 74HC595

nnnn nunnn nunnn nnnnn nunnn mmmnm

Model Zero Dé
£y

= GPIO18

WS2812LED @

ﬁ

O 0 Q
1

IM Sen

(GPIO15)
(GPIO14)

)

P10

, 7-Segment LED Display LED Bar Graph

LED Matrix

fnRnnnna

Model B/B+

182
Passive Buzzer

00000000

(»s)

JoyStick

1-Stepping Motor
® 2-Button
™ 3-Active Buzzer
u 4-Relay
5.Blue LED
A 6-Motor
7-LED Matrix
8-7-Segment LED
9-LED Bar Graph

]
as

(]
- RS
06

(GPIO12) Relaym

RP3
(Ad)

& a
(A3)

el n ey

Potentiometer

WWW.freenove.com

Keypad » ¢

D1602

Stepping

P
ui2

GND
GPIO15
GPIO14

GPIO21
GPIO26
" GPIO19
GPIO13
* GPIOB
= GPIOS

scL
SDA

Motor &
1

(GPIO19)

>

" 5V
» GPIOT3E)
GPIOB(G)
GPIOS(R)

RGB LED & Photoresistor

Raspberry Pi

GPIO Ribbon Cable

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com

support@freenove.com

Circuit

Schematic diagram

GPIO17

R1
220Q

WV
I
§
3
-
1

yotentiometer QO
| ADS7830

LED1
Blue (525nm)
Vol
5V
ADC
A1 SDA SD
A2 SCL SC
A3 .
ADS7830
Ad .
A5 COM .
A6 REF -
Freenove
A7 GND

Hardware connection

id Auaqdsey @

B8l
9 | 8pop ¥ Id Auegdsey

152
Passive Buzzer Active Buzzer =
AB
AS
Ad
A3
AZ
Al
MPUG050 / AQ

Freenove Projects Board for Raspberry Pi

Bution =

@)

RFID-RC522

Potentiometer

WWW.freenove.com

If you have any concerns, please send an email to: support@freenove.com

support@freenove.com [l

115

mailto:support@freenove.com
http://www.freenove.com/

M support@freenove.com www.freenove.com [l

Code

C Code 7.2 Softlight

If you haven't configured I12C, please refer to Chapter 7. If you've done it, please move on.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 7_2_Softlight directory of C code.

2. Use following command to compile “Softlight.cpp” and generate executable file “Softlight”.

3. Then run the generated file “Softlight”.

After the program is executed, adjusting the potentiometer will display the voltage values of the
potentiometer in the Terminal window and the converted digital quantity. As a consequence, the brightness
of LED will be changed.

The following is the code:

#include <wiringPi.h>
#include <stdio. h>
#include <softPwm. h>
#include <ADCDevice. hpp>

#define ledPin 0
ADCDevice *adc:; // Define an ADC Device class object
int main(void) {

adc = new ADCDevice();

printf ("Program is starting ... \n”);

if (adc—>detect12C (0x48)) { // Detect the ads7830

delete adc; // Free previously pointed memory

adc = new ADS7830(0x48) ; // 1f detected, create an instance of ADS7830.
}
else({

printf("No correct I2C address found, \n”

"Please use command ~i2cdetect -y 1’ to check the I2C address! \n”
“Program Exit. \n”);

return —1;

}

wiringPiSetup() ;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [N

softPwmCreate (ledPin, 0, 100) ;

while (1) {
int adcValue = adc—>analogRead(2) ; //read analog value of A2 pin
softPwmWrite (1edPin, adcValue*x100/255) ; // Mapping to PWM duty cycle

float voltage = (float)adcValue / 255.0 * 5.0; // Calculate voltage
printf ("ADC value : %d ,\tVoltage : %. 2fV\n”, adcValue, voltage) ;
delay (30) ;

}

return 0;

In the code, read the ADC value of potentiometer and map it to the duty cycle of PWM to control LED
brightness.

. int adcValue = adc—>analogRead(2) ; //read analog value of A2 pin

softPwmWrite (1edPin, adcValue*x100/255) ; // Mapping to PWM duty cycle

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

M support@freenove.com

Python Code 7.2 Softlight

If you haven't configured I12C, please refer to Chapter 7. If you did, please continue.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 7_2_Softlight directory of Python code

2. Use the python command to execute the Python code “Softlight.py”.

After the program is executed, adjusting the potentiometer will display the voltage values of the
potentiometer in the Terminal window and the converted digital quantity. As a consequence, the brightness

of LED will be changed.

The following is the code:

import RPi.GPIO as GPIO

import time

from ADCDevice import *

ledPin = 11
adc = ADCDevice(0x48) # Define an ADCDevice class object

def

def

setup() :

global adc

if (adc. detectI2C(0x48)) :
adc = ADS7830 (0x48)

else:
print ("No correct I2C address found, \n”
"Please use command ~i2cdetect -y 1’ to check the I2C address! \n”
“Program Exit. \n”);
exit(-1)

global p

GPI0. setmode (GPI0. BOARD)

GPIO. setup (1edPin, GPI0. OUT)

p = GPIO. PWM(1edPin, 1000)

p. start (0)

Toop () :
while True:
value = adc. analogRead(2) # read the ADC value of channel 0
p. ChangeDutyCycle (value*100/255) # Mapping to PW duty cycle
voltage = value / 255.0 * 5.0 # calculate the voltage value
print (ADC Value : %d, Voltage : % 2f %(value,voltage))
time. sleep (0. 03)

B support@freenove.com

www.freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [N

def destroy():
GPIO0. cleanup ()

adc. close ()

if name == main ' : # Program entrance
print (Program is starting ...)
try:
setup ()
Loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy()

In the code, read ADC value of potentiometers and map it to the duty cycle of the PWM to control LED
brightness.

value = adc. analogRead(2) # read the ADC value of channel 0

p. ChangeDutyCycle (value*100/255) # Mapping to PW duty cycle

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com

www.freenove.com [l

Project 7.3 Colorful Light

In this project, 3 potentiometers are used to control the RGB LED and in principle it is the same as with the
Soft Light. project. Namely, read the voltage value of the potentiometer and then convert it to PWM used to
control LED brightness. Difference is that the previous soft light project needed only one LED while this one

required (3) RGB LEDs.

Component List

Freenove Projects Board for Raspberry Pi

Raspberry Pi

o4

FREENOVE

- 5
Model Zero D é
£y

ﬁ

O 0 Q
0

Model B/B+

(GPIOS)

182
Passive Buzzer Active Buzzer =

00000000 ?

(»s)

JoyStick

Bl‘ué LED
)

33v

= GND

74HCS95 : Shift Clock(GPIO17) Storage Register Clock(GPIO27) Data Input(GPIO22) -

74HC595 74HC595 74HC595 « GND
nnnnn nunnn nmunnn nnnnn L) mnnn

= GPIO18
ue us uw 2

WS2812LED @

nnnn LT nnnnn nnnnn
Rz R28 3 Ri2
il o4

IM Sen

= 5V

(GPIO15)
(GPIO14)

)

P10

LED Bar Graph

LED Matrix

Innnnnnn
1-Stepping Motor o !
2-Button o Stepping Motor ¢
® 3-Active Buzzer 2 P11
u 4-Relay o
5-Blue LED (]
A 8-Motor -]

7-LED Matrix 0

8.7-Sogment LED | (piot2) Rl
9.LED Bar Graph | (CF'012) Relaym

(GPI019)

PIO16

® GPIO20

GPI021

GPI026 . SV

" GPIO19 = GPIOTX(E)
GPIO13 GPIOB(G)
/ ® GPIOS GPIOS(R)

® GPIOS 14

Keypad # ¢ U

RFID-RC522

1602

Potentiometer

WWW.freenove.com

GPIO Ribbon Cable

Jumper Wire

RGBLED Module

RGBLED Module

O rR2

[R3

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com

support@freenove.com [E¥AR

Circuit

Schematic diagram

potentiometer potentiometerl

2 2
<—§._ﬂg' ~——— A3
1 1

potentiometer2

ADS7830

A Vi —
0 ADC CC
A1 SDA SDA
A2 i A2 SCL < scﬂ
3 —1A3 D1
ADS7830
AL — Ad DOy~
=1 A5 CcoM
A6 REF
Freenove

RGBLED Module 35V
VCC 4 ‘
Blue *3 GPIO@
Green W GPIO6
Red 1—- GPIOS

2102 1 Ausqdsey 5
B 1 9pOW 1d Auagdses

MPUB0S0

BEM Numbering

Freenove Projects Board for Raspberry Pi

RFID-RCE2Z

WWW.freenove.com

.11‘ L)
HEE §
ag2 5

g

If you have any concerns, please send an email to: support@freenove.com

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

If you haven't configured I12C, please refer to Chapter 7. If you've done it, please continue.
First, observe the project result, and then learn about the code in detail.
If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 7_3_ColorfulSoftlight directory of C code.

cd ~/Freenove_Kit/Code/C_Code/7_3_ColorfulSoftlight

2. Use following command to compile "ColorfulSoftlight.cpp” and generate executable file
"ColorfulSoftlight".

sudo g++ ColorfulSoftlight.cpp -o ColorfulSoftlight -lwiringPi -1ADCDevice
3. Then run the generated file "ColorfulSoftlight”.

sudo ./ColorfulSoftlight

After the program is executed, rotate one of the potentiometers, and the color of RGB LED will change. The
Terminal window will display the ADC value of each potentiometer.

The following is the program code:

1 #include <wiringPi.h>

2 #tinclude <stdio. h>

3 #tinclude <softPwm. h>

4 #include <ADCDevice. hpp>

5

6 #tdefine ledRedPin 21 //define 3 pins for RGBLED
7 #tdefine ledGreenPin 22

8 tdefine ledBluePin 23

9

10 ADCDevice *adc; // Define an ADC Device class object
11

12 | int main(void) {

13 adc = new ADCDevice () ;

14 printf ("Program is starting ... \n”);

15

16 if (ade—>detectI2C (0x48)) { // Detect the ads7830
17 delete adc; // Free previously pointed memory

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com ¥R

adc = new ADS7830(0x48) ; // If detected, create an instance of ADS7830
}
else({
printf ("No correct 12C address found, \n”
"Please use command ~i2cdetect -y 1’ to check the I2C address! \n”
“Program Exit. \n”);
return —1;
}
wiringPiSetup() ;
softPwmCreate (ledRedPin, 0, 100) ; //creat 3 PMW output pins for RGBLED
softPwmCreate (ledGreenPin, 0, 100) ;
softPwmCreate (ledBluePin, 0, 100) :
while (1) {
int val Red = adc—>analogRead(2); //read analog value of 3 potentiometers
int val Green = adc—>analogRead(3) ;
int val Blue = adc—>analogRead(4) ;
softPwmWrite (ledRedPin, 100-val Red*100/255) ; //map the read value of potentiometers
into PWM value and output it
sof tPwmWrite (l1edGreenPin, 100-val Green*100/255) ;
sof tPwvmWrite (1edBluePin, 100-val Blue*100/255) ;

//print out the read ADC value
printf ("ADC value val Red: %d ,\tval Green: %d ,\tval Blue: %d
\n”,val Red, val Green,val Blue);
delay (100) ;
}

return 0;

In the code you can read the ADC values of the 3 potentiometers and map it into a PWM duty cycle to control
the 3 LED elements to vary the color of their respective RGB LED.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

M support@freenove.com www.freenove.com [l

Python Code 7.3 ColorfulSoftlight

If you haven't configured I12C, please refer to Chapter 7. If you've done it, please continue.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 7_3_ColorfulSoftlight directory of Python code.

2. Use python command to execute python code "ColorfulSoftlight.py".

After the program is executed, rotate one of the potentiometers, and the color of RGB LED will change. The
Terminal window will display the ADC value of each potentiometer.

The following is the program code:
import RPi.GPIO as GPIO

import time

from ADCDevice import *

ledRedPin = 29 # define 3 pins for RGBLED
ledGreenPin = 31

ledBluePin = 33

adc = ADCDevice(0x48) # Define an ADCDevice class object

def setup():

global adc

if (adc. detectI2C(0x48)): # Detect the pcf8591.
adc = ADS7830 (0x48)

else:
print ("No correct I2C address found, \n”
“Please use command ’i2cdetect —y 1’ to check the I2C address! \n”
“Program Exit. \n”);
exit(-1)

global p Red, p Green,p Blue

GPT0. setmode (GPTO. BOARD)

GPIO0. setup (ledRedPin, GPI0. OUT) # set RGBLED pins to OUTPUT mode
GPIO0. setup (ledGreenPin, GPI0. OUT)

GPIO0. setup (ledBluePin, GPI0. OUT)

p_Red = GPIO. PW (1ledRedPin, 1000) # configure PMW for RGBLED pins, set PWM Frequence to
1kHz

p_Red. start (0)

p_Green = GPIO.PWM(ledGreenPin, 1000)

p_Green. start (0)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com WA

p Blue = GPIO. PWM (1edBluePin, 1000)
p Blue. start (0)

def loop():
while True:
value Red = adc. analogRead (4) # read ADC value of 3 potentiometers
value Green = adc. analogRead (3)
value Blue = adc.analogRead(2)
p_Red. ChangeDutyCycle (100-value Red*100/255) # map the read value of potentiometers
into PWM value and output it
p_Green. ChangeDutyCycle (100-value Green*100/255)
p Blue. ChangeDutyCycle (100-value Blue*100/255)

print read ADC value
print (ADC Value
value Red: %d , \tvlue Green: %d , \tvalue Blue: %d’ % (value Red,value Green, value Blue))

time. sleep (0. 01)

def destroy():
adc. close ()
GPIO. cleanup ()

if name == main : # Program entrance
print (Program is starting ...)
setup ()
try:
Loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy()

In the code you can read the ADC values of the 3 potentiometers and map it into a PWM duty cycle to control
the 3 LED elements to vary the color of their respective RGB LED.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com Il

Chapter 8 Photoresistor & LED

In this chapter, we will learn how to use a photoresistor to make an automatic dimming nightlight.

Project 8.1 NightLamp

A Photoresistor is very sensitive to the amount of light present. We can take advantage of the characteristic
to make a nightlight with the following function. When the ambient light is less (darker environment), the LED
will automatically become brighter to compensate and when the ambient light is greater (brighter
environment) the LED will automatically dim to compensate.

Component List

Freenove Projects Board for Raspberry Pi

Raspberry Pi

O Blue LED
/ GPIGT7)
~ BCM Numbering

FREENOVE

) v 33v

" w o (Rymi=YE) GND
74HCS595 Shift Clock(GPIO17) Storage Register Clock(GPI027) Data Input(GP1022) sV

= GND

o 74HC595 74HC595 74HC595
i [T o [T (T T

0
Model A Model Zero D é

= GPIO18
= 5V
= GND

s w e

WS2812LED @

I

‘ OOOOOOOOOO0OOO00O0000 Q
OOOOOOOO0OO00O0O0000000

= GND
= GPIO23
= 5V

IM Sen

(GPIO15)
(GPIO14)
N

egment LED Display LED Bar Graph

LED Matrix -

4 1-Stepping Motor

Kt

® 2-Button Stepping Motor ¢

u 3-Active Buzzer 2

u 4-Relay = = :
5-Blue LED = < (

A 6-Motor -] ©
7-LED Matrix D6 H H i

8.7-Sogment LED | (spio12) Rel
9-LED Bar Graph | ¢) B

GPIO15
GPIO14
sV

RP3
(A4)

= GPIO16
GPI020
GPIO21
" GPIO26
GPIO19

182 Ls1

¥ »
Passive Buzzer Active Buzzer = u
RP2
(A3)

Keypad @ & Ultrasonicp

GPIO13
" GPIOB
= GPIOS

GPIOB(G)
GPIOS(R)

RP1

(~2) RFID-RC522

" SCL
» SDA
. 5V

" GND

JoyStick Button & Potentiometer

Thermistor RGB LED @ Photoresistor

12CLCD1602

Freenove Projects Board for Raspberry Pi o) WWW.freenove.com

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com

D4 support@freenove.com

Raspberry Pi x1

GPIO Ribbon Cable x1

Jumper Wire

Photoresistor

&
>
o
o
<}
(2]
-4
o
<
o
o
+

o}

support@freenove.com [l

127

mailto:support@freenove.com
http://www.freenove.com/

128 support@freenove.com www.freenove.com Il

Circuit

Schematic diagram
LED1

Rl Blue (525nm)

2200 A
erior —MM-—H—] I

HC-SR1 . 5V
ADS7830
1 ADC 7
AO 5 A1 SDA <_SD,
DO ? —t A2 scLf—————SC
GND 4 . ADS7830
VCC ———-1 i Ad DOy
- et A5 COMf—=
MH-Sensor GV —
et AG REF =
Freenove

. A7 GND 1

Hardware connection.

RFID-RC522

Potentiometer

WWW.freenove.com

If you have any concerns, please send an email to: support@freenove.com

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [EEVAS

Code

The code used in this project is identical with what was used in the last chapter.

C Code 8.1 Nightlamp

If you haven't configured I12C, please refer to Chapter 7. If you've done it, please continue.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 8_Nightlamp directory of C code.

2. Use following command to compile “Nightlamp.cpp” and generate executable file “Nightlamp”.

3. Then run the generated file “Nightlamp”.

After the program is executed, if you cover the Photoresistor or increase the light shining on it, the brightness
of the LED changes accordingly. As in previous projects the Terminal window will display the current input
voltage value of ADC module Al pin and the converted digital quantity.

The following is the program code:

#include <wiringPi.h>
#include <stdio. h>
#include <softPwm. h>
#include <ADCDevice. hpp>

#define ledPin 0
ADCDevice *adc: // Define an ADC Device class object
int main(void) {

adc = new ADCDevice();

printf ("Program is starting ... \n”);

if (adc—>detectI2C (0x48)) { // Detect the ads7830

delete adc; // Free previously pointed memory

adc = new ADS7830(0x48) ; // If detected, create an instance of ADS7830
}
else

printf("No correct I2C address found, \n”
"Please use command ~i2cdetect -y 1’ to check the I2C address! \n”
“Program Exit. \n”);

return —1;

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

wiringPiSetup() ;

softPwmCreate (ledPin, 0, 100) ;

while (1) {
int value = adc—>analogRead(1); //read analog value of Al pin
softPwmWrite (1edPin, value%x100/255) ;
float voltage = (float)value / 255.0 * 5.0; // calculate voltage
printf ("ADC value : %d ,\tVoltage : %. 2fV\n”, value, voltage);
delay (100) ;

}

return 0;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [

Python Code 8.1 Nightlamp

If you haven't configure 12C, please refer to Chapter 7. If you have done it, please continue.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 8_Nightlamp directory of Python code.

2. Use the python command to execute the Python code “Nightlamp.py”.

After the program is executed, if you cover the Photoresistor or increase the light shining on it, the brightness
of the LED changes accordingly. As in previous projects the Terminal window will display the current input
voltage value of ADC module Al pin and the converted digital quantity.

The following is the program code:
import RPi.GPIO as GPIO

import time

from ADCDevice import *

ledPin = 11 # define ledPin
adc = ADCDevice(0x48) # Define an ADCDevice class object

def setup():
global adc
if (adc. detectI2C(0x48)): # Detect the pcf8591.
adc = ADS7830 (0x48)
else:
print ("No correct I2C address found, \n”
"Please use command ~i2cdetect -y 1’ to check the I2C address! \n”
“Program Exit. \n”);
exit(-1)
global p
GPI0. setmode (GPI0. BOARD)
GPIO. setup(ledPin, GPI0.0UT) # set ledPin to OUTPUT mode
GPIO0. output (ledPin, GPI0. LOW)

p = GPIO. PWM(ledPin, 1000) # set PWM Frequence to 1kHz
p. start (0)

def loop():
while True:
value = adc. analogRead(1) # read the ADC value of channel 0
p. ChangeDutyCycle (value*100/255)
voltage = value / 255.0 * 5.5

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

print (C ADC Value : %d, Voltage : % 2f %(value,voltage))
time. sleep (0. 01)

def destroy():
adc. close ()
GPI0. cleanup ()

if name == main ’: # Program entrance
print (Program is starting ...)
setup ()
try:
Loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program

destroy ()

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com K

Chapter 9 Thermistor

In this chapter, we will learn about Thermistors which are another kind of Resistor.

Project 9.1 Thermometer

A Thermistor is a type of Resistor whose resistance value is dependent on temperature and changes in
temperature. Therefore, we can take advantage of this characteristic to make a Thermometer.

Component knowledge

Thermistor

Thermistor is a temperature sensitive resistor. When it senses a change in temperature, the resistance of the
Thermistor will change. We can take advantage of this characteristic by using a Thermistor to detect
temperature intensity. A Thermistor and its electronic symbol are shown below.

The relationship between resistance value and temperature of a thermistor is:
Rt=R+EXP [B*(1/T2-1/T1)]

Where:

Rt is the thermistor resistance under T2 temperature;

R is in the nominal resistance of thermistor under T1 temperature;

EXP[n] is nth power of €;

B is for thermal index;

T1, T2 is Kelvin temperature (absolute temperature). Kelvin temperature=273.15 + Celsius temperature.
For the parameters of the Thermistor, we use: B=3950, R=10k, T1=25.
The circuit connection method of the Thermistor is similar to photoresistor, as the following:

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

5V

10kQ

Pin AO

R1

We can use the value measured by the ADC converter to obtain the resistance value of Thermistor, and then
we can use the formula to obtain the temperature value.
Therefore, the temperature formula can be derived as:

T2 =1/(1/T1 + In(Rt/R)/B)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com

support@freenove.com

Component List

Raspberry Pi

Passive Buzzer

‘ O .
I

Freenove Projects Board for Raspberry Pi

o4

Active Buzzer =

BCM Numbering

FREENOVE™

Blue LED
(GPIOT7)
@

os(§

74HC595

LED Matrix

4 1-Stepping Motor
® 2-Button
W 3-Active Buzzer
u 4-Relay
5-Blue LED
8-Motor
7-LED Matrix
8-7-Segment LED
9-LED Bar Graph

Shift Clock(GPIO17)

= GND
Data Input(GP1022) 5 .. 5V
= GND

Storage Register Clock(GPI027)

GPIO18
. 5V
GND

GPIO18

WS2812 LED

IM Sen

(GPIO15)

4-Digit, 7-Segment LED Display (GPIO14)

un

Stepping

un2

- R
06

(GPIO12)

= GPIO16
" GPIO20
" GPIO21
" GPIO26

sV

= GPIO19
» GPIO13

Keypad ® ¢ Ultrasol

GPIO13(8]
GPIOB(G)

»
L]

JoyStick Button #

vi.0

RGBLED ¢ Photoresistor

* GPIOB GPIOS(R)

RP1 GPIOS
RFID-RC522
(A2) SCL

» SDA

Thermistor

Potentiometer

12CLCD1602

WWW.freenove.com

GPIO Ribbon Cable

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

136 support@freenove.com www.freenove.com Il

Circuit

Schematic diagram

10k

SDA SD
SCL SC

D1
ADSTEI0
[

ADSTE30 -
AZ
3
<
-] COM
£

A
| ADG
R2 I*‘*
NTY -
A,
- I-ﬁ‘
h
h
I Freenove
r—n

1
F -
AT GND) —_[_

Hardware connection.
After running the program, hold your finger against the sensor to observe the change.

BCM Numbering

Id Aueqdsey @
§ | 8pol ¥ Id Ausgdsey

LED Matrix

Stepping Motor #

P11

e Buzzer Active Buzzer =

T

MPUG050 / Bution = Potentiometer

Freenove Projects Board for Raspberry Pi 10 WWW.freenove.com

If you have any concerns, please send an email to: support@freenove.com

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

In this project code, the ADC value still needs to be read, but the difference here is that a specific formula is
used to calculate the temperature value.

If you haven't configure 12C, please refer to Chapter 7. If you've done it, please continue.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please send an email to:

1. Use cd command to enter 9_Thermometer directory of C code.

cd ~/Freenove_Kit/Code/C_Code/9_Thermometer

2 Use following command to compile “Thermometer.cpp” and generate executable file “Thermometer”.
sudo g++ Thermometer.cpp —-o Thermometer -lwiringPi -1ADCDevice

3 Then run the generated file “Thermometer”.

sudo ./Thermometer

After the program is executed, the Terminal window will display the current ADC value, voltage value and
temperature value. Try to “pinch” the thermistor with your index finger and thumb for a brief time, you should
see that the temperature value increases.

1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.

The following is the code:

1 <wiringPi. h>
{stdio. h>
<math. h>
<ADCDevice. hpp>

ADCDevice *adc; // Define an ADC Device class object

O N O O B~ W DN

int main(void) {

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

adc = new ADCDevice();

printf ("Program is starting ... \n”);
if (adc—>detect12C (0x48)) { // Detect the ads7830
delete adc; // Free previously pointed memory
adc = new ADS7830(0x48) ; // If detected, create an instance of ADS7830
}
else

printf("No correct I2C address found, \n”
"Please use command ~i2cdetect -y 1’ to check the I2C address! \n”

“Program Exit. \n”);

return —1;
}
printf("Program is starting ... \n”):
while (1) {
int adcValue = adc—>analogRead(0); //read analog value A0 pin
float voltage = (float)adcValue / 255.0 * 5.0; // calculate voltage
float Rt = 10 * voltage / (5.0 - voltage); //calculate resistance value of
thermistor
float tempK = 1/(1/(273.15 + 25) + log(Rt/10)/3950.0); //calculate temperature
(Kelvin)
float tempC = tempK -273.15; //calculate temperature (Celsius)

printf ("ADC value : %d ,\tVoltage : %. 2fV,
\tTemperature : % 2fC\n”, adcValue, voltage, tempC) ;
delay (100) ;
}

return 0;

In the code, the ADC value of ADC module AO port is read, and then calculates the voltage and the resistance
of Thermistor according to Ohms Law. Finally, it calculates the temperature sensed by the Thermistor,
according to the formula.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

If you haven't configured 12C, please refer to Chapter 7. If you've done it, please continue.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please send an email to:

1. Use cd command to enter 9_Thermometer directory of Python code.
cd ~/Freenove_Kit/Code/Python_Code/9_Thermometer

2. Use python command to execute Python code “Thermometer.py”.
sudo python Thermometer.py

After the program is executed, the Terminal window will display the current ADC value, voltage value and
temperature value. Try to “pinch” the thermistor with your index finger and thumb for a brief time, you should

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1.

The following is the code:

1 import RPi.GPIO as GPIO

2 import time

3 import math

4 from ADCDevice import *

5

6 adc = ADCDevice(0x48) # Define an ADCDevice class object
7

8 def setup():

9 global adc

10 if (adc. detectI2C(0x48)): # Detect the pcf8591.

11 adc = ADS7830 (0x48)

12 else:

13 print ("No correct 12C address found, \n”

14 "Please use command ~i2cdetect -y 1’ to check the I2C address! \n”
15 “Program Exit. \n”);

16 exit(-1)

17

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

def loop():
while True:
value = adc. analogRead(0) # read ADC value AO pin
voltage = value / 255.0 * 5.0 # calculate voltage
Rt = 10 * voltage / (5.0 — voltage) # calculate resistance value of thermistor
tempK = 1/(1/(273.15 + 25) + math. log(Rt/10)/3950.0) # calculate temperature (Kelvin)
tempC = tempK —273. 15 # calculate temperature (Celsius)

print (ADC Value : %d, Voltage : % 2f, Temperature : %. 2f %(value, voltage, tempC))
time. sleep (0. 01)

def destroy():
adc. close ()

GPI0. cleanup ()

if name == main ’: # Program entrance
print (Program is starting ... ’)
setup()
try:
loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

In the code, the ADC value of ADC module AQ port is read, and then calculates the voltage and the resistance
of Thermistor according to Ohms Law. Finally, it calculates the temperature sensed by the Thermistor,
according to the formula.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [ES

Chapter 10 Joystick

In an earlier chapter, we learned how to use Rotary Potentiometer. We will now learn about joysticks, which
are electronic modules that work on the same principle as the Rotary Potentiometer.

Project 10.1 Joystick

In this project, we will read the output data of a joystick and display it to the Terminal screen.

Component knowledge

Joystick

A Joystick is a kind of input sensor used with your fingers. You should be familiar with this concept already as
they are widely used in gamepads and remote controls. It can receive input on two axes (Y and or X) at the
same time (usually used to control direction on a two dimensional plane). And it also has a third direction
capability by pressing down (Z axis/direction).

GND
+5V
VRX
VRY
SW

Joystick

o [oo |-

This is accomplished by incorporating two rotary potentiometers inside the Joystick Module at 90 degrees of
each other, placed in such a manner as to detect shifts in two directions simultaneously and with a Push
Button Switch in the “vertical” axis, which can detect when a User presses on the Joystick.

+5V . @—

- -
T

When the Joystick data is read, there are some differences between the axes: data of X and Y axes is analog,
which needs to use the ADC. The data of the Z axis is digital, so you can directly use the GPIO to read this
data or you have the option to use the ADC to read this.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

support@freenove.com

www.freenove.

com

Component List

Raspberry Pi

‘ O .
I

Passive Buzzer Active Buzzer =

Freenove Projects Board for Raspberry Pi

o4

FREENOVE™

JoyStick

Blue LED
(GPIOTT)
BCM Numbering os(§)

74HC595

LED Matrix

4 1-Stepping Motor
® 2-Button
W 3-Active Buzzer
u 4-Relay
5-Blue LED
8-Motor
7-LED Matrix
8-7-Segment LED
9-LED Bar Graph

»
L]

Button &

vi.0

Shift Clock(GPIO17)

Storage Register Clock(GPI027) Data Input(GPI022)

GPIO18
. 5V
GND

WS2812 LED

IM Sen

4-Digit, 7-Segment LED Display

un

Stepping

un2

- R

06

(GPIO12)

= GPIO16
" GPIO20
" GPIO21
" GPIO26
= GPIO19
» GPIO13
* GPIOB
GPIOS

Keypad ® ¢ Ultrasol

RP1

(A2) RFID-RC522

R SCL
» SDA

Potentiometer

12CLCD1602

WWW.freenove.com

GND

sV
= GND

GPIO18

(GPIO15)
(GPIO14)

sV

GPIO13(8]
GPIOB(G)
GPIOS(R)

RGBLED ¢ Photoresistor

Thermistor

GPIO Ribbon Cable

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com

support@freenove.com

Circuit

Schematic diagram

?;
GND |-
+5v |2
VRX |2
VRY |4
SW |2— epi07
Joystick

ADS7830 T
AQ VCC jtmd
ADC
A1 SDA SDA
A2 SCL; ch
A3 D1y
ADS7830
Ad D0 .
A5 COMy——=
AB REFp—+
Freenove
A7 GND pr—
F—

Passive Buzzer

MPUG0S0

Hardware connection.

2102 Id fuaqdsey @
9 | 9pop ¥ I Ausqdsey

Active Buzzer =

>
S
14

Bution =

Freenove Projects Board for Raspberry Pi 10

o4

@)

RFID-RC522

Potentiometer

WWW.freenove.com

If you have any concerns, please send an email to: support@freenove.com

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

In this project’'s code, we will read the ADC values of X and Y axes of the Joystick, and read digital quality of
the Z axis, then display these out in Terminal.

If you haven't configured 12C, please refer to Chapter 7. If you've done it, please continue.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please send an email to:

1. Use cd command to enter 10_Joystick directory of C code.

cd ~/Freenove_Kit/Code/C_Code/10_Joystick

2. Use following command to compile "Joystick.cpp” and generate executable file "Joystick".
sudo g++ Joystick.cpp -o Joystick -lwiringPi -1ADCDevice

3. Then run the generated file "Joystick".

sudo ./Joystick

After the program is executed, the terminal window will display the data of 3 axes X, Y and Z. Shifting (moving)
the Joystick or pressing it down will make the data change.

1
1
1
1
1
1
1
1

1

The flowing is the code:

1 #include <wiringPi.h>

2 #include <stdio. h>

3 #tinclude <softPwm. h>

4 #include <ADCDevice. hpp>

5

6 ftdefine Z Pin 11 //define pin for axis Z
7

8 ADCDevice *adc; // Define an ADC Device class object
9

10 | int main(void) {

11 adc = new ADCDevice () ;

12 printf ("Program is starting ... \n”);

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [EEES

if (adc—>detectI2C (0x48)) { // Detect the ads7830

delete adc; // Free previously pointed memory

adc = new ADS7830(0x48) ; // If detected, create an instance of ADS7830
}
else

printf("No correct I2C address found, \n”
"Please use command ~i2cdetect -y 1’ to check the I2C address! \n”

“Program Exit. \n”);

return —1;
}
wiringPiSetup() ;
pinMode (Z_Pin, INPUT) ; //set Z_Pin as input pin and pull-up mode
pullUpDnControl (Z Pin, PUD_UP) ;
while (1) {
int val 7Z = digitalRead(Z Pin); //read digital value of axis Z
int val Y = adc—>analogRead(5); //read analog value of axis X and Y

int val X = adc—>analogRead(6) ;
printf(“val X: % ,\tval Y: %d ,\tval Z: %d \n”,val X,val Y,val 7);
delay (100) ;

}

return O;

In the code, configure Z_Pin to pull-up input mode. In the while loop of the main function, use analogRead
() to read the value of axes X and Y and use digitalRead () to read the value of axis Z, then display them.

while (1) {
int val 7Z = digitalRead(Z Pin); //read digital value of axis Z
int val Y = adc—>analogRead(5); //read analog value of axis X and Y

int val X = adc—>analogRead(6) ;
printf(“val X: % ,\tval Y: %d ,\tval Z: %d \n”,val X,val Y,val 7);
delay (100) ;

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

If you haven't configured 12C, please refer to Chapter 7. If you've done it, please continue.
First, observe the project result, and then learn about the code in detail.
If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 10_Joystick directory of Python code.
cd ~/Freenove_Kit/Code/Python_Code/10_Joystick
2. Use Python command to execute Python code "Joystick.py".

python Joystick.py
After the program is executed, the Terminal window will display the data of 3 axes X, Y and Z. Shifting (moving)
the joystick or pressing it down will make the data change.

1
1
1
1
1
1
1

o«

The following is the program code:

1 import RPi.GPIO as GPIO

2 import time

3 from ADCDevice import *

4

5 Z_Pin = 26 # define Z Pin

6 adc = ADCDevice (0x48) # Define an ADCDevice class object

7

8 def setup():

9 global adc

10 if (adc. detect12C(0x48)): # Detect the pcf8591.

11 adc = ADS7830 (0x48)

12 else:

13 print ("No correct 12C address found, \n”

14 “"Please use command ~i2cdetect -y 1’ to check the 12C address! \n”
15 "Program Exit. \n”);

16 exit(=1)

17 GPT0. setmode (GPT0. BOARD)

18 GPIO. setup(Z Pin, GPIO. IN, GPIO. PUD UP) # set Z Pin to pull-up mode
19 def loop():

20 while True:

21 val 7Z = GPIO. input (Z Pin) # read digital value of axis Z
22 val Y = adc. analogRead(5) # read analog value of axis X and Y
23 val X = adc. analogRead (6)

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [N

print (value X: %d , \tvlue Y: %d , \tvalue Z: %d %(val X,val Y,val Z))
time. sleep (0. 01)

def destroy():
adc. close ()
GPI0. cleanup ()

if name == main
print (Program is starting ... ’) # Program entrance
setup ()
try:
Loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

In the code, configure Z_Pin to pull-up input mode. In while loop, use analogRead () to read the value of
axes X and Y and use GPIO.input () to read the value of axis Z, then display them.

while True:
val Z = GPIO. input (Z Pin) # read digital value of axis Z
val Y = adc. analogRead(5) # read analog value of axis X and Y

val X = adc. analogRead (6)
print (value X: %d , \tvlue Y: %d ,\tvalue Z: %d %(val X,val Y, val 7))
time. sleep (0. 01)

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Chapter 11 Motor & Driver

In this chapter, we will learn about DC Motors and DC Motor Drivers and how to control the speed and
direction of a DC Motor.

Project 11.1 Control a DC Motor with a Potentiometer

In this project, a potentiometer will be used to control a DC Motor. When the Potentiometer is at the midpoint
position, the DC Motor will STOP, and when the Potentiometer is turned in either direction of this midpoint,
the DC Motor speed increases until it reached the endpoint where the DC Motor achieves its maximum speed.
When the Potentiometer is turned “Left” of the midpoint, the DC Motor will ROTATE in one direction and
when turned “Right” the DC Motor will ROTATE in the opposite direction.

Component knowledge

DC Motor

DC Motor is a device that converts electrical energy into mechanical energy. DC Motors consist of two major
parts, a Stator and the Rotor. The stationary part of a DC Motor is the Stator and the part that Rotates is the
Rotor. The Stator is usually part of the outer case of motor (if it is simply a pair of permanent magnets), and
it has terminals to connect to the power if it is made up of electromagnet coils. Most Hobby DC Motors only
use Permanent Magnets for the Stator Field. The Rotor is usually the shaft of motor with 3 or more
electromagnets connected to a commutator where the brushes (via the terminals 1 & 2 below) supply
electrical power, which can drive other mechanical devices. The diagram below shows a small DC Motor with
two terminal pins.

1 2

When a DC Motor is connected to a power supply, it will rotate in one direction. If you reverse the polarity of
the power supply, the DC Motor will rotate in opposite direction. This is important to note.

a 2

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D< support@freenove.com GRS

L293D

L293D is an IC Chip (Integrated Circuit Chip) with a 4-channel motor drive. You can drive a Unidirectional DC
Motor with 4 ports or a Bi-Directional DC Motor with 2 ports or a Stepper Motor (Stepper Motors are covered
later in this Tutorial).

1 L Enable 1 +v e
2 2L In4 {12
3 31 out1 out4 |4
4 A ov ov P2
5 =24 ov ov P2
6 oL out2 out3 -
7 L 1n2 In3 2
8 81 +Vmotor Enable 2 |-
L293D
Port description of L293D module is as follows:
Pin name Pin number | Description
In x 2,7,10, 15 Channel x digital signal input pin
Out x 3,611, 14 Channel x output pin, input high or low level according to In x pin, gets
connected to +Vmotor or OV
Enablel 1 Channel 1 and Channel 2 enable pin, high level enable
Enable2 9 Channel 3 and Channel 4 enable pin, high level enable
ov 4,512, 13 Power Cathode (GND)
+V 16 Positive Electrode (VCC) of power supply, supply voltage 4.5~36V
+Vmotor 8 Positive Electrode of load power supply, provide power supply for the Out
pin x, the supply voltage is +V~36V

For more details, please see the datasheet for this IC Chip.

When using the L293D to drive a DC Motor, there are usually two connection options.

The following connection option uses one channel of the L239D, which can control motor speed through
the PWM, However the motor then can only rotate in one direction.

L293D Pin OQut —

Motor CM)

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

The following connection uses two channels of the L239D: one channel outputs the PWM wave, and the other
channel connects to GND. Therefore, you can control the speed of the motor. When these two channel signals
are exchanged, it not only controls the speed of motor, but also can control the direction of the motor.

L293D Pin Out1 L293D Pin Out1

GND

293D Pin Out 2

GND [L293D Pin Out 2

In practical use, the motor is usually connected to channel 1 and by outputting different levels to in1 and
in2 to control the rotational direction of the motor, and output to the PWM wave to Enablel port to control
the motor’s rotational speed. If the motor is connected to channel 3 and 4 by outputting different levels to
in3 and in4 to control the motor's rotation direction, and output to the PWM wave to Enable2 pin to control

the motor’s rotational speed.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com [N

Component List

Freenove Projects Board for Raspberry Pi

Raspberry Pi

~./
O Blue LED
/ (GPIOTT)
~ BCM Numbering
FREENDOVEM™
3av
= GND
Shift Clock(GPIO17) Storage Register Clock(GPIO27) Data Input(GPI022) 7
C595 = GND
nnnun
= GPIO18
Y
= GND

WS2812LED

nnnnn nnnm
2 1

IM Sen

(GPIO15)
(GPIO14)

4-Digit, 7-Segment LED Display

)

H P10

. DDDDDDD-DDDDDDDDDDDDD .
I

LED Matrix

un
® ;:?:::‘"g Mok = Stepping Motor ¢
11

® 3-Active Buzzer ur2 (GPI019)

u 4-Relay H §
5-Blue LED (GPior3)

A 6-Motor 3 G (GPI06)
7-LED Matrix ' (GPIOs)
8-7-Segment LED
9-LED Bar Graph

(GPIO)

29z2 o
<286= 2
S

= GPIO16
" GPIO20
" GPIO21
" GPIO26
GPIO19
» GPIO13
* GPIOB

GPIOS

5\"21) RFID-RC522

Passive Buzzer
= SV

» GPIO13(8]
GPIOB(G)
GPIOS(R)

Keypad ® & Ultrasoni
RGBLED ¢ Photoresistor

R SCL
» SDA
" sV
= GND
%

JoyStick Potentiometer

12CLCD1602
Thermistor

WWW.freenove.com

Raspberry Pi GPIO Ribbon Cable

Jumper Wire Motor

9V Battery (you provide) & 9V Battery Cable

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

152 support@freenove.com www.freenove.com [l

Circuit

Schematic diagram

5\

potentiometey 5V

ADST830
1 16
2 Sl vy o > Enable 1 +V 15
ADC —— |GPIO15 In1 In4
g Al SDAp—— SDA 3 114
3 = Qut 1 Qut 4
- A2 sCLp—— 5CL ul 41 gy ov 12
A3 D1f— 51 oy ov 12
] as 405780 ool 61 out2 out3 [
1 b} 1N
~—1A5 COMp—= —E / In 2 In3 10
—146 REF}—= GPI014 vt |i +Vmotor Enable 2 EN
reenove

— i SO [= 293D

— AV

Hardware connection.

BCM Numbering

Stepping Motor &

RFID-RC522

MPUB050 Y Potentiometer

FreenoVe Projects Board for Raspberry Pl o WWW.freénove‘com

If you have any concerns, please send an email to: support@freenove.com

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

In code for this project, first read the ADC value and then control the rotation direction and speed of the DC
Motor according to the value of the ADC.

If you haven't configured 12C, please refer to Chapter 7. If you have done it, please continue.
First, observe the project result, and then learn about the code in detail.
If you have any concerns, please send an email to:

1. Use cd command to enter 11_Motor directory of the C code.

cd ~/Freenove_Kit/Code/C_Code/11_Motor

2. Use the following command to compile “Motor.cpp” and generate the executable file “Motor”.

sudo g++ Motor.cpp -o Motor -lwiringPi —-1ADCDevice

3. Then run the generated file "Motor”.

sudo ./Motor

After the program runs, you can use the Potentiometer to control the DC Motor. When the Potentiometer is
at the midpoint position, the DC Motor will STOP, and when the Potentiometer is turned in either direction of
this midpoint, the DC Motor speed increases until it reaches the endpoint where the DC Motor achieves its
maximum speed. When the Potentiometer is turned “Left” of the midpoint, the DC Motor will ROTATE in one
direction and when turmned “Right” the DC Motor will ROTATE in the opposite direction. You will also see the
ADC value of the potentiometer displayed in the Terminal with the motor direction and the PWM duty cycle
used to control the DC Motor’s speed.

orward.
he PWM dut

=]

The following is the code:

1 <wiringPi. h>
2 {stdio. h>
3 {sof tPwm. h>
4

5

<math. h>
{stdlib. h>

mailto:support@freenove.com
http://www.freenove.com/

M support@freenove.com www.freenove.com [l

#include <ADCDevice. hpp>

#tdefine motorPinl 15 //define the pin connected to L293D
fidefine motorPin2 16
fidefine enablePin 3

ADCDevice *adc; // Define an ADC Device class object

//Map function: map the value from a range to another range.
long map (long value, long fromLow, long fromiligh, long tolLow, long toligh) {
return (toHigh—toLow)*(value—fromLow) / (fromHigh—fromLow) + toLow;
}
//motor function: determine the direction and speed of the motor according to the ADC
void motor (int ADC) {
int value = ADC -128;
if (value>0) {
softPwmWrite (motorPinl, map (abs (value), 0, 128, 0, 100)) ;
softPwmWrite (motorPin2, 0) ;
printf(”turn Forward...\n”);
}
else if (value<0) {
softPwmWrite (motorPinl, 0) ;
sof tPwvmWrite (motorPin2, map (~value, 0, 128, 0, 100)) ;
printf(“turn Back...\n”);
}
else {
digitalWrite (motorPinl, LOW) ;
digitalWrite (motorPin2, LOW) ;
printf ("Motor Stop...\n”);

printf ("The PW duty cycle is %d%%\n”, abs(value)*100/127) ;//print the PMW duty cycle
}

int main(void) {
adc = new ADCDevice();

printf ("Program is starting ... \n”);

if (adc—>detectI2C (0x48)) { // Detect the ads7830

delete adc; // Free previously pointed memory

adc = new ADS7830(0x48) ; // If detected, create an instance of ADS7830
}
else({

printf("No correct I2C address found, \n”

"Please use command ~i2cdetect -y 1’ to check the I2C address! \n”

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com S

"Program Exit. \n”);
return —1;
}
wiringPiSetup() ;
pinMode (motorPinl, OUTPUT) ;
pinMode (motorPin2, OUTPUT) ;

softPwmCreate (motorPinl, 0, 100) ;//define PMW pin
softPwmCreate (motorPin2, 0, 100) ;//define PMW pin

while (1) {
int value = adc—>analogRead(2); //read analog value of A0 pin
printf ("ADC value : %d \n”, value) ;
motor (value) ; //make the motor rotate with speed(analog value of A0 pin)
delay (100) ;
}

return 0;

When ADC value is greater than 128, motorPin2 outputs low lever and motorPinl output high level.
When ADC value is less than 128, motorPin2 outputs high lever and motorPinl output low level.
The difference between ADC and 128 determines the duty cycle for the PWM.

void motor (int ADC) {

int value = ADC -128;

if (value>0) {
softPwmWrite (motorPinl, map (abs (value), 0, 128, 0, 100)) ;
softPwmWrite (motorPin2, 0) ;
printf(”turn Forward...\n”);

}

else if (value<0) {
softPwmWrite (motorPinl, 0) ;
sof tPwvmWrite (motorPin2, map (~value, 0, 128, 0, 100)) ;
printf (“turn Back...\n”);

}

else {
digitalWrite (motorPinl, LOW) ;
digitalWrite (motorPin2, LOW) ;
printf ("Motor Stop...\n”);

printf ("The PW duty cycle is %d%%\n”, abs(value)*100/127) ;//print the PMW duty cycle

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

If you haven't configured 12C and installed Smbus, please refer to Chapter 7. If you've done it, please Continue.
First, observe the project result, and then learn about the code in detail.
If you have any concerns, please send an email to:

1. Use cd command to enter 11_Motor directory of Python code.

cd ~/Freenove_Kit/Code/Python_Code/11_Motor
2. Use python command to execute the Python code “Motor.py”.

sudo python Motor.py

After the program runs, you can use the Potentiometer to control the DC Motor. When the Potentiometer is
at the midpoint position, the DC Motor will STOP, and when the Potentiometer is turned in either direction of
this midpoint, the DC Motor speed increases until it reaches the endpoint where the DC Motor achieves its
maximum speed. When the Potentiometer is turned “Left” of the midpoint, the DC Motor will ROTATE in one
direction and when turmed “Right” the DC Motor will ROTATE in the opposite direction. You will also see the
ADC value of the potentiometer displayed in the Terminal with the motor direction and the PWM duty cycle
used to control the DC Motor's speed.

The following is the code:

1 import RPi.GPIO as GPIO

2 import time

3 from ADCDevice import *

4

5 # define the pins connected to L293D

6 motoRPinl = 8

7 motoRPin2 = 10

8 adc = ADCDevice(0x48) # Define an ADCDevice class object
9

10 def setup():

11 global adc

12 if (adc. detectI2C(0x48)): # Detect the pcf8591.
13 adc = ADS7830 (0x48)

14 else:

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com S

print ("No correct 12C address found, \n”
"Please use command ~i2cdetect -y 1’ to check the 12C address! \n”
"Program Exit. \n”);
exit(-1)
global pl
global p2
GPI0. setmode (GPI0. BOARD)
GPIO. setup (motoRPinl, GPIO. OUT) # set pins to OUTPUT mode
GPI0. setup (motoRPin2, GPI0. OUT)

pl = GPIO.PWM(motoRPinl, 1000) # creat PWM and set Frequence to 1KHz
pl. start (0)
p2 = GPIO.PWM(motoRPin2, 1000) # creat PWM and set Frequence to 1KHz
p2. start (0)

mapNUM function: map the value from a range of mapping to another range.
def mapNUM(value, fromLow, fromHigh, toLow, toHigh) :
return (toHigh—toLow)* (value—fromLow) / (fromHigh—fromLow) + toLow

motor function: determine the direction and speed of the motor according to the input ADC
value input
def motor (ADC) :

value = ADC -128

if (value > 0): # make motor turn forward
print (abs (value)*100/127)
pl. ChangeDutyCycle (abs (value)*100/127)
p2. ChangeDutyCycle (0)
print (Turn Forward...)

elif (value < 0): # make motor turn backward
print (abs (value)*100/128)
pl. ChangeDutyCycle (0)
p2. ChangeDutyCycle (abs (value)*100/128)
print (Turn Backward...’)

else :
pl. ChangeDutyCycle (0)
p2. ChangeDutyCycle (0)
print (Motor Stop...’)

def loop():
while True:
value = adc.analogRead(2) # read ADC value of channel 0
print C ADC Value : %d %(value))

motor (value)

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

time. sleep (0. 05)

def destroy():
GPIO0. cleanup ()

if name == main ’: # Program entrance
print (Program is starting ...)
setup ()
try:
Loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

When ADC value is greater than 128, motorPin2 outputs low lever and motorPinl output high level.
When ADC value is less than 128, motorPin2 outputs high lever and motorPinl output low level.
The difference between ADC and 128 determines the duty cycle for the PWM.

def motor (ADC) :
value = ADC —-128

if (value > 0): # make motor turn forward
print (abs (value)*100/127)
pl. ChangeDutyCycle (abs (value)*100/127)
p2. ChangeDutyCycle (0)
print (Turn Forward...’)

elif (value < 0): # make motor turn backward
print (abs (value)*100/128)
pl. ChangeDutyCycle (0)
p2. ChangeDutyCycle (abs (value)*100/128)
print (Turn Backward...’)

else :
pl. ChangeDutyCycle (0)
p2. ChangeDutyCycle (0)
print (Motor Stop...’)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com

Chapter 12 Relay & LED

In this chapter, we will learn a kind of special switch module, Relay Module.

Project 12.1 Relay & LED

Component knowledge

Relay

Relays are a type of Switch that open and close circuits electromechanically or electronically. Relays control
one electrical circuit by opening and closing contacts in another circuit using an electromagnet to initiate the
Switch action. When the electromagnet is energized (powered), it will attract internal contacts completing a
circuit, which act as a Switch. Many times Relays are used to allow a low powered circuit (and a small low
amperage switch) to safely turn ON a larger more powerful circuit. They are commonly found in automobiles,
especially from the ignition to the starter motor.

The following is a basic diagram of a common Relay and the image and circuit symbol diagram of the 5V
relay used in this project:

Diagram Feature: Symbol

/A,\rmature Contactor
—rlr'/

Spring

L L 1

!
Electromagnet
Signal power

3 0 _1
NI

4 T 2

Load power

o

Pin 5 and pin 6 are internally connected to each other. When the coil pin3 and pin 4 are connected to a 5V
power supply, pin 1 will be disconnected from pins 5 & 6 and pin 2 will be connected to pins 5 & 6. Pin 1 is
called Closed End and pin 2 is called the Open End.

support@freenove.com [l

159

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Inductor

The symbol of Inductance is “L” and the unit of inductance is the “Henry” (H). Here is an example of how this
can be encountered: 1H=1000mH, 1mH=1000uH.

An Inductoris a passive device that stores energy in its Magnetic Field and returns energy to
the circuit whenever required. An Inductor is formed by a Cylindrical Core with many Turns of conducting wire
(usually copper wire). Inductors will hinder the changing current passing through it. When the current passing
through the Inductor increases, it will attempt to hinder the increasing movement of current; and when the
current passing through the inductor decreases, it will attempt to hinder the decreasing movement of current.
So the current passing through an Inductor is not transient.

<2 L~V L2

The circuit for a Relay is as follows: The coil of Relay can be equivalent to an Inductor, when a Transistor is
present in this coil circuit it can disconnect the power to the relay, the current in the Relay’s coil does not stop
immediately, which affects the power supply adversely. To remedy this, diodes in parallel are placed on both
ends of the Relay coil pins in opposite polar direction. Having the current pass through the diodes will avoid
any adverse effect on the power supply.

5V

‘4 LED1
3 1
s
;{2100 ZS \‘I:
D1 6
4 T 2
R2 Relay

1kQ

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com

support@freenove.com _

Component List

Raspberry Pi

Passive Buzzer

‘ O .
I

Freenove Projects Board for Raspberry Pi

o4

Active Buzzer =

BCM Numbering

FREENOVE™

Blue LED
(GPIOT7)
@

os(§

74HC595

LED Matrix

4 1-Stepping Motor
® 2-Button
W 3-Active Buzzer
u 4-Relay
5-Blue LED
8-Motor
7-LED Matrix
8-7-Segment LED
9-LED Bar Graph

Shift Clock(GPIO17)

= GND
Data Input(GP1022) 5 .. 5V
= GND

Storage Register Clock(GPI027)

GPIO18
. 5V
GND

GPIO18

WS2812 LED

IM Sen

(GPIO15)

4-Digit, 7-Segment LED Display (GPIO14)

un

Stepping

un2

- R
06

(GPIO12)

= GPIO16
" GPIO20
" GPIO21
" GPIO26

sV

= GPIO19
» GPIO13

Keypad ® ¢ Ultrasol

GPIO13(8]
GPIOB(G)

»
L]

JoyStick Button #

vi.0

RGBLED ¢ Photoresistor

* GPIOB GPIOS(R)

RP1 GPIOS
RFID-RC522
(A2) SCL

» SDA

Thermistor

Potentiometer

12CLCD1602

WWW.freenove.com

GPIO Ribbon Cable

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

162 support@freenove.com www.freenove.com Il

Circuit

Schematic diagram

.
3 1 .
" N E Blue (5250m
§HH“Q / 5819 \{5_.
4 T 12
Relay]_
GPIO1Z | =

W

BCM Numbering

049 .

id Auaqdsey @
9 | 2Pop ¥ Id Auagdsey

4-Digit, ment LED Di

un =
Stepping M

Pt

P4
o
Qaw
o
Qeon
Q
[+]
Q
(=]

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

If you have any concerns, please send an email to: support@freenove.com

Code

C Code 12.1 Relay
First, observe the project result, and then learn about the code in detail.
If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 12_Relay directory of C code.

2. Use following command to compile "Relay.c" and generate executable file "Relay".

3. Run the generated file "Relay".

After running the program, press the button, the LED near relay will light up.
Press the button again, the LED will light OFF.

The following is the program code:

#include <wiringPi.h>
#include <stdio.h>

#tdefine relayPin 26 //define the relayPin

#define buttonPin 27 //define the buttonPin

int relayState=LOW; //store the State of relay

int buttonState=HIGH; //store the State of button

int lastbuttonState=HIGH; //store the lastState of button

long lastChangeTime; //store the change time of button state
long captureTime=50; //set the button state stable time

int reading;
int main(void)
{

printf ("Program is starting...\n”):

wiringPiSetup () ;

pinMode (relayPin, OUTPUT) ;
pinMode (buttonPin, INPUT) ;
pul1lUpDnControl (buttonPin, PUD UP); //pull up to high level
while (1) {
reading = digitalRead (buttonPin); //read the current state of button
if(reading != lastbuttonState) { //if the button state changed ,record the time
point

lastChangeTime = millis();

support@freenove.com [l

163

mailto:support@freenove.com
http://www.freenove.com/

M support@freenove.com www.freenove.com [l

//if changing—state of the button last beyond the time we set,we considered that
//the current button state is an effective change rather than a buffeting
if(millis() - lastChangeTime > captureTime) {
//if button state is changed, update the data
if(reading != buttonState) {
buttonState = reading;
//if the state is low, the action is pressing
if (buttonState == LOW) {
printf ("Button is pressed!\n”);
relayState = !relayState;
if (relayState) {

printf (“turn on relay ...\n”);
}
else {

printf (“turn off relay ...\n”);
}

}

//if the state is high, the action is releasing
else {

printf ("Button is released!\n”):

1
digitalWrite(relayPin, relayState) ;
lastbuttonState = reading;

return 0;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [JEISH

Python Code 12.1 Relay
First observe the project result, and then learn about the code in detail.

If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 12_Relay directory of Python code.

2. Use python command to execute code "Relay.py".

After running the program, press the button, the LED near relay will light up.
Press the button again, the LED will light OFF.

he following is the program code:
import RPi.GPIO as GPIO

import time

relayPin = 32 # define the relayPin
buttonPin = 38 # define the buttonPin

debounceTime = 50

def setup():
GPT0. setmode (GPT0. BOARD)
GPIO. setup(relayPin, GPI0O.OUT) # set relayPin to OUTPUT mode
GPIO. setup (buttonPin, GPIO.IN) # set buttonPin to INTPUT mode

def loop():
relayState = False
lastChangeTime = round (time. time ()*1000)
buttonState = GPI0. HIGH
lastButtonState = GPIO. HIGH
reading = GPIO. HIGH
while True:
reading = GPIO. input (buttonPin)
if reading != lastButtonState :
lastChangeTime = round (time. time () *1000)
if ((round (time. time()*1000) - lastChangeTime) > debounceTime) :
if reading != buttonState :
buttonState = reading;
if buttonState == GPIO. LOW:
print ("Button is pressed!”)
relayState = not relayState
if relayState:
print ("Turn on relay ...”)

else :

print ("Turn off relay ... ”)

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

M support@freenove.com

www.freenove.com Il

else :
print ("Button is released!”)
GPIO. output (relayPin, relayState)
lastButtonState = reading # lastButtonState store latest state

def destroy():
GPI0. cleanup ()

if name == main_ : # Program entrance
print (Program is starting...’)
setup ()
try:
Loop ()
except KeyboardInterrupt: # Press ctrl-c to end the program.
destroy ()

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Chapter 13 Servo

Previously, we learned how to control the speed and rotational direction of a DC Motor. In this chapter, we
will learn about Servos which are a rotary actuator type motor that can be controlled rotate to specific angles.

Project 13.1 Sweep

First, we need to learn how to make a Servo rotate.

Component knowledge

Servo

Servo is a compact package which consists of a DC Motor, a set of reduction gears to provide torque, a sensor
and control circuit board. Most Servos only have a 180-degree range of motion via their “hormn”. Servos can
output higher torque than a simple DC Motor alone and they are widely used to control motion in model cars,
model airplanes, robots, etc. Servos have three wire leads which usually terminate to a male or female 3-pin
plug. Two leads are for electric power: Positive (2-VCC, Red wire), Negative (3-GND, Brown wire), and the
signal line (1-Signal, Orange wire) as represented in the Servo provided in your Kit.

W]

We will use a 50Hz PWM signal with a duty cycle in a certain range to drive the Servo. The lasting time 0.5ms-
2.5ms of PWM single cycle high level corresponds to the Servo angle 0 degrees - 180 degree linearly. Part of
the corresponding values are as follows:

Note: the lasting time of high level corresponding to the servo angle is absolute instead of accumulating. For
example, the high level time lasting for 0.5ms correspond to the 0 degree of the servo. If the high level time
lasts for another 1ms, the servo rotates to 45 degrees.

High level time | Servo angle
0.5ms 0 degree
Ims 45 degree
1.5ms 90 degree
2ms 135 degree
2.5ms 180 degree

When you change the Servo signal value, the Servo will rotate to the designated angle.

support@freenove.com [l

167

mailto:support@freenove.com
http://www.freenove.com/

support@freenove.com www.freenove.com Il

Component List

Freenove Projects Board for Raspberry Pi

Raspberry Pi

Blue LED
(GPIOT7)
P

BCM Numbering
2 33v
= GND

Shift Clock(GPIO17) ~ Storage Register Clock(GPIO27) Data Input(GPI022)

74HC595
I

sV
= GND

= GPIO18
= 5V
= GND

WS2812LED

nnnnn nnnm
1

IM Sen

(GPIO15)
(GPIO14)

4-Digit, 7-Segment LED Display

.0

H P10

‘ O .
I

LED Matrix

un
® ;::e:::‘"g Mok = Stepping Motor ¢
11

® 3-Active Buzzer ur2 (GPI019)

u 4-Relay H §
5-Blue LED (GPior3)

A 6-Motor 3 G (GPI06)
7-LED Matrix ' (GPIOs)
8-7-Segment LED
9-LED Bar Graph

(GPI012)

29z2 o
<286= 2
S

i

S8
{GPI020)

= GPIO16
" GPIO20
» GPIO21
* GPI026
" GPIO19
" GPIO13
N ® GPIOB

GPIOS

E\P;) RFID-RC522

Passive Buzzer
= SV

» GPIO13(8]
GPIOB(G)
GPIOS(R)

Keypad ® & Ultrasoni
RGBLED ¢ Photoresistor

5
(Gioz1)

R SCL
» SDA
" sV

= GND

JoyStick Potentiometer

12CLCD1602
Thermistor

WWW.freenove.com

Raspberry Pi GPIO Ribbon Cable

Jumper Wire Servo

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com [JEEE]

Circuit

Schematic diagram

GPID18 —— :

Hardware connection.

) 2 (NN \
BCM Numbering o § | -, ‘

hift Clock(GPIO17) Storage Register Clock(GPIO27) Date Input(GPI022

o

74HC595 5 7
o [o Wi o W

mmmm

MEN W S

Stepping Motor &

391010

(T YYYY) 3P0

et . PIOH
3P

eypad @ @ Ultrasonic p

Y W =1 0

A4 \

A3 A RFID-RC522
A2 g

12CLCD1602

Al
MPUG050 ADS7830 Ap JoyStick Potentiometer

Freenove Projects Board for Raspberry Pi I WWW.freenove.com

If you have any concerns, please send an email to: support@freenove.com

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

D4 support@freenove.com www freenove.com [l

Code

In this project, we will make a Servo rotate from 0 degrees to 180 degrees and then reverse the direction to
make it rotate from 180 degrees to 0 degrees and repeat these actions in an endless loop.

C Code 13.1 Sweep

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 13_1_Sweep directory of C code.

2. Use following command to compile "Sweep.c" and generate executable file "Sweep".

3. Run the generated file "Sweep".

After the program runs, the Servo will rotate from O degrees to 180 degrees and then reverse the direction
to make it rotate from 180 degrees to 0 degrees and repeat these actions in an endless loop.

The following is the program code:

#include <wiringPi.h>

#include <softPwm. h>

#include <stdio. h>

#define OFFSET MS 3 //Define the unit of servo pulse offset: 0.lms

fidefine SERVO MIN MS 5+0FFSET MS //define the pulse duration for minimum angle of servo
fidefine SERVO MAX MS 25+0FFSET MS //define the pulse duration for maximum angle of servo
#define servoPin 1 //define the GPIO number connected to servo

long map (long value, long fromLow, long fromiligh, long tolLow, long tolligh) {
return (toHigh—toLow)* (value—fromLow) / (fromHigh—fromLow) + toLow;
}
void servolnit(int pin) { //initialization function for servo PMW pin
softPwmCreate (pin, 0, 200);
}
void servoWrite(int pin, int angle) { //Specific a certain rotation angle (0-180) for the
servo
if (angle > 180)
angle = 180;
if (angle < 0)
angle = 0;
softPwmWrite (pin, map (angle, 0, 180, SERVO MIN MS, SERVO MAX MS)) ;
}
void servoWriteMS(int pin, int ms) { //specific the unit for pulse(5-25ms) with specific
duration output by servo pin: 0. Ims
if (ms > SERVO_MAX_MS)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

ms = SERVO MAX MS;
if (ms < SERVO MIN MS)
ms = SERVO MIN MS;

softPwmWrite (pin, ms) ;

int main(void)

int 1i;

printf ("Program is starting ...\n”);

wiringPiSetup () ;

servolnit (servoPin) ; //initialize PMW pin of servo
while (1) {

for (i=SERVO_MIN_MS;i<SERVO MAX MS;i++) { //make servo rotate from minimum angle to
maximum angle
servoWriteMS (servoPin, i) ;
delay (10) ;
}
delay (500) ;
for (i=SERVO MAX MS;i>SERVO MIN MS:i—) { //make servo rotate from maximum angle to
minimum angle
servoWriteMS (servoPin, i) ;
delay (10) ;
}
delay (500) ;
}

return 0;

A 50 Hz pulse for a 20ms cycle is required to control the Servo. In function softPwmCreate (int pin, int
initialValue, int pwmRange), the unit of the third parameter pwmRange is 100US, specifically 0.1ms. In order
to get the PWM with a 20ms cycle, the pwmRange shoulde be set to 200. So in the subfunction of servolnit
(), we create a PWM pin with a pwmRange of 200.

void servolnit (int pin) { //initialization function for servo PWM pin

softPwmCreate (pin, 0, 200);

Since 0-180 degrees of the Servo’'s motion corresponds to the PWM pulse width of 0.5-2.5ms, with a
PwmRange of 200 ms, we then need the function softPwmWrite (int pin, int value) and the scope 5-25 of
the parameter values to correspond to 0-180 degrees’ motion of the Servo. What's more, the number written
in subfunction servoWriteMS () should be within the range of 5-25. However, in practice, due to the inherent
error manufactured into each Servo, the pulse width will have a deviation. So we need to define a minimum

support@freenove.com [l

171

mailto:support@freenove.com
http://www.freenove.com/

DX support@freenove.com www.freenove.com [l

and maximum pulse width and an error offset (this is essential in robotics).
#tdefine OFFSET MS 3 //Define the unit of servo pulse offset: 0.1lms

#tdefine SERVO MIN MS 5+OFFSET MS //define the pulse duration for minimum angle of
servo
#tdefine SERVO MAX MS 25+0FFSET MS //define the pulse duration for maximum angle of
servo

void servoWriteMS(int pin, int ms) {
if(ms > SERVO MAX MS)
ms = SERVO MAX MS;
if(ms < SERVO MIN MS)
ms = SERVO MIN_MS;

softPwmWrite (pin, ms) ;

In subfunction servoWrite (), directly input an angle value (0-180 degrees), map the angle to the pulse width
and then output it.

void servoWrite(int pin, int angle) { //Specif a certain rotation angle (0-180) for the
servo
if(angle > 180)
angle = 180;
if(angle < 0)
angle = 0;
softPwmWrite (pin, map (angle, 0, 180, SERVO MIN MS, SERVO MAX MS)) ;

Finally, in the "while" loop of the main function, use two "for" loop to make servo rotate from 0 degrees to
180 degrees, and then from 180 degrees to 0 degrees.
while (1) {
for (i=SERVO MIN MS;i<SERVO MAX MS;i++){ //make servo rotate from minimum angle

to maximum angle

servoWriteMs (servoPin, i) ;
delay (10) ;
}
delay (500) ;
for (i=SERVO MAX_MS;i>SERVO MIN MS;i——){ //make servo rotate from maximum angle
to minimum angle
servoWriteMs (servoPin, 1) ;
delay (10) ;
}
delay (500) ;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [ENEE

Python Code 13.1 Sweep
First observe the project result, and then learn about the code in detail.

If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 13_1_Sweep directory of Python code.

2. Use python command to execute code "Sweep.py".

After the program runs, the Servo will rotate from 0 degrees to 180 degrees and then reverse the direction
to make it rotate from 180 degrees to 0 degrees and repeat these actions in an endless loop.

The following is the program code:
import RPi.GPIO as GPIO

import time

OFFSE DUTY = 0.5 fdefine pulse offset of servo

SERVO_MIN_DUTY = 2. 5+0FFSE_DUTY #define pulse duty cycle for minimum angle of servo
SERVO_MAX_DUTY = 12. 5+OFFSE_DUTY #define pulse duty cycle for maximum angle of servo

servoPin = 12

def map(value, fromLow, fromHigh, toLow, toHigh): # map a value from one range to another

range
return (toHigh-toLow)* (value—fromLow) / (fromHigh—fromLow) + toLow

def setup():

global p
GPI0. setmode (GPT0. BOARD) # use PHYSICAL GPIO Numbering

GPIO. setup(servoPin, GPIO.OUT) # Set servoPin to OUTPUT mode
GPIO. output (servoPin, GPIO.LOW) # Make servoPin output LOW level

p = GPIO. PWM (servoPin, 50) # set Frequece to 50Hz
p. start (0) # Set initial Duty Cycle to 0
def servolirite(angle) : # make the servo rotate to specific angle, 0-180
if (angle<0) :
angle = 0
elif (angle > 180) :
angle = 180

p. ChangeDutyCycle (map (angle, 0, 180, SERVO MIN DUTY, SERVO MAX DUTY)) # map the angle to duty

cycle and output it

def loop():
while True:
for dc in range (0, 181, 1): # make servo rotate from 0 to 180 deg

servoWrite (dc) # Write dc value to servo

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

time. sleep (0. 001)

time. sleep (0. 5)

for dec in range (180, —1, —1): # make servo rotate from 180 to 0 deg
servollirite (dc)
time. sleep (0. 001)

time. sleep (0. 5)

def destroy():

p. stop ()
GPI0. cleanup ()

if name == main : # Program entrance
print (' Program is starting...’)
setup()
try:
loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program

destroy ()

A 50 Hz pulse for a 20ms cycle is required to control the Servo, so we need to set the PWM frequency of
servoPin to 50Hz.

- p = GPIO. PWM(servoPin, 50) # Set Frequency to 50Hz

As 0-180 degrees of the Servo’s rotation corresponds to the PWM pulse width 0.5-2.5ms within cycle 20ms
and to duty cycle 2.5%-12.5%. In subfunction servoWrite (angle), map the angle to duty cycle to output the
PWM, then the Servo will rotate to specifically determined angle. However, in practice, due to the inherent
error manufactured into each Servo, the pulse width will have a deviation. So we need to define a minimum
and maximum pulse width and an error offset (this is essential in robotics).

OFFSE_DUTY = 0.5 #tdefine pulse offset of servo

SERVO MIN DUTY = 2. 5+0FFSE_DUTY fidefine pulse duty cycle for minimum angle of servo

SERVO MAX DUTY = 12.5+0FFSE DUTY fidefine pulse duty cycle for maximum angle of servo

def servolirite(angle) : # make the servo rotate to specific angle, 0-180
if (angle<0) :
angle = 0
elif (angle > 180) :
angle = 180
p. ChangeDutyCycle (map (angle, 0, 180, SERVO_MIN DUTY, SERVO _MAX DUTY)) # map the angle to duty

cycle and output it

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Finally, in the "while" loop of main function, we need to use two separate cycles to make servo rotate from 0
degrees to 180 degrees and then from 180 degrees to 0 degrees.
def loop():

while True:

for dc in range (0, 181, 1): # make servo rotate from 0 to 180 deg
servollirite (dc) # Write dc value to servo
time. sleep(0.001)

time. sleep (0. 5)

for dc in range (180, -1, —1): # make servo rotate from 180 to 0 deg
servollrite (dc)
time. sleep (0.001)

time. sleep (0. 5)

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com

www.freenove.com [l

Project 13.2 Knob

In this project, we will learn how to control the servo with a potentiometer.

Component List

Freenove Projects Board for Raspberry Pi

Raspberry Pi

FREENOVE
Rt

BT 8

Model Zero D é
£y

ﬁ

G 0 Q
OOCOO0OOOOOOOO0O0O00O0O000 -

182

Passive Buzzer Active Buzzer =

(»5)

JoyStick

BCM Numbering

74HCS95 : Shift Clock(GPIO17) Storage Register Clock(GPIO27) Data Input(GPIO22)

74HC595 74HC595 74HC!
nnmn nnnnn i unmnn nnnn

n
R 20

LED Bar Graph

LED Matrix

1-Stepping Motor
® 2-Button
™ 3-Active Buzzer
u 4-Relay
5.Blue LED
A 6-Motor
7-LED Matrix
8-7-Segment LED

P1012,
94D Bar Graph | 7012

Relayn

RFID-RC522

Potentiometer

WWW.freenove.com

WS2812LED @

= GND

P15 ® w5V
P16 = GND

= GPIO18
. 5V
= GND

= GPIO18

IM Sen

Keypad » ¢ Ultrasonic p

2CLCD1602

(GPIO15)
(GPIO14)

unt
Stepping Motor ¢
P11

Lz (GPIO19)
(GPI013)
(GPIOS)
(GPiOs)
sV

Al
NC

GND
GPIO15
GPIO14

sV sV

" GPIO16
GPI020
GPIO21
GPIO26

" GPIO19
GPIO13

* GPIOB

= GPIOS

& sV
= GPIO13)
GPIOB(G)
GPIOS(R)

RGB LED & Photoresistor

scL
SDA
" 5V

= GND

GPIO Ribbon Cable

Jumper Wire

Servo

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com [NNE

Circuit

Schematic diagram

\
potentiometer oy 5\
ADST7E30
2 —
- A0 VCC
ADC
4 A1 L e ———)|
g 1 SCL}=—s———et Scﬂ
~—1A3 D1
ADS7830 . —
1t A4 DOy -
1
> A5 COM e [
- A6 REF . I
| FreenoveG o 2
—_—r i A7 ALS) E— [
= = e GP1018]

Hardware connection.

Raspberry Pi

BCM Numbering

hift Clock(GPIO17) Stor

o

o

nnnn

Function S "
Stepping Motor

s | | E 15 (<<<((°D>>)

A4 N
A3 1

A2

Al

MPUB050 ADS7830 Ap JoyStick

RFID-RC522

00000000

Freenove Projects Board for Raspberry Pi I . WWW.freenove.com

If you have any concerns, please send an email to: support@freenove.com

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

D4 support@freenove.com www freenove.com [l

Code

C Code 13.2 Knob
First, observe the project result, and then learn about the code in detail.
If you have any concerns, please send an email to: support@freenove.com

4. Use cd command to enter 13_2_Knob directory of C code.

5. Use following command to compile " Knob.cpp" and generate executable file " Knob".

6. Run the generated file " Knob ".

After running the program, you can change the angle of the servo by rotating the potentiometer.

The following is the program code:

#include <wiringPi.h>

#include <softPwm. h>

#include <stdio. h>

#include <ADCDevice. hpp>

#define OFFSET MS 3 //Define the unit of servo pulse offset: 0.lms

fidefine SERVO MIN MS 5+0FFSET MS //define the pulse duration for minimum angle of servo
#tdefine SERVO_MAX MS 25+0OFFSET_MS //define the pulse duration for maximum angle of servo
#define servoPin 1 //define the GPIO number connected to servo

ADCDevice *adc:; // Define an ADC Device class object

long map (long value, long fromLow, long fromiligh, long tolLow, long toligh) {
return (toHigh—toLow)* (value—fromLow) / (fromHigh—fromLow) + toLow;

void servolnit(int pin) { //initialization function for servo PMW pin

softPwmCreate (pin, 0, 200);

void servoWrite(int pin, int angle) { //Specific a certain rotation angle (0-180) for the
servo
if (angle > 180)
angle = 180;
if (angle < 0)
angle = 0;
softPwmWrite (pin, map (angle, 0, 180, SERVO MIN MS, SERVO MAX MS)) ;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [EENE

void servoWriteMS(int pin, int ms) { //specific the unit for pulse(5-25ms) with specific
duration output by servo pin: 0. lms
if (ms > SERVO_MAX MS)
ms = SERVO MAX MS;
if (ms < SERVO_MIN MS)
ms = SERVO_MIN_MS;

softPwmWrite (pin, ms) ;

int main(void)

int i;
printf ("Program is starting ...\n”);
wiringPiSetup();
servolnit (servoPin) ; //initialize PMWW pin of servo
adc = new ADCDevice();
if (adc—>detectI2C (0x48)) { // Detect the ads7830
delete adc; // Free previously pointed memory
adc = new ADS7830(0x48) ; // If detected, create an instance of ADS7830
}
else

printf("No correct I2C address found, \n”
"Please use command i2cdetect -y 1’ to check the I2C address! \n”
“Program Exit. \n”);
return —1;
}
while (1) {
int adcValue = adc—>analogRead(2) ; //read analog value of A2 pin
printf ("ADC value : %d \n”, adcValue);
servoWrite (servoPin, map (adcValue, 0, 255, 0, 180)) ;
delay (10) ;
}

return 0;

Read the ADC value of channle2, and then the servo will rotate to corresponding angle.
while (1) {
int adcValue = adc—>analogRead(2) ; //read analog value of A2 pin
printf ("ADC value : %d \n”, adcValue);
servoWrite (servoPin, map (adcValue, 0, 255, 0, 180)) ;
delay (10) ;

}
Python Code 13.2 Knob
First observe the project result, and then learn about the code in detail.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

M support@freenove.com www.freenove.com [l

If you have any concerns, please send an email to: support@freenove.com
3. Use cd command to enter 13_2_Knob directory of Python code.

4. Use python command to execute code " Knob.py".

After running the program, you can change the angle of the servo by rotating the potentiometer.

The following is the program code:
import RPi.GPIO as GPIO

import time

from ADCDevice import *

adc = ADCDevice(0x48) # Define an ADCDevice class object

OFFSE DUTY = 0.5 fdefine pulse offset of servo
SERVO_MIN_DUTY = 2. 5+0FFSE_DUTY #define pulse duty cycle for minimum angle of servo
SERVO_MAX_DUTY = 12. 5+OFFSE_DUTY #define pulse duty cycle for maximum angle of servo

servoPin = 12

def map(value, fromLow, fromHigh, toLow, toHigh): # map a value from one range to another
range

return (toHigh-toLow)* (value—fromLow) / (fromHigh—fromLow) + toLow

def setup():

global adc

if (adc. detectI2C(0x48)) :
adc = ADS7830 (0x48)

else:
print ("No correct I2C address found, \n”
“Please use command ’i2cdetect —y 1’ to check the I2C address! \n”
“Program Exit. \n”);

exit(-1)

global p

GPI0. setmode (GPI0. BOARD) # use PHYSICAL GPIO Numbering
GPIO. setup(servoPin, GPI0O.OUT) # Set servoPin to OUTPUT mode
GPIO. output (servoPin, GPIO.LOW) # Make servoPin output LOW level

p = GPIO. PWM(servoPin, 50) # set Frequece to 50Hz

p. start (0) # Set initial Duty Cycle to 0
def servolirite (angle) : # make the servo rotate to specific angle, 0-180
if (angle<0) :
angle = 0

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

elif (angle > 180) :
angle = 180
p. ChangeDutyCycle (map (angle, 0, 180, SERVO MIN DUTY, SERVO MAX DUTY)) # map the angle to duty

cycle and output it

def loop():
while True:
value = adc. analogRead(2) # read the ADC value of channel 2
servolirite (round (value/255. 0%180. 0))
print (ADC Value : %d %(value))
time. sleep (0. 1)

def destroy():

p. stop()
GPIO0. cleanup ()

if name ==’ main : # Program entrance
print (' Program is starting...’)
setup()
try:
loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

Read the ADC value of channle2, and then the servo will rotate to corresponding angle.

while True:
value = adc. analogRead(2) # read the ADC value of channel 2
servoWrite (round (value/255. 0%180. 0))
print (ADC Value : %d %(value))

time. sleep (0. 1)

Finally, in the loop of main function, we need to use two separate cycles to make servo rotate from O degrees
to 180 degrees and then from 180 degrees to 0 degrees.

def loop():
while True:

for dc in range(0, 181, 1): #make servo rotate from 0° to 180°
servollrite (dc) # Write to servo
time. sleep(0.001)

time. sleep (0. 5)

for dc in range(180, —1, -1): #make servo rotate from 180° to 0°
servollrite (dc)
time. sleep(0.001)

time. sleep(0.5)

support@freenove.com [l

181

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Chapter 14 Stepper Motor

Thus far, we have learned about DC Motors and Servos. A DC motor can rotate constantly in on direction but
we cannot control the rotation to a specific angle. On the contrary, a Servo can rotate to a specific angle but
cannot rotate constantly in one direction. In this chapter, we will learn about a Stepper Motor which is also a
type of motor. A Stepper Motor can rotate constantly and also to a specific angle. Using a Stepper Motor can
easily achieve higher accuracies in mechanical motion.

Project 14.1 Stepper Motor

In this project, we will learn how to drive a Stepper Motor, and understand its working principle.

Component knowledge

Stepper Motor

Stepper Motors are an open-loop control device, which converts an electronic pulse signal into angular
displacement or linear displacement. In a non-overload condition, the speed of the motor and the location
of the stops depends only on the pulse signal frequency and number of pulses and is not affected by changes
in load as with a DC Motor. A small Four-Phase Deceleration Stepper Motor is shown here:

VAORN

N 4

o fw s |
oNwX>

PWR
Stepper Motor

12345

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com [NEE]

The electronic schematic diagram of a Four-Phase Stepper Motor is shown below:

A
B

COM

The outside case or housing of the Stepper Motor is the Stator and inside the Stator is the Rotor. There is a
specific number of individual coils, usually an integer multiple of the number of phases the motor has, when
the Stator is powered ON, an electromagnetic field will be formed to attract a corresponding convex
diagonal groove or indentation in the Rotor’s surface. The Rotor is usually made of iron or a permanent
magnet. Therefore, the Stepper Motor can be driven by powering the coils on the Stator in an ordered
sequence (producing a series of “steps” or stepped movements).

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

184

support@freenove.com www.freenove.com Il

A common driving sequence is shown here:

AL

\
5

v

COM COM

COM COM

In the sequence above, the Stepper Motor rotates by a certain angle at once, which is called a “step”. By
controlling the number of rotational steps, you can then control the Stepper Motor's rotation angle. By
defining the time between two steps, you can control the Stepper Motor’s rotation speed. When rotating
clockwise, the order of coil powered onis: A > B> C > D > A 2. And the rotor will rotate in accordance
with this order, step by step, called four-steps, four-part. If the coils is powered ON in the reverse order, D 2>
C—> B> A->D >, the rotor will rotate in counter-clockwise direction.

There are other methods to control Stepper Motors, such as: connect A phase, then connect A B phase, the
stator will be located in the center of A B, which is called a half-step. This method can improve the stability of
the Stepper Motor and reduces noise. Tise sequence of powering the coils looks like this: A > AB > B 2 BC
-> C > CD > D> DA > A > the rotor will rotate in accordance to this sequence ar, a half-step at a
time, called four-steps, eight-part. Conversely, if the coils are powered ON in the reverse order the Stepper
Motor will rotate in the opposite direction.

The stator in the Stepper Motor we have supplied has 32 magnetic poles. Therefore, to complete one full
revolution requires 32 full steps. The rotor (or output shaft) of the Stepper Motor is connected to a speed
reduction set of gears and the reduction ratio is 1:64. Therefore, the final output shaft (exiting the Stepper
Motor's housing) requires 32 X 64 = 2048 steps to make one full revolution.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

ULN2003 Stepper Motor driver

A ULN2003 Stepper Motor Driver is used to convert weak signals into more powerful control signals in order
to drive the Stepper Motor. In the illustration below, the input signal IN1-IN4 corresponds to the output signal
A-D, and 4 LEDs are integrated into the board to indicate the state of these signals. The PWR interface can
be used as a power supply for the Stepper Motor. By default, PWR and VCC are connected.

L INT A 18
21 1N2 B |-
31IN3 c fQ
Al INg p [LL
21GND pwr J12
L1 vcc
Ll pwR

ULN2003 Stepper

Motor Driver

support@freenove.com [l

185

mailto:support@freenove.com
http://www.freenove.com/

support@freenove.com www.freenove.com [l

Component List

Freenove Projects Board for Raspberry Pi

Raspberry Pi

~./
O Blue LED
/ (GPIOTT)
~ BCM Numbering
FREENDOVEM™
3av
= GND
Shift Clock(GPIO17) Storage Register Clock(GPIO27) Data Input(GPI022) 7
C595 = GND
nnnun
= GPIO18
Y
= GND

WS2812LED

nnnnn nnnm
2 1

IM Sen

(GPIO15)
(GPIO14)

4-Digit, 7-Segment LED Display

)

H P10

. DDDDDDD-DDDDDDDDDDDDD .
I

LED Matrix

un
® ;:?:::‘"g Mok = Stepping Motor ¢
11

® 3-Active Buzzer ur2 (GPI019)

u 4-Relay H §
5-Blue LED (GPior3)

A 6-Motor 3 G (GPI06)
7-LED Matrix ' (GPIOs)
8-7-Segment LED
9-LED Bar Graph

(GPIO)

29z2 o
<286= 2
S

= GPIO16
" GPIO20
" GPIO21
" GPIO26
GPIO19
» GPIO13
* GPIOB

GPIOS

5\"21) RFID-RC522

Passive Buzzer
= SV

» GPIO13(8]
GPIOB(G)
GPIOS(R)

Keypad ® & Ultrasoni
RGBLED ¢ Photoresistor

R SCL
» SDA
" sV
= GND
%

JoyStick Potentiometer

12CLCD1602
Thermistor

WWW.freenove.com

Raspberry Pi GPIO Ribbon Cable

Stepper Motor

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com [NEE

Circuit

Schematic diagram

Al TGPION®

B za—x Gplmg

C 3 GPIOG

pl4 GPIOS
PWR5—|

stepper Motor

Hardware connection.

Raspberry Pi

050 JoyStick

Freenove Projects Board for Raspberry Pi .10 i WWW.freenove.com

1-Stepping Motor
2-Button

— T-LED Matrix

8-T-Segment LED
9-LED Bar Graph

If you have any concerns, please send an email to: support@freenove.com

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

M support@freenove.com www.freenove.com [l

Code

This code uses the four-step, four-part mode to drive the Stepper Motor in the clockwise and anticlockwise
directions.

C Code 14.1 SteppingMotor

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 14_SteppingMotor directory of C code.

2. Use following command to compile "SteppingMotor.c” and generate executable file "SteppingMotor”.

3. Run the generated file "SteppingMotor".

After the program runs, the Stepper Motor will rotate 360° clockwise and then 360° anticlockwise and repeat
this action in an endless loop.

The following is the program code:
#include <stdio.h>

#include <wiringPi.h>

const int motorPins[]={21, 22, 23, 24} ; //define pins connected to four phase ABCD of stepper
motor
const int CCWStep[]={0x01, 0x02, 0x04, 0x08} ; //define power supply order for coil for rotating
anticlockwise
const int CWStep[]={0x08, 0x04, 0x02, 0x01} ; //define power supply order for coil for rotating
clockwise
//as for four phase stepping motor, four steps is a cycle. the function is used to drive the
stepping motor clockwise or anticlockwise to take four steps
void moveOnePeriod (int dir, int ms) {
int i=0, j=0;
for (j=0;j<4;j++){ //cycle according to power supply order
for (i=0;i<4;i++){ //assign to each pin, a total of 4 pins
if(dir == 1) //power supply order clockwise
digitalWrite (motorPins[i], (CCWStep[j] == (1<<i)) ? HIGH : LOW);
else //power supply order anticlockwise
digitalWrite(motorPins[i], (CWStep[j] == (1<<i)) ? HIGH : LOW);
printf ("motorPin %d, %d \n”,motorPins[i], digitalRead (motorPins[i])) ;
}
printf("Step cycle!\n”);
if (ms<3) //the delay can not be less than 3ms, otherwise it will exceed speed

limit of the motor

ms=3;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [EESE

delay (ms) ;

1
//continuous rotation function, the parameter steps specifies the rotation cycles, every four
steps is a cycle
void moveSteps(int dir, int ms, int steps) {
int i;
for (i=0;i<steps;i++) {

moveOnePeriod (dir, ms) ;

}
void motorStop() { //function used to stop rotating
int i;
for (1=0;1<4; i++) {
digitalWrite(motorPins[i], LOW);

}
}
int main(void) {
int 1i;
printf ("Program is starting ...\n”);
wiringPiSetup() ;

for(i=0;i<4;i++) {
pinMode (motorPins[i], OUTPUT) ;

}
while (1) {
moveSteps (1, 3,512) ; //rotating 360° clockwise, a total of 2048 steps in a circle
namely, 512 cycles
delay (500) ;
moveSteps (0, 3, 512) ; //rotating 360° anticlockwise
delay (500) ;
}
return 0;

In the code we define the four pins of the Stepper Motor and the order to supply power to the coils for a
four-step rotation mode.

const int motorPins[]={21, 22, 23, 24} ; //define pins connected to four phase ABCD of stepper
motor
const int CCWStep[]={0x01, 0x02, 0x04, 0x08} ; //define power supply order for coil for rotating

anticlockwise

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

const int CWStep[]={0x08, 0x04, 0x02, 0x01}: //define power supply order for coil for rotating
clockwise

Subfunction moveOnePeriod ((int dir,int ms) will drive the Stepper Motor rotating four-step clockwise or
anticlockwise, four-step as a cycle. Where parameter "dir" indicates the rotation direction, if "dir" is 1, the

servo will rotate clockwise, otherwise it rotates to anticlockwise. Parameter "ms" indicates the time between
each two steps. The "ms" of Stepper Motor used in this project is 3ms (the shortest time period), a value of
less than 3ms will exceed the limits of the Stepper Motor with a result that it does not rotate.

void moveOnePeriod(int dir, int ms) {
int 1=0, j=0;
for (j=0;j<4;j++){ //cycle according to power supply order
for (i=0;i<4;i++){ //assign to each pin, a total of 4 pins
if(dir == 1) //power supply order clockwise
digitalWrite (motorPins[i], (CCWStep[j] == (1<<i)) ? HIGH : LOW);
else //power supply order anticlockwise
digitalWrite (motorPins[il, (CWStep[j] == (1<<i)) 2 HIGH : LOW);
printf ("motorPin %d, %d \n”, motorPins[i], digitalRead (motorPins[i]));
}
printf ("Step cycle!\n”);
if(ms<3) //the delay can not be less than 3ms, otherwise it will exceed
speed limit of the motor
ms=3;

delay (ms) ;

[—
[—

Subfunction moveSteps (int dir, int ms, int steps) is used to specific cycle number of Stepper Motor.

void moveSteps (int dir, int ms, int steps) {
int 1;
for(i=0;i<steps;i++) {

moveOnePeriod (dir, ms) :

[—
[—;

Subfunction motorStop () is used to stop the Stepper Motor.

void motorStop () { //function used to stop rotating
int 1i;

for (i=0;1<4;1++) {

digitalWrite (motorPins[i], LOW) ;

——
——

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com AN

Finally, in the while loop of main function, rotate one revolution clockwise, and then one revolution
anticlockwise. According to the previous material covered, the Stepper Motor rotating for one revolution
requires 2048 steps, that is, 2048/4=512 cycle.

while (1) {
moveSteps (1, 3,512) ; //rotating 360° clockwise, a total of 2048 steps in a
circle, namely, this function(four steps) will be called 512 times
delay (500) ;
moveSteps (0, 3, 512) ; //rotating 360° anticlockwise
delay (500) ;

Python Code 14.1 SteppingMotor
First, observe the project result, and then learn about the code in detail.
If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 14_StepperMotor directory of Python code.
cd ~/Freenove_Kit/Code/Python_Code/14d_StepperMotor
2. Use Python command to execute code "SteppingMotor.py".

python SteppingMotor.py
After the program runs, the Stepper Motor will rotate 360° clockwise and then 360° anticlockwise and repeat

this action in an endless loop.

The following is the program code:
import RPi.GPIO as GPIO

import time

motorPins = (29, 31, 33, 35) # define pins connected to four phase ABCD of stepper motor
CCWStep = (0x01, 0x02, 0x04, 0x08) # define power supply order for rotating anticlockwise
CWStep = (0x08, 0x04, 0x02, 0x01) # define power supply order for rotating clockwise

def setup() :
GPT0. setmode (GPT0. BOARD) # use PHYSICAL GPIO Numbering
for pin in motorPins:
GPIO. setup (pin, GPI0. OUT)

as for four phase stepping motor, four steps is a cycle. the function is used to drive the
stepping motor clockwise or anticlockwise to take four steps
def moveOnePeriod(direction, ms) :
for j in range (0,4, 1): # cycle for power supply order
for i in range(0,4,1): # assign to each pin
if (direction == 1) :# power supply order clockwise
GPI0. output (motorPins[i], ((CCWStep[j] == 1<<i) and GPI0.HIGH or GPIO.LOW))
else : # power supply order anticlockwise
GPI0. output (motorPins[i], ((CWStep[j] == 1<<i) and GPIO.HIGH or GPTO.LOW))

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

if (ms<3) : # the delay can not be less than 3ms, otherwise it will exceed speed
limit of the motor
ms = 3

time. sleep (ms*0. 001)

continuous rotation function, the parameter steps specifies the rotation cycles, every four
steps is a cycle
def moveSteps (direction, ms, steps):

for i in range (steps):

moveOnePeriod (direction, ms)

function used to stop motor
def motorStop():
for i in range (0,4, 1):
GPIO. output (motorPins[i], GPI0. LOW)

def loop():
while True:
moveSteps(1,3,512) # rotating 360 deg clockwise, a total of 2048 steps in a circle
512 cycles
time. sleep (0. 5)
moveSteps (0, 3,512) # rotating 360 deg anticlockwise
time. sleep (0. 5)

def destroy():

GPI0. cleanup () # Release resource
if name == main : # Program entrance
print (Program is starting...’)
setup ()
try:
Loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program

destroy ()

In the code we define the four pins of the Stepper Motor and the order to supply power to the coils for a
four-step rotation mode.

motorPins = (29, 31, 33, 35) # define pins connected to four phase ABCD of stepper motor
CCWStep = (0x01, 0x02, 0x04, 0x08) # define power supply order for rotating anticlockwise
CWStep = (0x08, 0x04, 0x02, 0x01) # define power supply order for rotating clockwise

Subfunction moveOnePeriod ((int dir, int ms) will drive the Stepper Motor rotating four-step clockwise or
anticlockwise, four-step as a cycle. Where parameter "dir" indicates the rotation direction, if "dir" is 1, the
servo will rotate clockwise, otherwise it rotates to anticlockwise. Parameter "ms" indicates the time between

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

each two steps. The "ms" of Stepper Motor used in this project is 3ms (the shortest time period), a value of
less than 3ms will exceed the limits of the Stepper Motor with a result that it does not rotate.

def moveOnePeriod(direction, ms) :

for j in range (0,4, 1): # cycle for power supply order
for i in range(0,4,1): # assign to each pin
if (direction == 1) :# power supply order clockwise
GPTO. output (motorPins[i], ((CCWStep[j] == 1<<i) and GPTO.HIGH or GPIO.LOW))
else : # power supply order anticlockwise
GPT10. output (motorPins[i], ((CWStep[j] == 1<<i) and GPI0.HIGH or GPIO.LOW))
if (ms<3) : # the delay can not be less than 3ms, otherwise it will exceed speed

limit of the motor
ms = 3

time. sleep (ms*0. 001)

Subfunction moveSteps (direction, ms, steps) is used to specify the cycle number of Stepper Motor.

def moveSteps(direction, ms, steps):

for i in range (steps):

moveOnePeriod (direction, ms)

Subfunction motorStop () is used to stop the Stepper Motor.
def motorStop():

for i in range(0, 4, 1):
GPIO. output (motorPins[i], GPI0. LOW)

Finally, in the while loop of main function, rotate one revolution clockwise, and then one revolution
anticlockwise. According to the previous material covered, the Stepper Motor rotating for one revolution
requires 2048 steps, that is, 2048/4=512 cycle.

while True:

moveSteps (1, 3,512) # rotating 360 deg clockwise, a total of 2048 steps in a circle
512 cycles

time. sleep (0. 5)

moveSteps (0, 3,512) # rotating 360 deg anticlockwise

time. sleep (0. 5)

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com Il

Chapter 15 LEDpixel

In this chapter, we will learn Freenove 8 RGB LED Module

Project 15.1 LEDpixel

This project will achieve an RGB triple colored flowing water.

Component knowledge

Freenove 8 RGB LED Module
The Freenove 8 RGB LED Module is as below. You can use only one data pin to control the eight LEDs on the
module. As shown below:

.. B . ©
\;.Lf
®
\ S I LSG y 4
@ y = @ FREENQVE
N o m €0 4
: ; /)
o)

S

<Z

~ !
-—‘ 9 — —
i‘ NE .i
FREENOVE « [}
- O W=l
@ 2
N @ 2

VAR 5 Freenove 8 RGB LED Module
4 @ C7 um 2

| 55

X Free Your Innovation
. www.freenove.com

And you can also control many modules at the same time. Just connect OUT pin of one module to IN pin of
another module. In such way, you can use one data pin to control 8, 16, 32 - LEDs.

S —

., S
FREENOQVE FREENOVE

]
Freenove 8 RGB LED Module

Free Your Innovation
www.freenove.com

Freenove 8 RGB LED Module

Free Your Innovation
www.freenove.com

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com RN

Pin description:

| I

‘ symbol Function ‘ symbol Function ‘
‘ S Input control signal ‘ S Output control signal ‘
‘ V Power supply pin, +3.5V~5.5V ‘ V Power supply pin, +3.5V~5.5V ‘
G GND G GND |

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

support@freenove.com www.freenove.com [l

Component List

Freenove Projects Board for Raspberry Pi

Raspberry Pi

~./
O Blue LED
/ (GPIOTT)
~ BCM Numbering
FREENDOVEM™
3av
= GND
Shift Clock(GPIO17) Storage Register Clock(GPIO27) Data Input(GPI022) 7
C595 = GND
nnnun
= GPIO18
Y
= GND

WS2812LED

nnnnn nnnm
2 1

IM Sen

(GPIO15)
(GPIO14)

4-Digit, 7-Segment LED Display

)

H P10

. DDDDDDD-DDDDDDDDDDDDD .
I

LED Matrix

un
® ;:?:::‘"g Mok = Stepping Motor ¢
11

® 3-Active Buzzer ur2 (GPI019)

u 4-Relay H §
5-Blue LED (GPior3)

A 6-Motor 3 G (GPI06)
7-LED Matrix ' (GPIOs)
8-7-Segment LED
9-LED Bar Graph

(GPIO)

29z2 o
<286= 2
S

= GPIO16
" GPIO20
" GPIO21
" GPIO26
GPIO19
» GPIO13
* GPIOB

GPIOS

5\"21) RFID-RC522

Passive Buzzer
= SV

» GPIO13(8]
GPIOB(G)
GPIOS(R)

Keypad ® & Ultrasoni
RGBLED ¢ Photoresistor

R SCL
» SDA
" sV
= GND
%

JoyStick Potentiometer

12CLCD1602
Thermistor

WWW.freenove.com

Raspberry Pi GPIO Ribbon Cable

Jumper Wire Freenove 8 RGB LED Module

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com

support@freenove.com

Schematic diagram

g . OUT|——=
&% N —e—Gri0ig
Veo e
o GMD o :

Hardware connection.

BCM Numbering

W WO [

o

8102 |d Ausqdsen
6 10PON ¥ Id AUOQdST 0
e

ni

4-Digit, 7-Segment LED Display

(©)

RFID-RC622

. A1 ’
MPUB0S0 ADS7830 AQ JoyStick Button @ Potentiometer

Freenove Projects Board for Raspberry Pi .o) WWW.freenove.com

If you have any concerns, please send an email to: support@freenove.com

Before running C code, please install WS281X library.

1. Enterthe directory where the library locates:

cd ~/Freenove_Kit/Libs/C-Libs/1ibWS281X

2. Run the program

sudo sh ./build.sh

The installation is completed as shown in the figure below

pif@raspberrypi

support@freenove.com [l

197

mailto:support@freenove.com
http://www.freenove.com/
mailto:support@freenove.com

M support@freenove.com www.freenove.com [l

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please send an email to: support@freenove.com

3. Use cd command to enter 15_1_Ledpixel directory of C code.

4. Use following command to compile " Ledpixel.cpp" and generate executable file "Ledpixel".

5. Run the generated file " Ledpixel”.

After the program runs, the LEDpixel will emit red, blue and green colors in turn like flowing water.

The following is the program code:

#include <wiringPi.h>
#include “Freenove WS2812 Lib for Raspberry Pi.hpp”
Freenove WS2812 *a;
int constrain(int value, int min, int max) {
if (valuedmax) {
return max;
}
else if (value<min) {
return min;
}
else {

return value;

}
int main() {
printf ("Program is starting ...\n”);
int i;
a= new Freenove WS2812(18,8,GRB) ;//pin led count type
a—>set_Led Brightness(50) ;
for (i=0;1<8;i++) {
a—>set _Led Color(i, 255, 0,0) ;
a—>show () ;
delay (100) ;
}
for (i=0;i<8;i++) {
a—>set Led Color(i, 0, 255,0) ;
a—>show() ;
delay (100) ;
}
for (i=0;1<8;i++) {
a—>set Led Color(i,0, 0, 255) ;
a—>show () ;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [EKE

delay (100) ;
}
a—>clear();

return 0;

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Include "Freenove_WS2812_Lib_for_Raspberry_Pi.hpp"
- #include “Freenove WS2812 Lib for Raspberry Pi.hpp” ‘

Create the object of the class and set the brightness to 50%. The eight LEDs will then light up red, green and
blue in turn.

int main () {
printf ("Program is starting ...\n”);
int 1i;
a= new Freenove WS2812(18,8,GRB) ;//pin led count type
a—>set Led Brightness(50) ;
for (i=0;i<8;i++) {
a—>set Led Color(i, 255,0,0);
a—>show() ;
delay (100) ;
}
for (i=0;1<8;i++) {
a—>set Led Color(i, 0, 255,0) ;
a—>show() ;
delay (100) ;
}
for (i=0;1<8;i++) {
a—>set _Led Color(i, 0, 0, 255) ;
a—>show() ;
delay (100) ;
}
a—>clear () ;

return 0;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

Before running python code, please install WS281X library first.
1. Enter the following command to install.
sudo pip3 install rpi_ws281x

Success 1] s 281 x -1I_ 5
First observe the project result, and then learn about the code in detail.

If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 15_1_Ledpixel directory of Python code.

cd ~/Freenove_Kit/Code/Python_Code/15_1_Ledpixel

2. Use python command to execute code "Led.py".

sudo python Led.py

After the program runs, the LEDpixel will emit red, green and blue colors in turn like flowing water.
If you want to run Led.py via thonny, you need use sudo thonny Led.py to open it first.

The following is the program code:

1 import time

2 from rpi ws281x import *

3 # LED strip configuration:

4 LED_COUNT =8 # Number of LED pixels.

5 LED PIN =18 # GPIO pin connected to the pixels (18 uses PWM!).
6 LED FREQ HZ = 800000 # LED signal frequency in hertz (usually 800khz)

7 LED DMA =10 # DMA channel to use for generating signal (try 10)
8 LED BRIGHTNESS = 255 # Set to 0 for darkest and 255 for brightest

9 LED INVERT = False # True to invert the signal (when using NPN transistor level shift)
10 LED_CHANNEL =0 # set to 1’ for GPIOs 13, 19, 41, 45 or 53

11 # Define functions which animate LEDs in various ways.

12 class Led:

13 def init_ (self):

14 #Control the sending order of color data

15 self. ORDER = "RGB”

16 # Create NeoPixel object with appropriate configuration

17 self. strip = Adafruit_NeoPixel (LED_COUNT, LED_PIN, LED FREQ HZ, LED DMA, LED_INVERT,
18 LED_BRIGHTNESS, LED CHANNEL)

19 # Intialize the library (must be called once before other functions)
20 self. strip. begin()

21 #tself. strip. setPixelColor (i, color)

22 #tself. strip. show()

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

led=Led()
Main program logic follows:
if name == main
print (Program is starting ...)
col=[Color (255, 0, 0), Color (0, 255, 0), Color (0, 0, 255)]
try:
while True:

for ¢ in range (3):
for i in range(8):
led. strip. setPixelColor (i, col[c])
time. sleep (0. 1)
led. strip. show ()
except KeyboardInterrupt: # When ’Ctrl+C is pressed, the child program destroy() will be
executed.
for i in range(8):
led. strip. setPixelColor (i, Color (0,0, 0))
led. strip. show()

Import rpi_ws281x modile. Set the number, pins and brightness of the LED.

from rpi ws281x import *

LED strip configuration:

LED COUNT =8 # Number of LED pixels

LED PIN = 18 # GPIO pin connected to the pixels (18 uses PWM!).
LED FREQ HZ = 800000 # LED signal frequency in hertz (usually 800khz)
LED DMA =10 # DMA channel to use for generating signal (try 10)

LED_BRIGHTNESS
LED_INVERT
LED_CHANNEL

255 # Set to 0 for darkest and 255 for brightest
False # True to invert the signal (when using NPN transistor level shift)
0 # set to '1” for GPIOs 13, 19, 41, 45 or 53

Define LED class.

class Led:
def init (self):
#Control the sending order of color data
self. ORDER = "RGB”
Create NeoPixel object with appropriate configuration
self. strip = Adafruit_NeoPixel (LED_COUNT, LED_PIN, LED_FREQ HZ, LED_DMA, LED_INVERT,
LED_BRIGHTNESS, LED_CHANNEL)
Intialize the library (must be called once before other functions)
self. strip. begin()
#tself. strip. setPixelColor (i, color)

ttself. strip. show()

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com ALK

Light up the eight LEDs in red, green and blue in turn.
col=[Color (255, 0, 0), Color (0, 255, 0), Color (0, 0, 255)]

try:
while True:
for ¢ in range (3):
for i in range(8):
led. strip. setPixelColor (i, col[c])
time. sleep(0.1)
led. strip. show()
except KeyboardInterrupt: # When ’Ctrl+C is pressed, the child program destroy() will be
executed.
for i in range(8):
led. strip. setPixelColor (i, Color(0,0,0))

led. strip. show()

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Project 15.2 Rainbow Light

In this project, we will learn to control the LED module with a potentiometer.

Component List

Freenove Projects Board for Raspberry Pi

Raspberry Pi

\()/ BngED
/< 4

BCM Numbering 2 2 B
FREENOVE L : . . oot
) = P17 (EEEE) 33V

P18 ® = = GND
74HC595 : Shift Clock(GPIO17) Storage Register Clock(GPIO27) Data Input(GPI022) P15 (iR sv
74HC595 74HC595 74HC595 P1s (SNSNSENS) GND

nnmn nnnnn i unmnn nnnn mnnm

= GPIO18 = GPIO18
. 5V .

= GND

WS2812LED @

nnnnn nnnnn

20
= GND
= GPIO24
= 5V

IM Sen

(GPIO15)
(GPIO14)

4-Digit, 7-Segment LED Display LED Bar Graph

O 0 Q
1

LED Matrix H

1-Stepping Motor — innnnnn un '
2-Button Stepping
® 3-Active Buzzer P

u 4-Relay
Model B/B+ 5-Blue LED i
A B-Motor -
7-LED Matrix 0

8.7-Sogment LED | (piot2) Rl
O.LED Bar Graph | (CF'012) Relaym

GND

GPIO15

GPIO14
" sV

(GPIOS)
RP3
(Ad)

" GPIO16
" GPIO20
GPIO21

GPIO26
" GPIO19 » GPIOT3E)

GPIO13 GPIOB(G)
3 / ® GPIOS GPIOS(R)
| " GPIOS 14
5&1) RFID-RC522
scL
(AS) q SDA

" 5V
GND

Passive Buzzer Active Buzzer = RE2

(A3)

Keypad » ¢ Ultrasonic p

. el

RGB LED & Photoresistor

JoyStick Potentiometer

12CLCD1602

WWW.freenove.com

Raspberry Pi GPIO Ribbon Cable

Jumper Wire Freenove 8 RGB LED Module

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com [

Circuit

Schematic diagram

:Jfl|-'I:| il’lIIII'|I'I' "||."‘-.-!"Ja[l Tk
2 . —
A e YC©
3 —1 A1 SDAJ————— SDA
- A2 sCLp————————— SCQ —8
st A% D1 -3 - o ot | |
oy ADSTEI0 IM & GPIOT8
* - = | a
1 . coml— ° ° VCC &
— ag REF}— o GND = |
-
i i - reenoveGND . _L
— pu— 511

Hardware connection.

HCS
S O T

T W T

o

8102 Id Ausqdsen s
8 1 9PON ¥ I Auoqdsey

4-Digit, 7-Segment LED Displa,

I L L

®
3
b=}

5
a

RFID-RC622

MPUB050 0 0 JoyStick Button @ Potefitiofficter

Freenove Projects Board for Raspberry Pi .o WWW.freenove.com

If you have any concerns, please send an email to: support@freenove.com

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

M support@freenove.com www.freenove.com [l

Code

C Code 15.2 Rainbow Light
First, observe the project result, and then learn about the code in detail.
If you have any concerns, please send an email to: support@freenove.com

3. Use cd command to enter 15_2_RainbowlLight directory of C code.

4. Use following command to compile " RainbowLight.cpp " and generate executable file " RainbowlLight ".

5. Run the generated file " RainbowlLight ".

After running the program, you can change the color of the LED module by rotating the potentiometer.

The following is the program code;
#include <stdio.h>

#include <wiringPi.h>
#include <ADCDevice. hpp>
#include “Freenove WS2812 Lib for Raspberry Pi.hpp”

Freenove WS2812 *led;
ADCDevice *adc;

int red, green, blue;

void HSL RGB(int degree) {

degree=degree/360. 0%255;

if (degree < 85){
red = 255 — degree * 3;
green = degree * 3;
blue = 0;

}

else if (degree < 170) {
degree = degree — 85;
red = 0;
green = 255 — degree % 3;

blue = degree % 3;

else
degree = degree - 170;
red = degree % 3;
green = 0;
blue = 255 - degree * 3;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com AU

int main() {
printf ("Program is starting ...\n”);
adc = new ADCDevice();
int 1i;
led= new Freenove WS2812(18, 8, GRB) ;//pin led count type
led->set_Led Brightness(50) ;

if (ade—>detect12C(0x48)) { // Detect the ads7830

delete adc; // Free previously pointed memory

adc = new ADS7830(0x48) ; // If detected, create an instance of ADS7830
}
else{

printf("No correct 12C address found, \n”
"Please use command ~i2cdetect -y 1’ to check the I2C address! \n”
"Program Exit. \n”);

return —1;

while (1) {
for (1=0;1<8;i++) {
int degree = (int) (adc—>analogRead (2) /255. 0%360+i%45) ; //read analog value of
A0 pin

if (degree > 360) {
degree=degree—360;
}

HSL_RGB (degree) ;

led->set_Led Color (i, red, green, blue) ;

led->show () ;

return O;

This function converts HSL colors to RGB colors.
void HSL_RGB(int degree) {
degree=degree/360. 0%255;
if (degree < 85) {
red = 255 - degree * 3;

green = degree * 3;

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

blue = 0;
}
else if (degree < 170) {
degree = degree — 85;
red = 0;
green = 255 — degree * 3;

blue = degree * 3;

else{
degree = degree - 170;
red = degree * 3;
green = 0;

blue = 255 — degree * 3;

Read the ADC value of channel 2 in an infinite loop. Let the color of the eight LEDs change according to
the value of the ADC.
while (1) {
for (1=0;i<8;i++) {
int degree = (int) (adc—>analogRead (2) /255. 0%360+i%45) ; //read analog value of

A2 pin
if (degree > 360) {
degree=degree—360;
}
HSL_RGB (degree) ;
led->set Led Color (i, red, green, blue) ;
led=>show () ;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com A

Python Code 15.2 Rainbow Light
First observe the project result, and then learn about the code in detail.
If you have any concerns, please send an email to: support@freenove.com

6. Use cd command to enter 15.2 Rainbow Light directory of Python code.

7. Use python command to execute code " Led.py "

After running the program, you can change the color of the LED module by rotating the potentiometer.

The following is the program code:

import time
from rpi ws281x import *
from ADCDevice import *

LED strip configuration:

LED COUNT =8 # Number of LED pixels

LED PIN =18 # GPIO pin connected to the pixels (18 uses PWM!).

LED FREQ HZ = 800000 # LED signal frequency in hertz (usually 800khz)

LED DMA =10 # DMA channel to use for generating signal (try 10)

LED BRIGHTNESS = 255 # Set to 0 for darkest and 255 for brightest

LED INVERT = False # True to invert the signal (when using NPN transistor level shift)
LED CHANNEL =0 # set to '1° for GPIOs 13, 19, 41, 45 or 53

Define functions which animate LEDs in various ways.
class Led:
def init (self):

#Control the sending order of color data

self. ORDER = "RGB”

Create NeoPixel object with appropriate configuration.

self. strip = Adafruit_NeoPixel (LED_COUNT, LED_PIN, LED FREQ HZ, LED_DMA, LED_INVERT,
LED_BRIGHTNESS, LED_CHANNEL)

Intialize the library (must be called once before other functions)

self. strip. begin()

self. adc = ADCDevice (0x48) # Define an ADCDevice class object
if (self. adc. detect12C (0x48)) :
self.adc = ADS7830(0x48)
else:
print ("No correct 12C address found, \n”
"Please use command ~i2cdetect -y 1' to check the I2C address! \n”
"Program Exit. \n”);
exit(-1)

def I1ISL RGB(self, degree) :

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

degree=degree/360%255
if degree < 85:
red = 255 — degree * 3
green = degree * 3
blue = 0
elif degree < 170:
degree = degree — 85
red = 0
green = 255 - degree * 3
blue = degree * 3
else:
degree = degree — 170
red = degree * 3
green = 0
blue = 255 — degree * 3
return int (red), int (green), int (blue)
led=Led ()
Main program logic follows:
if name == main ’
print (' Program is starting ... ')
try:
while True:
for i in range(8):
value = round(led. adc. analogRead(2) / 255.0 * 360+i%45) # read the ADC
value of channel 2
if value > 360 :
value = value—360
red, green, blue=1ed. HSL_RGB (value)
led. strip. setPixelColor(i, Color(red, green, blue))
time. sleep (0. 1)
led. strip. show()
except KeyboardInterrupt: # When ’Ctrl+C is pressed, the child program destroy() will be
executed.
led. adc. close ()
for i in range(8):
led. strip. setPixelColor (i, Color (0,0, 0))
led. strip. show()

This function converts HSL colors to RGB colors.

def HSL RGB(self, degree) :
degree=degree/360%255
if degree < 85:
red = 255 - degree * 3

green = degree * 3

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

blue = 0

elif degree < 170:
degree = degree — 85
red = 0
green = 255 — degree * 3
blue = degree * 3

else:
degree = degree — 170
red = degree * 3
green = 0
blue = 255 — degree * 3

return int (red), int (green), int (blue)

Read the ADC value of channel 2 in an infinite loop. Let the color of the eight LEDs change according to
the value of the ADC.

while True:
for i in range(8):
value = round(led. adc. analogRead(2) / 255.0 * 360+i%45) # read the ADC
value of channel 2
if value > 360 :
value = value—360
red, green, blue=1ed. HSL_RGB (value)
led. strip. setPixelColor (i, Color(red, green,blue))
time. sleep (0. 1)
led. strip. show()

Finally, in the loop of main function, we need to use two separate cycles to make servo rotate from 0 degrees
to 180 degrees and then from 180 degrees to 0 degrees.

def loop():
while True:

for dc in range(0, 181, 1): #make servo rotate from 0° to 180°
servollrite (dc) # Write to servo
time. sleep(0.001)

time. sleep (0. 5)

for dc in range(180, —1, -1): #make servo rotate from 180° to 0°
servollrite (dc)
time. sleep (0. 001)

time. sleep (0. 5)

support@freenove.com [l

211

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com

www.freenove.com Il

Chapter 16 74HC595 & Bar Graph LED

We have used LED Bar Graph to make a flowing water light, in which 10 GPIO ports of RPi are occupied. More
GPIO ports mean that more peripherals can be connected to RPi, so GPIO resource is very precious. Can we
make flowing water light with less GPIO ports? In this chapter, we will learn a component, 74HC595, which

can achieve the target.

Project 16.1 Flowing Water Light

Now let us learn how to use the 74HC595 IC Chip to make a flowing water light using less GPIO.

Component knowledge

Bar Graph LED

A Bar Graph LED has 10 LEDs integrated into one compact component. The two rows of pins at its bottom

are paired to identify each LED like the single LED used earlier.

B support@freenove.com

20
19
18
17
16
15
14
13
12
11

O oOo~NOWU A WN =

—
o

1—l>|:fzo
219
318
4 -f-17
516
6 > 15
7> 14
8 > 13
9 12
10— 11

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com [RAK]

74HC595

A 74HC595 chip is used to convert serial data into parallel data. A 74HC595 chip can convert the serial data
of one byte into 8 bits, and send its corresponding level to each of the 8 ports correspondingly. With this
characteristic, the 74HC595 chip can be used to expand the IO ports of a Raspberry Pi. At least 3 ports on the
RPI board are required to control the 8 ports of the 74HC595 chip.

1 16 -« vee 2
2 15 3 Q2 QO i
3 14 1 ot DS |5
4 13 +1{ Q4 OF [=
5 12 3 Q5 ST_CP K
6 11 = Q6 SH_CP 0
7 10 -1 Q7 MR -
8 9 —{ GND Q7 |-
74HC595
The ports of the 74HC595 chip are described as follows:

Pin name Pin number | Description

Q0-Q7 15, 1-7 Parallel Data Output

VCC 16 The Positive Electrode of the Power Supply, the Voltage is 2~6V

GND 8 The Negative Electrode of Power Supply

DS 14 Serial Data Input

OE 13 Enable Output,

When this pin is in high level, Q0-Q7 is in high resistance state
When this pin is in low level, Q0-Q7 is in output mode

ST_CP 12 Parallel Update Output: when its electrical level is rising, it will update the
parallel data output.

SH_CP 11 Serial Shift Clock: when its electrical level is rising, serial data input register
will do a shift.

MR 10 Remove Shift Register: When this pin is in low level, the content in shift
register will be cleared.

Q7' 9 Serial Data Output: it can be connected to more 74HC595 chips in series.

For more details, please refer to the datasheet on the 74HC595 chip.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

support@freenove.com

www.freenove.com [l

Component List

Freenove Projects Board for Raspberry Pi

Raspberry Pi

‘ O .
I

(GPI012)

Passive Buzzer

JoyStick

Blue LED
(GPIOT7)
P

BCM Numbering

Shift Clock(GPIO17) ~ Storage Register Clock(GPIO27) Data Input(GPI022)
74HC595

nnnnn nnnm
1

4-Digit, 7-Segment LED Display

LED Matrix
4 1-Stepping Motor ARy
2-Button
W 3-Active Buzzer
u 4-Relay
5-Blue LED
A 6-Motor
7-LED Matrix
8-7-Segment LED
9-LED Bar Graph

i

S8
{GPI020)

5
(Gioz1)

RP1

(A2) RFID-RC522

Potentiometer

WWW.freenove.com

IMSen WS2812LED ®

12CLCD1602

Keypad ® & Ultrasoni

un =
Stepping

un2

= GPIO16
" GPIO20
" GPIO21
" GPIO26
= GPIO19
» GPIO13
* GPIOB
GPIOS

R SCL
» SDA
" sV

= GND

33V

= GND

sV

= GND

= GPIO18
= 5V
= GND

(GPIO15)
(GPIO14)

.0

P10

Motor &
1

Thermistor

RGBLED ¢ Photoresistor

(GPIO19)
(GPIO13)
(GPI06)
(GPI05)

29z2 o
<286= 2
S

" 5V

» GPIO13E
GPIOB(G)
GPIOS(R)

ETHERNET

GPIO Ribbon Cable

Bar Graph LED

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com

support@freenove.com

Circuit

Schematic diagram

1200)
Ul 5V
LEDT
AWW-— e
2200 — o
AN “LeD2 — 127
Son . Gpi022
A < LED3 74HC595
o " GPIO2 —L_
< Leng 1 GP]D% =
VWY RS S _
2200 —
< LEDS] €
W/\v 6 N J: 5V
2200 — — " .
p— U2 5V
LEDY
VW M Ep10——— | . T
AN ; ‘LED7 o — T
" LED7|
W 2200 /78
LED: — 74HCS95
2200 S — —"G"ﬂ —L—
_LEDY — ———————— GPIO1 -
Wy R10 —
200 —
A <'LED10) f | — _L,\
3

Hardware connection.
If it dosen’t work, rotate the LED bar graph for 180°.

Raspberry Pi

o

8102 |d Ausqdsey

LED Matrix

e Buzzer

[} 4
[+

[] H
Q =
Q H
Q H
bl £
o

MPUB050 / Button &

ping Motor #

Pt

RFID-RC522

Potentiometer

WWW.freenove.com

If you have any concerns, please send an email to: support@freenove.com

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

M support@freenove.com www.freenove.com [l

Code

In this project we will make a flowing water light with a 74HC595 chip to learn about its functions.
C Code 16.1 LightWater02

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 16_FlowingLightO2 directory of C code.

2. Use following command to compile “FlowingLight02.c” and generate executable file “FlowingLight02”.

3. Then run the generated file “FlowinglLight02".

After the program runs, you will see that Bar Graph LED starts with the flowing water pattern flashing from
right to left and then back from left to right.

The following is the program code:

#include <wiringPi.h>
#include <stdio.h>
#include <wiringShift.h>

tdefine dataPin 3 //DS Pin of 74HC595(Pinl4)
#define latchPin 2 //ST CP Pin of 74HC595 (Pinl2)
#define clockPin 0 //CH CP Pin of 74HC595 (Pinl1)

void shiftOut(int dPin, int cPin, int order, int val) {
int i;
for(i = 0; i < 10; i++){
digitalWrite(cPin, LOW) ;
if (order == LSBFIRST) {
digitalWrite(dPin, ((0x01&(val>>i)) == 0x01) ? HIGH : LOW);
delayMicroseconds (10) ;
}
else {
digitalWrite(dPin, ((0x80& (val<<i)) == 0x80) ? HIGH : LOW);
delayMicroseconds (10) ;

1
digitalWrite(cPin, HIGH) ;
delayMicroseconds (10) ;

int main(void)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com AN

int 1;

unsigned long x;

printf ("Program is starting ...\n”);

wiringPiSetup () ;

pinMode (dataPin, OUTPUT) ;
pinMode (1atchPin, OUTPUT) ;
pinMode (clockPin, OUTPUT) ;
while (1) {
x=0x0001;
for (i=0;1i<10;i++) {
digitalWrite(latchPin, LOW) ; // Output low level to latchPin
_shiftOut (dataPin, clockPin, LSBFIRST, x) ;// Send serial data to 74HC595
digitalWrite(latchPin, HIGH) ; //Output high level to latchPin, and 74HC595 will
update the data to the parallel output port.

x<<=1; //make the variable move one bit to left once, then the bright LED
move one step to the left once.
delay (100) ;
}
x=0x0200;

for (i=0;1<10; i++) {
digitalWrite(latchPin, LOW) ;
_shiftOut (dataPin, clockPin, LSBFIRST, x) ;
digitalWrite(latchPin, HIGH) ;
x>>=1;
delay (100) ;

}

return 0;

In the code, we configure three pins to control the 74HC595 chip and define a one-byte variable to control
the state of the 10 LEDs (in the Bar Graph LED Module) through the 10 bits of the variable. The LEDs light ON
when the corresponding bit is 1. If the variable is assigned to 0x01, that is 00000001 in binary, there will be
only one LED ON.

x=0x0001 ;

In the “while” loop of main function, use two loops to send x to 74HC595 output pin to control the LED. In
one cycle, x will shift one bit to the LEFT in one cycle, then when data of x is sent to 74HC595, the LED that is

turned ON will move one bit to the LEFT once.

- for (i=0: i<10; i++) { ‘

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

digitalWrite(latchPin, LOW) ; // Output low level to latchPin

_shiftOut(dataPin, clockPin, LSBFIRST, x) ; // Send serial data to 74HC595

digitalWrite(latchPin, HIGH); //Output high level to latchPin, and 74HC595 will
update the data to the parallel output port.

x<<=1; //make the variable move one bit to left once, then the bright LED
move one step to the left once.

delay (100) ;

—

In second cycle, the situation is the same. The difference is that x is shift from 0x80 to the RIGHT in order.

"<<"isthe left shift operator, which can make all bits of 1 byte shift by several bits to the left (high) direction
and add 0 on the right (low). For example, shift binary 00000001 by 1 bit to left:
bytex =1 << 1;
«— «— <« “«— <« «— <«
—lolofofofofofof1]<[o]
The result of xis 2 (binary 00000010) .
(ofoJojofofof1]o]

There is another similar operator” >>". For example, shift binary 00000001 by 1 bit to right:
bytex =1 >>1;
— — — — — — —
0/ ~[oJoJofofofoJo]1]~
The result of xis 0 (00000000) .
(ojojofojojofo]o]

X <<=1lisequivalenttox =x << landx >>= lisequivalenttox =x >>1

About shift function

This is used to shift a 10-bit data value out with the data being sent out on dPin and the clock being sent
out on the cPin. order is as above. Data is clocked out on the rising or falling edge - ie. dPin is set, then
cPin is taken high then low - repeated for the 10 bits.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [PARE

Python Code 16.1 LightWater02
First, observe the project result, and then learn about the code in detail.
If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 16_FlowingLight02 directory of Python code.

2. Use python command to execute Python code “FlowingLight02.py”.

After the program runs, you will see that Bar Graph LED starts with the flowing water pattern flashing from
right to left and then back from left to right.

The following is the program code:
import RPi.GPIO as GPIO
import time
Defines the data bit that is transmitted preferentially in the shiftOut function.

LSBFIRST = 1
MSBFIRST = 2

define the pins for 74HC595

dataPin = 15 # DS Pin of 74HC595 (Pinl4)
latchPin = 13 # ST CP Pin of 74HC595(Pinl2)
clockPin = 11 # CH CP Pin of T74HC595(Pinll)

def setup():
GPI0. setmode (GPI0. BOARD) # use PHYSICAL GPIO Numbering
GPIO. setup(dataPin, GPIO.OUT) # set pin to OUTPUT mode
GPIO. setup(latchPin, GPIO.OUT)
GPIO. setup(clockPin, GPIO.OUT)

shiftOut function, use bit serial transmission.
def shiftOut (dPin, cPin, order, val) :
for i in range (0, 10) :
GPI0. output (cPin, GPIO. LOW) ;
if (order == LSBFIRST) :
GPIO0. output (dPin, (0x01&(val>>i)==0x01) and GPIO.HIGH or GPIO.LOW)
elif (order == MSBFIRST) :
GPIO. output (dPin, (0x80&(val<<i)==0x80) and GPIO.HIGH or GPIO.LOW)
GPIO. output (cPin, GPIO. HIGH) ;

def loop():
while True:
x=0x0001
for i in range(0, 10) :
GPIO. output (1atchPin, GPT0.LOW) # Output low level to latchPin
shiftOut (dataPin, clockPin, LSBFIRST, x) # Send serial data to 74HC595

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

GPIO. output (latchPin, GPI0. HIGH) # Output high level to latchPin, and 74HC595 will
update the data to the parallel output port.
x<<=1 # make the variable move one bit to left once, then the bright LED move one
step to the left once.
time. sleep(0.1)
print (hex (x))
x=0x0200
for i in range(0, 10) :
GPI0. output (1atchPin, GP10. LOW)
shiftOut (dataPin, clockPin, LSBFIRST, x)
GPIO0. output (1atchPin, GP10. HIGH)
x>>=1
time. sleep(0. 1)
print (hex (x), int (x))

def destroy () :
GPIO. cleanup ()

if name ==’ main ’: # Program entrance
print (Program is starting...’)
setup ()
try:
loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

In the code, we define a shiftOut() function, which is used to output values with bits in order, where the dPin
for the data pin, cPin for the clock and order for the priority bit flag (high or low). This function conforms to
the operational modes of the 74HC595. LSBFIRST and MSBFIRST are two different flow directions.

def shiftOut(dPin, cPin, order, val) :

for i in range (0, 10) :
GPIO. output (cPin, GPIO. LOW) ;
if (order == LSBFIRST) :
GPIO. output (dPin, (0x01&(val>>i)==0x01) and GPIO.HIGH or GPIO.LOW)
elif(order == MSBFIRST) :
GPIO. output (dPin, (0x80& (val<<i)==0x80) and GPIO.HIGH or GPIO.LOW)
GPIO. output (cPin, GPIO. HIGH) ;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

In the loop() function, we use two loops to achieve the action goal. First, define a variable x=0x0001. When it
is transferred to the output port of 74HC595, the low bit outputs high level, then an LED turns ON. Next, x is
shifted one bit, when x is transferred to the output port of 74HC595 once again, the LED that turns ON will
be shifted. Repeat the operation, over and over and the effect of a flowing water light will be visible. If the
direction of the shift operation for x is different, the flowing direction is different.
def loop():
while True:
x=0x0001
for i in range(0, 10) :
GPIO. output (1atchPin, GPT0. LOW) # Output low level to latchPin
shiftOut (dataPin, clockPin, LSBFIRST, x) # Send serial data to 74HC595
GPIO. output (latchPin, GPI0. HIGH) # Output high level to latchPin, and 74HC595 will

update the data to the parallel output port
x<<=1 # make the variable move one bit to left once, then the bright LED move one
step to the left once.
time. sleep(0.1)
print (hex(x))
x=0x0200
for i in range(0, 10):
GPIO0. output (latchPin, GPI0. LOW)
shiftOut (dataPin, clockPin, LSBFIRST, x)
GPIO0. output (latchPin, GPI0. HIGH)
x>=1
time. sleep(0.1)

print thex(x), int (x))

support@freenove.com [l

221

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com Il

Chapter 17 74HC595 & 4-Digit 7-Segment Display

In this chapter, we will introduce the 7-Segment Display.

Project 17.1 4-Digit 7-Segment Display

We will use a 74HC595 IC Chip to control a 4-Digit 7-Segment Display and make it display sixteen decimal
characters "0" to “F".

Component List

Freenove Projects Board for Raspberry Pi

Raspberry Pi

Q. BIEGT

BCM Numberis
FREENOVE ki

74HC595 : Shift Clock(GPIO17) Storage Register Clock(GPIO27) Data Input(GPI022)

74HC595 74HC595 74HC595
LTI TR T T (LTI TR T T LTI TTTTTT
= GPIO18 = GPIO18
" 5V = 5V

Model A = GND = GND

WS2812LED @

= GND = GND
= GPI024 t- = GPIO23
= 5V = 5V

IM Sen

(GPIO15)
(GPIO14)

‘ OOOOOOOOOO0OOOO00O0000 Q
OOOOOOOO0OO00O00O0000000

LED Matrix

4 1-Stepping Motor un

RIBRI7R18 S DBaticn Stepping

* Z Motor»

W 3-Active Buzzer . ut2
u 4-Relay H
5-Blue LED s o= H
A 8-Motor H
7-LED Matrix 06
8-7-Segment LED :
OLED Bar Graph | (©F1012) Relaya
" GND
GPIO15
GPIO14
sV

&5 1 : PIO16

GPI020

Passive Buzzer Active Buzzer = b

" GPIO28

GPIO19

GPIO13

* GPIO8

* GPIOS
3

" 5V

= GPIO138)
GPIOB(G)
GPIOS(R)

== 2

Thermistor RGB LED @ Photoresistor
2

@)

Potentiometer

WWW.freenove.com

Raspberry Pi GPIO Ribbon Cable 4-Digit 7-Segment Display

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com [

Circuit

Schematic diagram

pic1 pic2 \ pic3 pic4
112 o 8 |6
=] 1 ! E f I =] =] 1 1 E | I =] =] 1 1 E I I =} =] 1 1 g | 1 =]
RMAVARAAVAAVAAVAN Y 2\ A\[/ N MAVAAVAAVAAVAAVAN Y AMAVARAVAN N Y
1 Bit 7-Segmentl
1 5V

B ey
C A ,
D — —————< GP1022
E 74HC595
F) - GPI027 —l—
G GPIO17 -

DIG2

DIG2 ————— ———<bIG{
[D1G2
—— 74HCS595
——r— _ GPIO2 _J_
— { GPIO1 -
— - <L

Hardware connection.

BCM Numbering

94
v 50zl

808VZ 01

04
WS2812 LED ®

. FOuvan

CAMERA

IM Sen

LED Bar Graph

J7
LED Matrix s
= ro

un
Stepping Motor

1-Stepping Motor
Button
Active Buzzer
Relay
5-Blue LED
A 6-Motor
7-LED Matrix
egment LED
ED Bar Graph

RP2
(A3)

: RP1
(A2) n RFID-RC522
o v 1

MPU6050 JoyStick Button & Potentiometer

e
8

Keypad @ & Ultrasonic p

RGB LED @ Photoresistor

00000000 '

12CLCD1602

WWW.freenove.com

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

224 support@freenove.com www.freenove.com [l

If you have any concerns, please send an email to: support@freenove.com

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com [

Component knowledge

4 Digit 7-Segment Display

A 4 Digit 7-segment display integrates four 7-Segment Displays into one module, therefore it can display
more characters. All of the LEDs contained have a Common Anode and individual Cathodes. Its internal
structure and pin designation diagram is shown below:

121110987

123456

The internal electronic circuit is shown below, and all 8 LED cathode pins of each 7-Segment Display are
connected together.

|12 |9 |8 |6

I i |18 |4 |8 |18 B |8 12 |F |8 |5 |5 |8 I R
AVA
\ b LY by o w W

‘/I
I'y's
r'e’s

r'es
I'es
#
174
’|,>1 1
>
1%
175
'y
s
'’

¥
¥
I'7s
I'es
I'7s
¥
174
I'es
r'¢'4

1117 14 |12 |1 |110}5 |3

Display method of 4 Digit 7-segment display is similar to 1 Digit 7-segment display. The difference between
them is that the 4-Digit displays each Digit is visible in turn, one by one and not together. We need to first
send high level to the common end of the first Digit Display, and send low level to the remaining three
common ends, and then send content to 8 LED cathode pins of the first Digit Display. At this time, the first 7-
Segment Display will show visible content and the remaining three will be OFF.

Similarly, the second, third and fourth 7-Segment Displays will show visible content in turn by scanning the
display. Although the four number characters are displayed in turn separately, this process is so fast that it is
unperceivable to the naked eye. This is due to the principle of optical afterglow effect and the vision
persistence effect in human sight. This is how we can see all 4 number characters at the same time. However,
if each number character is displayed for a longer period, you will be able to see that the number characters
are displayed separately.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Code

This code uses a 74HC595 IC Chip to control the 4-Digit 7-Segment Display. The use of the 74HC595 IC Chip
is generally the same throughout this Tutorial. We need code to display the characters “0” to “F” one character
at a time, and then output to display them with the 74HC595 IC Chip.

C Code 17.1 SevenSegmentDisplay

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 17_1_SevenSegmentDisplay directory of C code.

cd ~/Freenove_Kit/Code/C_Code/17_1_SevenSegmentDisplay

2. Use following command to compile “SevenSegmentDisplay.c” and generate executable file
“SevenSegmentDisplay”.

gcc SevenSegmentDisplay.c -o SevenSegmentDisplay —-lwiringPi

3. Then run the generated file “SevenSegmentDisplay”.

sudo ./SevenSegmentDisplay

After the program runs, the 4-Digit 7-Segment Display starts to display the characters “0” to “F" in succession.

The following is the program code:

#include <wiringPi.h>
#include <stdio.h>
#include <wiringShift.h>

#tdefine dataPin 3 //DS Pin of 74HC595(Pinl4)

#tdefine latchPin 2 //ST CP Pin of 74HC595 (Pinl2)

ttidefine clockPin 0 //CH CP Pin of 74HC595(Pinll)

//encoding for character 0-F of common anode SevenSegmentDisplay.

unsigned long

num[]={0xffc0, Oxfff9, Oxffa4d, 0xf£b0, 0xff99, 0xff92, Oxff82, Oxfff8, 0xf180, 0xff90, 0xff88, 0xff83, Oxf
fc6, 0xffal, 0xff86, 0xffSe} ;

void shiftOut(int dPin, int cPin, int order, int val) {
int i;
for(i = 0; i < 16; i++){
digitalWrite (cPin, LOW);
if (order == LSBFIRST) {
digitalWrite(dPin, ((0x01&(val>>i)) == 0x01) ? HIGH : LOW);
delayMicroseconds (10) ;
}
else {
digitalWrite (dPin, ((0x8000& (val<<i)) == 0x8000) ? HIGH : LOW);
delayMicroseconds (10) ;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

digitalWrite(cPin, HIGH) ;
delayMicroseconds (10) ;

int main(void)
{

int 1i;

printf ("Program is starting ...\n”);

wiringPiSetup () ;

pinMode (dataPin, OUTPUT) ;
pinMode (latchPin, OUTPUT) ;
pinMode (clockPin, OUTPUT) ;
while (1) {
for (i=0; i<sizeof (num) ;i++) {
digitalWrite(latchPin, LOW) ;
_shiftOut (dataPin, clockPin, MSBFIRST, num[i]) ; //Output the figures and the highest
level is transfered preferentially.
digitalWrite(latchPin, HIGH) ;
delay (500) ;

}

return 0;

First, we need to create encoding for characters “0” to “F" in the array.

unsigned long
num[]={0xffc0, 0xfff9, Oxffa4, 0xffb0, 0xff99, 0xff92, 0xff82, Oxf 8, 0xf 80, 0xff90, 0xff88, 0xf{83, 0xffch
, Oxffal, 0xff86, 0xff8e} ;

In the “for” loop of loop() function, use the 74HC595 IC Chip to output contents of array “num” successively.

SevenSegmentDisplay can then correctly display the corresponding characters.

while (1) {
for (i=0; i<sizeof (num) ; i++) {
digitalWrite(latchPin, LOW) ;
_shiftOut (dataPin, clockPin, MSBFIRST, num[i]) ;//Output the figures and the highest
level is transfered preferentially.
digitalWrite(latchPin, HIGH) ;
delay (500) ;

support@freenove.com [l

227

mailto:support@freenove.com
http://www.freenove.com/

M support@freenove.com www.freenove.com [l

Python Code 17.1 SevenSegmentDisplay
First, observe the project result, and then learn about the code in detail.
If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 17_1_SevenSegmentDisplay directory of Python code.

2. Use Python command to execute Python code “SevenSegmentDisplay.py”.

After the program runs, the 4-Digit 7-Segment Display starts to display the characters “0" to “F" in succession.
The following is the program code:
import RPi.GPIO as GPIO

import time

LSBFIRST = 1
MSBFIRST = 2

define the pins for 74HC595

dataPin = 15 # DS Pin of 74HC595 (Pinl4)
latchPin = 13 # ST CP Pin of 74HC595(Pinl2)
clockPin = 11 # CH CP Pin of 74HC595(Pinll)

”

SevenSegmentDisplay display the character "0”— “F” successively
num =
[0xffc0, Oxfff9, 0xffad, 0xffb0, 0xff99, 0xff92, 0xf£82, 0xff {8, 0xff80, 0xff90, 0xff88, 0xff83, 0xffch, Ox

ffal, 0xf86, 0xff8e]

def setup():
GPIO. setmode (GPTO. BOARD) # use PHYSICAL GPIO Numbering
GPIO. setup(dataPin, GPIO. OUT)
GPIO. setup(latchPin, GPIO.OUT)
GPIO. setup(clockPin, GPIO.OUT)

def shiftOut (dPin, cPin, order, val) :
for i in range (0, 16) :
GPIO. output (cPin, GPIO. LOW) ;
if (order == LSBFIRST) :
GPIO0. output (dPin, (0x01&(val>>i)==0x01) and GPIO.HIGH or GPIO.LOW)
elif (order == MSBFIRST) :
GPI0. output (dPin, (0x8000& (val<<i)==0x8000) and GPIO.HIGH or GPIO. LOW)
GPI0. output (cPin, GPI0. HIGH) ;

def loop():
while True:
for i in range(0, len(num)) :
GPIO. output (1atchPin, GPTO. LOW)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [EAAS

shiftOut (dataPin, clockPin, MSBFIRST, num[i]) # Send serial data to 74HC595
GPIO0. output (latchPin, GPI0. HIGH)
time. sleep(0.5)
>?’ for i in range (0, len (num)) :
GPIO. output (IatchPin, GPI0. LOW)
shiftOut (dataPin, clockPin, MSBFIRST, num[i]&0x7f) # Use “&0x7f” to display the
decimal point.
GPIO. output (1atchPin, GPTO. HIGH)
time. sleep(0.5)" "

def destroy():
GPI0. cleanup ()

if name ==’ main ’: # Program entrance
print (Program is starting...’)
setup()
try:
loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

First, we need to create encoding for characters “0” to “F” in the array.
num=[0xffc0, 0xfff9, 0xffad, 0xffb0, 0xf£99, 0xff92, 0xff82, Oxfff8, 0xf 80, 0xf£90, 0xff88, 0xff83, 0xffch, 0
xffal, 0xff86, 0xff8e]

In the “for” loop of loop() function, use the 74HC595 IC Chip to output contents of array “num” successively.
SevenSegmentDisplay can then correctly display the corresponding characters.

while True:
for i in range(0, len(num)) :
GPI0. output (1atchPin, GP10. LOW)
shiftOut (dataPin, clockPin, MSBFIRST, num[i]) # Send serial data to 74HC595
GPIO0. output (latchPin, GPT0. HIGH)
time. sleep(0.5)

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Project 17.2 4-Digit 7-Segment Display

Component List

Freenove Projects Board for Raspberry Pi

Raspb [
aspberry Pi —

/C)\/ BI(%%!E??? ‘ - 2 < —

BCM Numberil
FREEND V il

P17 . 33v
P18 = = = GND
74HC595 : Shift Clock(GPIO17) Storage Register Clock(GPIO27) Data Input(GPI022) =
74HC595 HC595 74HC595 P18 = = = GND
nnnnn nunnn 111 11 unnnn nmunnn minnn
= GPIO18
" , w v

Model Zero

WS2812LED @

nnnnm I N nnnnn nmnnm
o4

0%‘:'

‘ 0 ‘
I

ﬁ

= GPIO24
= 5V

IM Sen

3

(GPIO15)
(GPIO14)

LED Matrix

1-Stepping Motor un

“Bution Stepping

P1

* Z Motor»

tive Buzzer
elay
-Blue LED
A 6-Motor
7-LED Matrix
8.7-Segment LED | (opio12) Relas
9-LED Bar Graph | ¢) A-
® GND
GPIO1S
(A4) . 27\010
GPIO16
" GPIO20
GPI021
" GPIO26
" GPIO19
GPIO13
* GPIOS
" GPIOS

82

= A.BAG . . 8 n <<<((.))>>>
o

) 5V
» GPIOT3E)
O6(G)
GPIOS(R)

Keypad » ¢
RGB LED ¢ Phof

A5 Berozn
A4 e
A3 L ‘. RP1

(A2) RFID-RC522

|
v A2 . q »

A1
MPUB050 ADS7830 A0 JoyStick Button & Potentiometer

scL
= SDA
. 5V
= GND

00000000

12CLCD1602
Thermistor

Freenove Projects Board for Raspberry Pi o) WWW.freenove.com

Raspberry Pi GPIO Ribbon Cable 4-Digit 7-Segment Display

Circuit

Schematic diagram
The same as that of 17.1

Hardware connection
The same as that of 17.1

If you have any concerns, please send an email to: support@freenove.com

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Code

In this code, we use the 74HC595 IC Chip to control the 4-Digit 7-Segment Display, and use the dynamic
scanning method to show the changing number characters.

C Code 17.2 StopWatch

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 17_2_StopWatch directory of C code.

2. Use following command to compile "StopWatch.c" and generate executable file "StopWatch".

3. Run the generated file "SteppingMotor".

After the program runs, the 4-Digit 7-Segment Display starts displaying a four-digit number dynamically, and
the numeric value of this number will increase by plus 1 each second thereafter.

The following is the program code:

#include <wiringPi.h>
#include <stdio.h>
#include <wiringShift.h>
#include <signal.h>
#include <unistd.h>
#tdefine dataPin 3 //DS Pin of T4HC595(Pinl14)
#tdefine latchPin 2 //ST_CP Pin of 74HC595(Pin12)
#tdefine clockPin 0 //CH CP Pin of 74HC595 (Pinll)
// character 0-9 code of common anode 7-segment display
unsigned char num[]={0xc0, 0xf9, Oxa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90} ;
int counter = 0; //variable counter, the number will be displayed by 7-segment display
//Open one of the 7-segment display and close the remaining three, the parameter digit is
optional for 1,2,4,8
unsigned long selectDigit (unsigned long digit) {
if (digit==0x01) {
return (0x08<<8) ;
}
else if (digit==0x02) {
return (0x04<<8) ;
}
else if (digit==0x04) {
return (0x02<<8) ;
}
else if (digit==0x08) {
return (0x01<<8);

support@freenove.com [l

231

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

}

else{
return (0xf0<<8);
}

}
void shiftOut(int dPin, int cPin, int order, int val) {
int i;
for(i = 0; i < 16; i++){
digitalWrite(cPin, LOW) ;
if (order == LSBFIRST) {
digitalWrite(dPin, ((0x01&(val>>i)) == 0x01) ? HIGH : LOW);
delayMicroseconds (1) ;
1
else {//if (order == MSBFIRST) {
digitalWrite(dPin, ((0x8000& (val<<i)) == 0x8000) ? HIGH : LOW);
delayMicroseconds (1) ;
1
digitalWrite(cPin, HIGH) ;

delayMicroseconds (1) ;

1
}
void outData(unsigned long data) { //function used to output data for 74H1C595
digitalWrite (latchPin, LOW) ;
_shiftOut (dataPin, clockPin, MSBFIRST, data) ;
digitalWrite (latchPin, HIGH) ;
}

void display(int dec){ //display function for 7-segment display
int delays = 1;
unsigned long digit;
outData (0xffff) ;
digit=selectDigit (0x01) ; //select the first, and display the single digit
outData (num[dec%10] |digit) ;
delay(delays) ; //display duration

outData (Oxffff) ;

digit=selectDigit (0x02) ; //select the second, and display the tens digit
outData (num[dec%100/10] |digit) :

delay(delays) ;

outData (0xfTff) ;

digit=selectDigit (0x04) ; //select the third, and display the hundreds digit
outData (num[dec%1000/100] |digit) ;

delay (delays) ;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [ESE

outData (0xfTff) ;
digit=selectDigit (0x08) ; //select the fourth, and display the thousands digit
outData (num[dec%10000/1000] |digit) ;
delay (delays) ;
}
void timer(int sig){ //Timer function
if(sig == SIGALRM) { //If the signal is SIGALRM, the value of counter plus 1, and update
the number displayed by 7-segment display
counter ++;
alarm(1) ; //set the next timer time
printf(“counter : %d \n”, counter) ;
}
1
int main(void)
{
int 1i;
printf ("Program is starting ...\n”):
wiringPiSetup() ;
pinMode (dataPin, OUTPUT) ; //set the pin connected to74HC595 for output mode
pinMode (1atchPin, OUTPUT) ;
pinMode (clockPin, OUTPUT) ;
signal (SIGALRM, timer); //configure the timer
alarm(1) ; //set the time of timer to 1s
while (1) {
display(counter); //display the number counter
}
return 0;
}

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

First, we define the pin of the 74HC595 IC Chip and the 7-Segment Display Common Anode, use character
encoding and a variable "counter” to enable the counter to be visible on the 7-Segment Display.
ftdefine dataPin 3 //DS Pin of 74HC595(Pin14)
ftdefine latchPin 2 //ST CP Pin of 74HC595(Pin12)
#define clockPin 0 //CH CP Pin of 74HC595(Pinll)
// character 0-9 code of common anode 7-segment display
unsigned char num[]={0xc0, 0xf9, Oxa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90} ;

int counter = 0; //variable counter, the number will be displayed by 7-segment display

Subfunction selectDigit (int digit) function is used to open one of the 7-Segment Displays while closing the
other 7-Segment Displays, where the parameter digit value can be 1,2,4,8. Using "|" can open a number of a
7-Segment Display.

unsigned long selectDigit (unsigned long digit) {

if (digit==0x01) {
return (0x08<<8) ;
}

else if (digit==0x02) {
return (0x04<<8) ;
}

else if (digit==0x04) {
return (0x02<<8) ;
}

else if (digit==0x08) {
return (0x01<<8);
}

else
return (0xf0<<8);
}

Subfunction outData (int8_t data) is used to make the 74HC595 IC Chip output a 16-bit data immediately.
void outData(int8 t data) { // function used to output data for 74HC595
digitalWrite (latchPin, LOW) ;
shiftOut (dataPin, clockPin, MSBFIRST, data) :
digitalWrite (latchPin, HIGH) ;

Subfunction display (int dec) is used to make a 4-Digit 7-Segment Display a 4-bit integer. First open the
common end of first 7-Segment Display Digit and turn OFF the other three Digits, now it can be used as 1-
Digit 7-Segment Display. The first Digit is used for displaying single digits of "dec", the second Digit is for tens,
the third for hundreds and fourth for thousands respectively. Each digit will be displayed for a period by using
delay (). The time in this code is very brief, so you will see digits all together. If the time is set long enough,
you will see that every digit is displayed independently.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

void display(int dec){ //display function for 7-segment display
int delays = 1;
unsigned long digit;
outData (0xffff) ;
digit=selectDigit (0x01); //select the first, and display the single digit
outData (num[dec%10] |digit) ;
delay (delays) ; //display duration

outData (0xffff) ;

digit=selectDigit (0x02) ; //select the second, and display the tens digit
outData (num[dec%100/10] [digit) ;

delay(delays) ;

outData (0xffff) ;

digit=selectDigit (0x04) ; //select the third, and display the hundreds digit
outData (num[dec%1000/100] [digit) ;

delay (delays) ;

outData (0xfTff) ;

digit=selectDigit (0x08) ; //select the fourth, and display the thousands digit
outData (num[dec%10000/1000] |digit) ;

delay (delays) ;

Subfunction timer (int sig) is the timer function, which will set an alarm to signal. This function will be executed
once at set time intervals. Accompanied by the execution, “1” will be added as the variable counter and then
reset the time of timer to 1s.

void timer (int sig) { //timer function
if(sig == SIGALRM) { //If the signal is SIGALRM, the value of counter plus 1, and
update the number displayed by 7-segment display
counter ++;

alarm(1); //set the next timer time

support@freenove.com [l

235

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Finally, in the main function, configure the GPIO, and set the timer function.
pinMode (dataPin, OUTPUT) ; //set the pin connected to74HC595 for output mode
pinMode (1atchPin, OUTPUT) ;
pinMode (clockPin, OUTPUT) ;
//set the pin connected to 7-segment display common end to output mode
for (i=0;1<4;i++) {
pinMode (digitPin[i], OUTPUT) ;
digitalWrite (digitPin[i], LOW) ;

}
signal (SIGALRM, timer); //configure the timer

alarm(l) ; //set the time of timer to 1s

In the while loop, make the digital display variable counter value “1". The value will change in function timer
(), so the content displayed by the 7-Segment Display will change accordingly.
while (1) {

display(counter); //display number counter

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [EEH

Python Code 17.2 StopWatch
If you have any concerns, please send an email to: support@freenove.com
1. Use cd command to enter 17_2_StopWatch directory of Python code.

2. Use python command to execute code "StopWatch.py".

After the program runs, 4-Digit 7-segment start displaying a four-digit number dynamically, and the will plus
1 in each successive second.

The following is the program code:
import RPi.GPIO as GPIO

import time

import threading

LSBFIRST = 1

MSBFIRST = 2

define the pins connect to 74HC595

dataPin = 15 # DS Pin of 74HC595

latchPin = 13 # ST _CP Pin of 74HC595

clockPin = 11 # SH CP Pin of 74HC595

num = (0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0x {8, 0x80, 0x90)

counter = 0 # Variable counter, the number will be dislayed by 7-segment display
t=0 # define the Timer object

def setup():
GPI0. setmode (GPT0. BOARD) # use PHYSICAL GPIO Numbering
GPIO. setup(dataPin, GPIO. OUT) # Set pin mode to OUTPUT
GPIO. setup(latchPin, GPIO.OUT)
GPIO. setup(clockPin, GPIO.OUT)

def shiftOut (dPin, cPin, order, val) :
for i in range (0, 16) :
GPI0. output (cPin, GPIO. LOW) ;
if (order == LSBFIRST) :
GPIO0. output (dPin, (0x01&(val>>i)==0x01) and GPIO.HIGH or GPIO.LOW)
elif (order == MSBFIRST) :
GPTO. output (dPin, (0x8000& (val<<i)==0x8000) and GPIO0.HIGH or GPIO.LOW)
GPIO. output (cPin, GPI0. HIGH)

def outData (data) : # function used to output data for 74HC595
GPIO0. output (latchPin, GPI0. LOW)
shiftOut (dataPin, clockPin, MSBFIRST, data)
GPIO0. output (1atchPin, GPI0. HIGH)

def selectDigit(digit): # Open one of the 7-segment display and close the remaining three, the

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

parameter digit is optional for 1,2,4,8
if digit==0x01:
return (0x08<<8)
elif digit==0x02:
return (0x04<<8)
elif digit==0x04:
return (0x02<<8)
elif digit==0x08:
return (0x01<<8)
else:

return (0xf0<<8)

def display (dec) : # display function for 7-segment display
outData (Oxffff) # eliminate residual display
digit=selectDigit (0x01) # Select the first, and display the single digit
outData (num[dec%10] |digit)
time. sleep(0.003) # display duration

outData (0xfffT)

digit=selectDigit (0x02) # Select the second, and display the tens digit
outData (num[dec%100//10] |digit)

time. sleep (0. 003)

outData (0xfTfT)

digit=selectDigit (0x04) # Select the third, and display the hundreds digit
outData (num[dec%1000//100] |digit)

time. sleep (0. 003)

outData (0xffff)

digit=selectDigit (0x08) # Select the fourth, and display the thousands digit
outData (num[dec%10000//1000] |digit)

time. sleep (0. 003)

def timer():

global counter

global t

t = threading. Timer (1. 0, timer) # reset time of timer to 1s
t. start () # Start timing

counter+=1

print (“counter : %d”%counter)

def loop():
global t

global counter

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

t = threading. Timer (1. 0, timer) # set the timer
t. start () # Start timing
while True:

display (counter) # display the number counter

def destroy():
global t
GPI0. cleanup ()

t. cancel ()

if name == _main_: # Program entrance
print (Program is starting...’)
setup ()
try:
Loop ()
except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

First, define the pin of 74HC595 and 7-segment display common end, character encoding and a variable
"counter” to be displayed counter.

dataPin = 15 # DS Pin of 74HC595

latchPin = 13 # ST CP Pin of 74HC595

clockPin = 11 # SH CP Pin of 74HC595

num = (0xc0, 0xf9, 0xad, 0xb0, 0x99, 0x92, 0x82, 0x 8, 0x80, 0x90)

counter = 0 # Variable counter, the number will be dislayed by 7-segment display

Subfunction selectDigit (digit) function is used to open one of the 7-segment display and close the other 7-
segment display, where the parameter digit value can be 1,2,4,8.

def selectDigit(digit): # Open one of the 7-segment display and close the remaining three, the
parameter digit is optional for 1, 2,4,8
if digit==0x01:
return (0x08<<8)
elif digit==0x02:
return (0x04<<8)
elif digit==0x04:
return (0x02<<8)
elif digit==0x08:
return (0x01<<8)
else:

return (0xf0<<8)

support@freenove.com [l

239

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com

www.freenove.com Il

Subfunction outData (data) is used to make the 74HC595 output an 16-bit data immediately.

def outData (data) :

GPIO0. output (latchPin, GPI0. LOW)
shiftOut (dataPin, clockPin, MSBFIRST, data)
GPIO0. output (1atchPin, GPI0. HIGH)

function used to output data for 74HC595

Subfunction display (int dec) is used to make a 4-Digit 7-Segment Display a 4-bit integer. First open the
common end of first 7-Segment Display Digit and turn OFF the other three Digits, now it can be used as 1-
Digit 7-Segment Display. The first Digit is used for displaying single digits of "dec”, the second Digit is for tens,
the third for hundreds and fourth for thousands respectively. Each digit will be displayed for a period by using
delay (). The time in this code is very brief, so you will a mess of Digits. If the time is set long enough, you will
see that every digit is displayed independently.

def display (dec) :
outData (0xffff)

digit=selectDigit (0x01)
outData (num[dec%10] |digit)

time. sleep (0. 003)

outData (0xffff)

digit=selectDigit (0x02)
outData (num[dec%100//10] |digit)

time. sleep (0. 003)

outData (Oxffff)

digit=selectDigit (0x04)
outData (num[dec%1000//100] | digit)

time. sleep (0. 003)

outData (Oxffff)

digit=selectDigit (0x08)
outData (num[dec%10000//1000] |digit)

time. sleep (0. 003)

display function for 7-segment display
eliminate residual display
Select the first, and display the single digit

display duration

Select the second, and display the tens digit

Select the third, and display the hundreds digit

Select the fourth, and display the thousands digit

Subfunction timer () is the timer callback function. When the time is up, this function will be executed.
Accompanied by the execution, the variable counter will be added 1, and then reset the time of timer to 1s.
1s later, the function will be executed again.

def timer():
global counter
global t

t = threading. Timer (1. 0, timer)

t. start ()
counter+=1

print (“counter :

%d”%counter)

reset time of timer to Is

Start timing

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [P

Subfunction setup(), configure all input output modes for the GPIO pin used.
Finally, in loop function, make the digital tube display variable counter value in the while loop. The value will
change in function timer (), so the content displayed by 7-segment display will change accordingly.
def loop():
global t

global counter
t = threading. Timer (1. 0, timer) # set the timer
t. start () # Start timing

while True:

display(counter) # display the number counter

After the program runs, press "Ctrl+C", then subfunction destroy() will be executed, and GPIO resources and
timers will be released in this subfunction.

def destroy(): # When 'Ctrl+C is pressed, the function is executed
global t
GPI0. cleanup ()
t. cancel () # cancel the timer

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Chapter 18 74HC595 & LED Matrix

Thus far we have learned how to use the 74HC595 IC Chip to control the Bar Graph LED and the 7-Segment
Display. We will now use 74HC595 IC Chips to control an LED Matrix.

Project 18.1 LED Matrix

In this project, we will use two 74HC595 IC chips to control a monochrome (one color) (8X8) LED Matrix to
make it display both simple graphics and characters.

Component knowledge

LED matrix
An LED Matrix is a rectangular display module that consists of a uniform grid of LEDs. The following is an 8X8
monochrome (one color) LED Matrix containing 64 LEDs (8 rows by 8 columns).

16151413121110 9
00000000
00000000
00000000
00000000

123456738

In order to facilitate the operation and reduce the number of ports required to drive this component, the
Positive Poles of the LEDs in each row and Negative Poles of the LEDs in each column are respectively
connected together inside the LED Matrix module, which is called a Common Anode. There is another
arrangement type. Negative Poles of the LEDs in each row and the Positive Poles of the LEDs in each column
are respectively connected together, which is called a Common Cathode.

The LED Matrix that we use in this project is a Common Anode LED Matrix.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com DX} support@freenove.com [V

Connection mode of Common Anode Connection mode of Common Cathode

13,3 410 6111516 13 3410 6111516
X

—
—

LnN\l—‘;Oo-b-Lo
PR PR B

P PR PR KPR PR B
PP PR PR PR PR PR PR
PP PR PR KPR PR P
PR PR PR PR KPR PR K
PR PR PR KPR K B
PR PR PR KPR K B
WK KKK KKK
U'l[\)\l—\;OO-D-LO
P PR Pr PR Pe Pe PR PR
P P Pr P Pe Pe PR PR
e S e - S 7
P PR Pe PR Pr PR PR PR
P PR Pr PR Pe PR PR PR
e P P PR PR PR PR PR
P PR P PR Pe Pe PR PR
R S O U

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

244

support@freenove.com www.freenove.com [l

Here is how a Common Anode LED Matrix works. First, choose 16 ports on RPI board to connect to the 16
ports of LED Matrix. Configure one port in columns for low level, which makes that column the selected port.
Then configure the eight port in the row to display content in the selected column. Add a delay value and
then select the next column that outputs the corresponding content. This kind of operation by column is
called Scan. If you want to display the following image of a smiling face, you can display it in 8 columns, and
each column is represented by one byte.

1 2 3 45 6 7 8
0/0/0/0/0/0/0|0
0/0j1/1/1/1,0/0
0/1/0/0/0/0|1/0
1/0(1(0j0(1]0]|1
110/{0|0|0|0|0]|12
11]0/0|1|1]0(0|12
0/1/0/0/0/0|1/0
0/0j1/1/1/1,0/0

Column Binary Hexadecimal

1 0001 1100 Oxlc

2 0010 0010 0x22

3 0101 0001 0x51

4 0100 0101 0x45

5 0100 0101 0x45

6 0101 0001 0x51

7 0010 0010 0x22

8 0001 1100 Oxlc

To begin, display the first column, then turn off the first column and display the second column. (and so on)
turn off the seventh column and display the 8th column, and then start the process over from the first column
again like the control of LED Bar Graph project. The whole process will be repeated rapidly in a loop. Due to
the principle of optical afterglow effect and the vision persistence effect in human sight, we will see a picture
of a smiling face directly rather than individual columns of LEDs turned ON one column at a time (although
in fact this is the reality we cannot perceive).

Scanning rows is another option to display on an LED Matrix (dot matrix grid). Whether scanning by row or
column, 16 GPIO is required. In order to save GPIO ports of control board, two 74HC595 IC Chips are used in
the circuit. Every 74HC595 IC Chip has eight parallel output ports, so two of these have a combined total of
16 ports, which is just enough for our project. The control lines and data lines of the two 74HC595 IC Chips
are not all connected to the RPi, but connect to the Q7 pin of first stage 74HC595 IC Chip and to the data pin
of second IC Chip. The two 74HC595 IC Chips are connected in series, which is the same as using one
"7T4HC595 IC Chip" with 16 parallel output ports.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com

Component List

Freenove Projects Board for Raspberry Pi x1

Raspberry Pi

~./
O Blue LED
/ (GPIOTT)
~ BCM Numbering
FREENDOVEM™
3av
= GND
Shift Clock(GPIO17) Storage Register Clock(GPIO27) Data Input(GPI022) 7
C595 = GND
nnnun
= GPIO18
Y
= GND

WS2812LED

nnnnn nnnm
2 1

IM Sen

(GPIO15)
(GPIO14)

4-Digit, 7-Segment LED Display

)

H P10

. DDDDDDD-DDDDDDDDDDDDD .
I

LED Matrix

un

® ;:?:::‘"g Mok = Stepping Motor ¢

® 3-Active Buzzer uiz i

m 4-Relay -
5-Blue LED ,

A 8-Motor . (GPIOB)
7-LED Matrix ' (GPIOs)
8-7-Segment LED
9-LED Bar Graph

(GPIO19)
(GPIO13)

(GPIO)

29z2 o
<286= 2
S

= GPIO16
" GPIO20
" GPIO21
" GPIO26
GPIO19
» GPIO13
* GPIOB

GPIOS

5\"21) RFID-RC522

Passive Buzzer
= SV

» GPIO13(8]
GPIOB(G)
GPIOS(R)

Keypad ® & Ultrasoni
RGBLED ¢ Photoresistor

R SCL
» SDA
" sV
= GND
%

JoyStick

12CLCD1602
Thermistor

Raspberry Pi GPIO Ribbon Cable 4-Digit 7-Segment Display

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

246 support@freenove.com www.freenove.com [l

Circuit

Schematic diagram

1[0
2107
€10
10))
5107
5107

<109

<81

g::§< éig:iéziézigéig:i §:< u1 5V)
13 3 4 10 6 1 15 16 74HC595 or _‘_
o ——2 2 X A x| A :@ =
e -
o2 2 2] A T
1% ﬁ(% % ﬁ(ﬁ(ﬁ(ﬁ(74HCS95 — -
@/—7%%%%%%%% -GPIO1 —_—
22 2 24 2 X - ml
X X X KKK XX

Hardware connection.
If it dosen’t work, rotate the LED matrix for 180°.

9 | 9pop ¥ I Ausqdsey

8102 Id Aueqdsed @

LED Bar Graph

RFID-RC522

MPUB050 / ick Bution = Potentiometer

Freenove Projects Board for Raspberry Pi 10 WWW.freenove.com

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com LN

Function Sel
R12

If you have any concerns, please send an email to: support@freenove.com

Code

Two 74HC595 IC Chips are used in this project, one for controlling the LED Matrix’'s columns and the other
for controlling the rows. According to the circuit connection, row data should be sent first, then column data.
The following code will make the LED Matrix display a smiling face, and then display characters "0 to F"
scrolling in a loop on the LED Matrix.

C Code 18.1 LEDMatrix

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 18_LEDMatrix directory of C language.

cd ~/Freenove_Kit/Code/C_Code/18_LEDMatrix

2. Use following command to compile “LEDMatrix.c” and generate executable file “LEDMatrix”.

gcc LEDMatrix.c —o LEDMatrix -lwiringPi

3. Then run the generated file “LEDMatrix”.

sudo ./LEDMatrix

After the program runs, the LED Matrix displays a smiling face, and then displays characters "0 to F" scrolling
in a loop on the LED Matrix.

The following is the program code:

1 #include <wiringPi.h>

2 #include <stdio.h>

3 #include <wiringShift.h>

4

5 ttdefine dataPin 3 //DS Pin of 74HC595 (Pinl4)

(§) #define latchPin 2 //ST CP Pin of 74HC595(Pinl2)

7 #define clockPin 0 //SH CP Pin of 74HC595(Pinl1)

8 // data of smile face

9 unsigned char pic[]={0x1lc, 0x22, 0x51, 0x45, 0x45, 0x51, 0x22, Ox1c} ;
10 | unsigned char datal[]={ // data of "0-F”

11 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // ~~
12 0x00, 0x00, Ox3E, 0x41, 0x41, O0x3E, 0x00, 0x00, // “0”
13 0x00, 0x00, 0x21, O0x7F, 0x01, 0x00, 0x00, 0x00, // “1”
14 0x00, 0x00, 0x23, 0x45, 0x49, 0x31, 0x00, 0x00, // "2”

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

DX support@freenove.com www.freenove.com [l

0x00, 0x00, 0x22, 0x49, 0x49, 0x36, 0x00, 0x00, // ”3”
0x00, 0x00, OxOE, 0x32, 0x7F, 0x02, 0x00, 0x00, // “4”
0x00, 0x00, 0x79, 0x49, 0x49, 0x46, 0x00, 0x00, // "5”
0x00, 0x00, Ox3E, 0x49, 0x49, 0x26, 0x00, 0x00, // "6”
0x00, 0x00, 0x60, 0x47, 0x48, 0x70, 0x00, 0x00, // “7”
0x00, 0x00, 0x36, 0x49, 0x49, 0x36, 0x00, 0x00, // ~
0x00, 0x00, 0x32, 0x49, 0x49, 0x3E, 0x00, 0x00,
0x00, 0x00, Ox3F, 0x44, 0x44, 0x3F, 0x00, 0x00
0x00, 0x00, Ox7F, 0x49, 0x49, 0x36, 0x00, 0x00
0x00, 0x00, Ox3E, Ox41, Ox41, 0x22, 0x00, 0x00, // ”
0x00, 0x00, Ox7F, Ox41, Ox41, O0x3E, 0x00, 0x00, // ”
0x00, 0x00, Ox7F, 0x49, 0x49, 0x41, 0x00, 0x00, // ~
0x00, 0x00, Ox7F, 0x48, 0x48, 0x40, 0x00, 0x00, // ~
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // ~ ”

~
~
X

\ \
\ \
o oM 9 QW = © 0 N o) Ol A W

b
void shiftOut(int dPin, int cPin, int order, int val) {
int 1i;
for(i = 0; i <8; it++){
digitalWrite(cPin, LOW) ;
if (order == LSBFIRST) {
digitalWrite(dPin, ((0x01&(val>>i)) == 0x01) ? HIGH : LOW);
delayMicroseconds (10) ;
}
else {//if (order == MSBFIRST) {
digitalWrite(dPin, ((0x80&(val<<i)) == 0x80) ? HIGH : LOW);
delayMicroseconds (10) ;
}
digitalWrite (cPin, HIGH) ;
delayMicroseconds (10) ;

}
int main(void)
{

int i, j,k;

unsigned char x;

printf ("Program is starting ...\n”);
wiringPiSetup () ;

pinMode (dataPin, OUTPUT) ;

pinMode (1atchPin, OUTPUT) ;

pinMode (clockPin, OUTPUT) ;
while (1) {

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [PERE

for (j=0; j<600; j++) { //Repeat enough times to display the smiling face a period of
time
x=0x80;
for (i=0;i<8;i++) {
digitalWrite(latchPin, LOW) ;
_shiftOut (dataPin, clockPin, MSBFIRST, picli]) ;// first shift data of line
information to the first stage 74HC959
_shiftOut (dataPin, clockPin, MSBFIRST, “x) ;//then shift data of column
information to the second stage 74HC959

digitalWrite (latchPin, HIGH) ; //Output data of two stage 74HC595 at the same
time

x>>=1; //display the next column

delay (1) ;

}
for (k=0;k<sizeof (data)-8;k++) { //sizeof(data) total number of “0-F” columns
for (j=0;j<20; j++) { //times of repeated displaying LEDMatrix in every frame, the
bigger the “j” , the longer the display time
x=0x80; //Set the column information to start from the first column
for (i=k;i<8+k;i++) {
digitalWrite(latchPin, LOW) ;
_shiftOut (dataPin, clockPin, MSBFIRST, data[i]) ;
_shiftOut (dataPin, clockPin, MSBFIRST, “x) ;
digitalWrite(latchPin, HIGH) ;
x>>=1;
delay(1);

}

return 0;

The first “for” loop in the “while” loop is used to display a static smile. Displaying column information from left
to right, one column at a time with a total of 8 columns. This repeats 500 times to ensure sufficient display
time.

for (j=0; j<500; j++) { //Repeat enough times to display the smiling face a period of time
x=0x80;
for (i=0;1<8;i++) {
digitalWrite (latchPin, LOW) ;
_shiftOut (dataPin, clockPin, MSBFIRST, picli]) ;// first shift data of line
information to the first stage 74HC959
_shiftOut (dataPin, clockPin, MSBFIRST, “x) ;//then shift data of column

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

information to the second stage 74HC959

digitalWrite(latchPin, HIGH) ; //Output data of two stage 74HC595 at the same
time

x>>=1; //display the next column

delay (1) ;

The second “for” loop is used to display scrolling characters "0 to F", for a total of 18 X 8 = 144 columns.
Displaying the 0-8 column, then the 1-9 column, then the 2-10 column...... and so on-+138-144 column in
consecutively to achieve the scrolling effect. The display of each frame is repeated a certain number of times
and the more repetitions, the longer the single frame display will be and the slower the scrolling movement.
for (k=0;k<sizeof (data)-8;k++) { //sizeof(data) total number of “0-F” columns
for (j=0; j<20;j++) { //times of repeated displaying LEDMatrix in every frame, the

“

bigger the “j” , the longer the display time

x=0x80; //Set the column information to start from the first column
for (i=k;i<8+k;i++) {
digitalWrite(latchPin, LOW) ;
_shiftOut (dataPin, clockPin, MSBFIRST, datal[i]) ;
_shiftOut (dataPin, clockPin, MSBFIRST, ") ;
digitalWrite(latchPin, HIGH) ;
x>>=1;
delay(1);

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [ZASHI

Python Code 18.1 LEDMatrix
First, observe the project result, and then learn about the code in detail.
If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 18_LEDMatrix directory of Python language.

cd ~/Freenove_Kit/Code/Python_Code/18_LEDMatrix

2. Use Python command to execute Python code “LEDMatrix.py”.

python LEDMatrix.py

After the program runs, the LED Matrix displayss a smiling face, and then displays characters "0 to F" scrolling
in a loop on the LED Matrix.

The following is the program code:
import RPi.GPIO as GPIO

import time

LSBFIRST = 1

MSBFIRST = 2

define the pins connect to 74HC595

dataPin = 15 # DS Pin of 74HC595 (Pinl4)
latchPin = 13 # ST CP Pin of 74HC595(Pinl2)
clockPin = 11 # SH CP Pin of 74HC595(Pinll)

pic = [0xlc, 0x22, 0x51, 0x45, 0x45, 0x51, 0x22, Ox1c] # data of smiling face
data = [# data of "0-F”
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
0x00, 0x00, Ox3E, 0x41, 0x41, 0x3E, 0x00, 0x00
0x00, 0x00, 0x21, O0x7F, 0x01, 0x00, 0x00, 0x00
0x00, 0x00, 0x23, 0x45, 0x49, 0x31, 0x00, 0x00
0x00, 0x00, 0x22, 0x49, 0x49, 0x36, 0x00, 0x00
0x00, 0x00, O0xOE, 0x32, 0x7F, 0x02, 0x00, 0x00
0x00, 0x00, 0x79, 0x49, 0x49, 0x46, 0x00, 0x00
0x00, 0x00, 0x3E, 0x49, 0x49, 0x26, 0x00, 0x00
0x00, 0x00, 0x60, 0x47, 0x48, 0x70, 0x00, 0x00
0x00, 0x00, 0x36, 0x49, 0x49, 0x36, 0x00, 0x00
0x00, 0x00, 0x32, 0x49, 0x49, O0x3E, 0x00, 0x00
0x00, 0x00, O0x3F, 0x44, 0x44, O0x3F, 0x00, 0x00,
0x00, 0x00, O0x7F, 0x49, 0x49, 0x36, 0x00, 0x00
0x00, 0x00, O0x3E, 0x41, 0x41, 0x22, 0x00, 0x00
0x00, 0x00, O0x7F, 0x41, O0x41, Ox3E, 0x00, 0x00
0x00, 0x00, O0x7F, 0x49, 0x49, 0x41, 0x00, 0x00,
0x00, 0x00, OxT7F, 0x48, 0x48, 0x40, 0x00, 0x00
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

HoH B o H OH OH H o H H H H o H H H
o = R S W~ R N N = N BCAOORI O s

def setup():
GPI0. setmode (GPI0. BOARD) # use PHYSICAL GPIO Numbering

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

GPIO0. setup(dataPin, GPIO. OUT)
GPIO0. setup(latchPin, GPIO.OUT)
GPIO0. setup(clockPin, GPIO.OUT)

def shiftOut(dPin, cPin, order, val) :
for i in range (0, 8) :
GPIO. output (cPin, GPTO. LOW) ;
if (order == LSBFIRST) :
GPIO. output (dPin, (0x01&(val>>i)==0x01) and GPIO.HIGH or GPIO.LOW)
elif (order == MSBFIRST) :
GPIO. output (dPin, (0x80&(val<<i)==0x80) and GPIO.HIGH or GPIO.LOW)
GPIO. output (cPin, GPTO. HIGH) ;

def loop():
while True:
for j in range(0,500) : # Repeat enough times to display the smiling face a period of
time
x=0x80
for i in range (0, 8) :
GPIO0. output (1atchPin, GPI0. LOW)
shiftOut (dataPin, clockPin, MSBFIRST, pic[i]) #first shift data of line
information to first stage 74HC959

shiftOut (dataPin, clockPin, MSBFIRST, “x) #then shift data of column information

to second stage T4HC959
GPIO. output (latchPin, GPIO. HIGH) # Output data of two stage 74HC595 at the same

time
time. sleep (0. 001) # display the next column
x>>=1
for k in range(0, len(data)-8): #len(data) total number of “0-F” columns
for j in range(0,20): # times of repeated displaying LEDMatrix in every frame, the
bigger the ”j”, the longer the display time.

x=0x80 # Set the column information to start from the first column
for i in range(k, k+8) :

GPIO. output (latchPin, GPI0. LOW)

shiftOut (dataPin, clockPin, MSBFIRST, data[i])

shiftOut (dataPin, clockPin, MSBFIRST, ~x)

GPIO. output (latchPin, GP10. HIGH)

time. sleep (0. 001)

x>>=1
def destroy():
GPIO0. cleanup ()
if name == main ’: # Program entrance
print (Program is starting...’)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

setup ()
try:
loop ()
except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

The first “for” loop in the “while” loop is used to display a static smile. Displaying column information from left
to right, one column at a time with a total of 8 columns. This repeats 500 times to ensure sufficient display
time.

for j in range(0,500): # Repeat enough times to display the smiling face a period of
time
x=0x80
for i in range (0, 8) :
GPIO0. output (1atchPin, GPI0. LOW)
shiftOut (dataPin, clockPin, MSBFIRST, pic[i]) #first shift data of line
information to first stage 74HC959

shiftOut (dataPin, clockPin, MSBFIRST, “x) #then shift data of column information
to second stage 74HC959

GPIO0. output (latchPin, GPIO. HIGH) # Output data of two stage 74HC595 at the same
time

time. sleep (0. 001) # display the next column

x>>=1

The second “for” loop is used to display scrolling characters "0 to F", for a total of 18 X 8 = 144 columns.
Displaying the 0-8 column, then the 1-9 column, then the 2-10 column...... and so on-+138-144 column in
consecutively to achieve the scrolling effect. The display of each frame is repeated a certain number of times
and the more repetitions, the longer the single frame display will be and the slower the scrolling movement.

for k in range(0, len(data)-8): #len(data) total number of “0-F” columns
for j in range(0,20): # times of repeated displaying LEDMatrix in every frame, the
bigger the ”j”, the longer the display time.

x=0x80 # Set the column information to start from the first column

for i in range (k, k+8):
GPIO. output (latchPin, GPTO0. LOW)
shiftOut (dataPin, clockPin, MSBFIRST, datali])
shiftOut (dataPin, clockPin, MSBFIRST, ~x)
GPIO. output (1atchPin, GPTO0. HIGH)
time. sleep (0. 001)

x>>=1

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Chapter 19 LCD1602

In this chapter, we will learn about the LCD1602 Display Screen,

Project 19.1 12C LCD1602

There are LCD1602 display screen and the 12C LCD. We will introduce both of them in this chapter. But what
we use in this project is an 12C LCD1602 display screen. The LCD1602 Display Screen can display 2 lines of
charactersin 16 columns. It is capable of displaying numbers, letters, symbols, ASCIl code and so on. As shown
below is a monochrome LCD1602 Display Screen along with its circuit pin diagram

O—AMSLNO
— AN LNON OO — ———

()

o

O
w0 o-—amswmon~AAdls
28203 BRREREEEGS S
A A AT IS

12C LCD1602 Display Screen integrates a 12C interface, which connects the serial-input & parallel-output
module to the LCD1602 Display Screen. This allows us to only use 4 lines to operate the LCD1602.

-1 GND

2lycc |(mummm
3lcpa ((mmmmm
4] scL ==

12C LCD1602 Module

The serial-to-parallel IC chip used in this module is PCF8574T (PCF8574AT), and its default I12C address is
0x27(0x3F). You can also view the RPI bus on your I2C device address through command "i2cdetect -y 1"
(refer to the "configuration 12C" section below).

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com [EES

Below is the PCF8574 chip pin diagram and its module pin diagram:
PCF8574 chip pin diagram: PCF8574 module pin diagram

A0 [1] U 16] Voo
A1 [2] [15] spa
A2 [3] 14] scL
PO [4] pcrasza [13) INT
p1 [5] PCFESTA [z o
P2 6] [11] Ps
P3 [7] 10] P5
Vss [8] (9] Pa oo

PCF8574

BlelRERERBlele N o |~
=
@]

PCF8574 module pins and LCD1602 pins correspond to each other and are connected to each other:

GND|—
VCC|—
SDA}—
SCL}—

<

I~

o}

on [E

ZNo0o0o~nQOO0O0OgwnoOor~mZ 5]

O>>AaonozzzzaonaooodO|g
—| || | 1| ©| ~| o | 2| Z| N D T | L
—| ov| | <t| | | ~~| o 2| S| =| N V| I 10| ©
o WO~ N0 O©N + 4
PeS R EU R RanamA0

> S 14 DOODDDDDLIJH S

- ©

©

[m)]

(@&}

-

Because of this, as stated earlier, we only need 4 pins to control the 16 pins of the LCD1602 Display Screen
through the 12C interface.
In this project, we will use the I2C LCD1602 to display some static characters and dynamic variables.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Component List

Freenove Projects Board for Raspberry Pi

Raspberry Pi

o
/ ~ BCM Numbering

FREENOVE™

33V
= GND

74HC595 : Shift Clock(GPIO17) Storage Register Clock(GPIO27) Data Input(GPIO22)

I

5V

C595 74HC595 = GND
nnnun nmnnnn minnn

= GPIO18

% sv

= GND

WS2812LED

nnnnn nnnnn nnnm
R2

03 02

IM Sen

(GPIO15)
(GPIO14)

.0

H P10

4-Digit, 7-Segment LED Display LED Bar Graph

O

LED Matrix

Function Selection Switch ¥ un
RIZRIIR14R1S &4 ;:T;::‘"g e Stepping Motor ¢
m 3-Active Buzzer uiz i
m 4-Relay H
5-Blue LED
A 6-Motor
7-LED Matrix
8-7-Segment LED
OLED Bar Graph | (©F1012) Relaya

(GPIO19)
(GPIO13)

" GND
GPIO15
" GPIO4
" sV

= GPIO16
GPI020
GPI021
* GPI026
" GPIO19
GPIO13
N ® GPIOB

" GPIO5

5\’;21) RFID-RC522

Passive Buzzer
» GPIO13(8]
GPIOB(G)
GPIOS(R)

Keypad ® & Ultrasoni
RGBLED ¢ Photoresistor

" SCL
» SDA
" sV

= GND

A1 T
ADS7830 JoyStick Potentiometer

12CLCD1602
Thermistor

WWW.freenove.com

Raspberry Pi GPIO Ribbon Cable

Jumper Wire [2C LCD1602 Module

@Se 0 e 000000000

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com NS

Circuit

Note that the power supply for 1I2C LCD1602 in this circuit is 5V.
Schematic diagram

1 enp

2] vee

iy —1 7
o——4AlscL

[2CLCD1602 Module

Hardware connection.

8102 'd Aueqdsey
8 | 9PON ¥ 1d Aueqdsey

RFID-RC522

Button &

If you have any concerns, please send an email to: support@freenove.com

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Code

This code will have your RPi’'s CPU temperature and System Time Displayed on the LCD1602.

C Code 19.1 12CLCD1602

If you haven't configured 12C and install Smbus, please refer to Chapter 7. If you've done it, please continue.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 19_12CLCD1602 directory of C code.

cd ~/Freenove_Kit/Code/C_Code/19_I2CLCD1602

2. Use following command to compile “I12CLCD1602.c” and generate executable file “[2CLCD1602".

gcc I2CLCD1602.c —o I2CLCD1602 —lwiringPi -lwiringPiDev

3. Then run the generated file “I2CLCD1602".

sudo ./I2CLCD1662

After the program runs, the LCD1602 Screen will display your RPi's CPU Temperature and System Time.
NOTE: After the program runs, if you nothing displays or the display is not clear, you can try to rotate
the white knob on back of LCD1602 slowly, which adjusts the contrast, until the screen can display the
Time and Temperature clearly.

The following is the program code:

1 #include <stdlib.h>

2 #include <stdio. h>

3 #tinclude <wiringPi.h>

4 #include <wiringPilI2C.h>

5 #include <pcf8574. h>

(9 #include <led.h>

7 #include <time.h>

8

9 int pcf8574 address = 0x27; // PCE8574T:0x27, PCF8574AT:0x3F
10 #define BASE 64 // BASE any number above 64

11 //Define the output pins of the PCF8574, which are directly connected to the LCD1602 pin
12 ftdefine RS BASE+0

13 ftdefine RW BASE+1

14 #define EN BASE+2

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [ESE

#define LED BASE+3

#tdefine D4 BASE+4
#tdefine D5 BASE+5
#tdefine D6 BASE+6
#define D7 BASE+7

int ledhd;// used to handle LCD
void printCPUTemperature() {// sub function used to print CPU temperature
FILE *fp;
char str_temp[15];
float CPU_temp;
// CPU temperature data is stored in this directory
fp=fopen(”/sys/class/thermal/thermal zoneO/temp”,”r”);
fgets(str temp, 15, fp) ; // read file temp
CPU temp = atof(str temp)/1000.0; // convert to Celsius degrees

printf ("CPU s temperature : %. 2f \n”, CPU temp) ;

lcdPosition(ledhd, 0, 0) ; // set the LCD cursor position to (0, 0)
ledPrintf (1cdhd, “CPU:%. 2fC”, CPU_temp) ;// Display CPU temperature on LCD
fclose (fp) ;

1
void printDataTime () {//used to print system time
time t rawtime;
struct tm *timeinfo;
time (&rawtime) ;// get system time
timeinfo = localtime (&rawtime) ;//convert to local time
printf("%s \n”, asctime (timeinfo));
ledPosition(ledhd, 0, 1) ;// set the LCD cursor position to (0, 1)

lcdPrintf (ledhd, “Time:%02d:%02d:%02d”, timeinfo—>tm hour, timeinfo—>tm min, timeinfo—>tm sec) ;
//Display system time on LCD
}
int detectI2C(int addr) {
int fd = wiringPil2CSetup (addr);
if (fd < 0){
printf ("Error address : Ox%x \n”, addr) ;
return 0 ;
}
else{
if (wiringPil2CWrite(_fd, 0) < 0) {
printf ("Not found device in address 0x%x \n”, addr) ;
return 0;

}

elsef

printf ("Found device in address Ox%x \n”, addr);

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

return 1 ;

}
int main(void) {

int 1i;

printf ("Program is starting ...\n”);

wiringPiSetup();
if (detectI2C(0x27)) {
pcf8574 address = 0x27;
Jelse if(detectI2C(0x3F)) {
pcf8574 address = 0x3F;
Jelse{
printf("No correct 12C address found, \n”
"Please use command ~i2cdetect -y 1’ to check the I2C address! \n”
“Program Exit. \n”);
return —1;
}
pcf8574Setup (BASE, pcf8574 address);//initialize PCF8574
for (i=0;1<8;i++) {

pinMode (BASE+i, OUTPUT) ; //set PCF8574 port to output mode
}
digitalWrite (LED, HIGH) ; //turn on LCD backlight
digitalWrite (RW, LOW) ; //allow writing to LCD

ledhd = ledInit(2, 16, 4, RS, EN, D4, D5, D6, D7, 0,0,0,0) ;// initialize LCD and return “handle”
used to handle LCD

if (ledhd == 1) {
printf("ledInit failed !7);
return 1;

}

while (1) {
printCPUTemperature() ;//print CPU temperature
printDataTime () ; // print system time
delay (1000) ;

}

return 0;

From the code, we can see that the PCF8591 and the PCF8574 have many similarities in using the 12C interface
to expand the GPIO RPI.

First, define the 12C address of the PCF8574 and the Extension of the GPIO pin, which is connected to the
GPIO pin of the LCD1602. LCD1602 has two different i2c addresses. Set 0x27 as default.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [ASH

int pcf8574 address = 0x27; // PCF8574T:0x27, PCF8574AT:0x3F
#tdefine BASE 64 // BASE any number above 64

//Define the output pins of the PCF8574, which are directly connected to the LCD1602 pin.
#tdefine RS BASE+0

#tdefine RW BASE+1

#define EN BASE+2

#define LED BASE+3

#tdefine D4 BASE+4

#define D5 BASE+5

#tdefine D6 BASE+6

#tdefine D7 BASE+7

Then, in main function, initialize the PCF8574, set all the pins to output mode, and turn ON the LCD1602
backlight (without the backlight the Display is difficult to read).
pcf8574Setup (BASE, pcf8574 address) ;// initialize PCF8574
for (i=0;1<8;i++) {
pinMode (BASE+i, OUTPUT) ; // set PCF8574 port to output mode

}
digitalWrite (LED, HIGH) ; // turn on LCD backlight

Then use Icdinit() to initialize LCD1602 and set the RW pin of LCD1602 to 0 (can be written) according to
requirements of this function. The return value of the function called "Handle" is used to handle LCD1602".
. ledhd = ledInit(2, 16, 4, RS, EN, D4, D5, D6, D7, 0,0,0,0); // initialize LCD and return

“handle” wused to handle LCD

Details about IcdInit():

This is the main initialization function and must be executd first before you use any other LCD functions.
Rows and cols are the rows and columns of the Display (e.g. 2, 16 or 4, 20). Bits is the number of how wide
the number of bits is on the interface (4 or 8). The rs and strb represent the pin numbers of the Display’s
RS pin and Strobe (E) pin. The parameters d0 to d7 are the pin numbers of the 8 data pins connected from
the RPi to the display. Only the first 4 are used if you are running the display in 4-bit mode.

The return value is the ‘handle’ to be used for all subsequent calls to the Icd library when dealing with that
LCD, or -1 to indicate a fault (usually incorrect parameter)

For more details about LCD Library, please refer to: https.//projects.drogon.net/raspberry-pi/wiringpi/lcd-

library/

In the next “while”, two subfunctions are called to display the RPi’'s CPU Temperature and the SystemTime.
First look at subfunction printCPUTemperature(). The CPU temperature data is stored in the
"/sys/class/thermal/thermal zoneO/temp" file. We need to read the contents of this file, which converts it to
temperature value stored in variable CPU_temp and uses lcdPrintf() to display it on LCD.

. void printCPUTemperature () {//subfunction used to print CPU temperature

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
https://projects.drogon.net/raspberry-pi/wiringpi/lcd-library/
https://projects.drogon.net/raspberry-pi/wiringpi/lcd-library/

< support@freenove.com www.freenove.com [l

FILE *fp;

char str_templ15];

float CPU_ temp;

// CPU temperature data is stored in this directory.
fp=fopen(”/sys/class/thermal/thermal zone0/temp”, "r”);

fgets(str temp, 15, fp) ; // read file temp

CPU temp = atof(str temp)/1000.0: // convert to Celsius degrees
printf ("CPU" s temperature : % 2f \n”, CPU_temp) ;

lcdPosition(1edhd, 0, 0) ; // set the LCD cursor position to (0, 0)
lcdPrintf (lcdhd, “CPU:%. 2£C”, CPU_temp) ;// Display CPU temperature on LCD
fclose (fp) ;

Details about IcdPosition() and IcdPrintf():

Set the position of the cursor for subsequent text entry.

These output a single ASCII character, a string or a formatted string using the usual print formatting
commands to display individual characters (it is how you are able to see characters on your computer
monitor).

Next is subfunction printDataTime() used to display System Time. First, it gets the Standard Time and stores
it into variable Rawtime, and then converts it to the Local Time and stores it into timeinfo, and finally displays
the Time information on the LCD1602 Display.

void printDataTime () {//used to print system time
time t rawtime;
struct tm *timeinfo;
time (&rawtime) ;// get system time
timeinfo = localtime (&rawtime) ;// convert to local time
printf ("%s \n”, asctime (timeinfo)) ;
lcdPosition(ledhd, 0, 1) ;// set the LCD cursor position to (0, 1)
lcdPrintf (lcdhd, “Time:%d:%d:%d”, timeinfo—>tm_hour, timeinfo—>tm min, timeinfo—>tm sec) ;

//Display system time on LCD
J

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com DX} support@freenove.com [VASES

Python Code 19.1 12CLCD1602

If you haven't configured 12C and install Smbus, please refer to Chapter 7. If you've done it, please continue.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 19_I12CLCD1602 directory of Python code.

cd ~/Freenove_Kit/Code/Python_Code/19_I2CLCD1602

2. Use Python command to execute Python code “12CLCD1602.py”.

python I2CLCD1602.py

After the program runs, the LCD1602 Screen will display your RPi's CPU Temperature and System Time.
NOTE: After the program runs, if nothing displays or the display is not clear, try rotating the white knob
on back of LCD1602 slowly, which adjusts the contrast, until the screen can display the Time and
Temperature clearly.

The following is the program code;

1 from PCF8574 import PCF8574_GPIO

2 from Adafruit LCD1602 import Adafruit CharLCD

3

4 from time import sleep, strftime

5 from datetime import datetime

6

7 def get cpu temp(): # get CPU temperature and store it into file
8 ”/sys/class/thermal/thermal zone0/temp”

9 tmp = open(/sys/class/thermal/thermal zone0/temp’)

10 cpu = tmp. read()

11 tmp. close ()

12 return ~ {:.2f} . format (float(cpu)/1000) + C

13

14 def get time now(): # get system time

15 return datetime.now(). strftime (%H : %M: %S’)

16

17 def loop():

18 mep. output (3, 1) # turn on LCD backlight

19 lcd. begin (16, 2) # set number of LCD lines and columns
20 while(True) :

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

#tlcd. clear ()

led. setCursor (0,0) # set cursor position

lcd. message("CPU: * + get cpu temp()+ \n’)# display CPU temperature
lcd. message(get time now()) # display the time

sleep (1)

def destroy():
led. clear ()

PCF8574 address = 0x27 # 12C address of the PCF8574 chip
PCF8574A address = 0x3F # I12C address of the PCE8574A chip.
Create PCF8574 GPIO adapter.
try:
mcp = PCF8574 GPIO(PCF8574 address)
except:
try:
mcp = PCF8574_GPI0 (PCF8574A_address)
except:
print (12C Address Error !”)
exit (1)
Create LCD, passing in MCP GPIO adapter.
led = Adafruit CharLCD(pin rs=0, pin e=2, pins_db=[4,5,6,7], GPIO=mcp)

if name == main
print (Program is starting ...)
try:
Loop ()

except KeyboardInterrupt:
destroy()

Two modules are used in the code, PCF8574.py and Adafruit_LCD1602.py. These two documents and the
code files are stored in the same directory, and neither of them is dispensable. Please DO NOT DELETE THEM!
PCF8574.py is used to provide 12C communication mode and operation method of some of the ports for the
RPi and PCF8574 IC Chip. Adafruit module Adafruit_LCD1602.py is used to provide some functional operation
methods for the LCD1602 Display.

In the code, first get the object used to operate the PCF8574's port, then get the object used to operate the
LCD1602.

address = 0x27 # I12C address of the PCF8574 chip.

Create PCF8574 GPIO adapter.

mcp = PCF8574 GPI0(address)

Create LCD, passing in MCP GPIO adapter.

led = Adafruit CharLCD(pin rs=0, pin e=2, pins db=[4, 5,6, 7], GPIO=mcp)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com DX} support@freenove.com [VASS

According to the circuit connection, port 3 of PCF8574 is connected to the positive pole of the LCD1602
Display’s backlight. Then in the loop () function, use of mcp.output (3,1) to turn the LCD1602 Display’s
backlight ON and then set the number of LCD lines and columns.
def loop():

mep. output (3, 1) # turn on LCD backlight

lcd. begin (16, 2) # set number of LCD lines and columns

In the next while loop, set the cursor position, and display the CPU temperature and time.
while (True) :
#lcd. clear ()

lcd. setCursor (0,0) # set cursor position

lcd. message("CPU: * + get cpu temp()+ \n)# display CPU temperature
lcd. message(get time now()) # display the time
sleep (1)

CPU temperature is stored in file “/sys/class/thermal/thermal_zoneO/temp”. Open the file and read content of
the file, and then convert it to Celsius degrees and return. Subfunction used to get CPU temperature is shown
below:

def get cpu temp(): # get CPU temperature and store it into file
”/sys/class/thermal/thermal zone0/temp”

tmp = open(/sys/class/thermal/thermal zone0/temp’)

cpu = tmp. read ()

tmp. close ()

return ~ {:.2f} . format (float(cpu)/1000) + C

Subfunction used to get time:

def get time now(): # get system time

return datetime.now(). strftime(%H: %M: %S’)

Details about PCF8574.py and Adafruit_LCD1602.py:
Module PCF8574

This module provides two classes PCF8574_12C and PCF8574_GPIO.
Class PCF8574_12C: provides reading and writing method for PCF8574.
Class PCF8574_GPIO: provides a standardized set of GPIO functions.
More information can be viewed through opening PCF8574.py.
Adafruit_LCD1602 Module

Module Adafruit LCD1602 |

This module provides the basic operation method of LCD1602, including class Adafruit_CharLCD. Some

member functions are described as follows:

def begin(self, cols, lines): set the number of lines and columns of the screen.
def clear(self): clear the screen

def setCursor(self, col, row): set the cursor position

def message(self, text): display contents

More information can be viewed through opening Adafruit_CharLCD.py.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Chapter 20 Hygrothermograph DHT11

In this chapter, we will learn about a commonly used sensor called a Hygrothermograph DHT11.

Project 20.1 Hygrothermograph

Hygrothermograph is an important tool in our lives to give us data on the temperature and humidity in our
environment. In this project, we will use the RPi to read Temperature and Humidity data of the DHT11 Module.

Component knowledge

The Temperature & Humidity Sensor DHT11 is a compound temperature & humidity sensor, and the output
digital signal has been calibrated by its manufacturer.

VCC Ccnw»
SDA

NC
GND

1234 DHTM1

oo

After being powered up, it will initialize in 1 second. Its operating voltage is within the range of 3.3V-5.5V.
The SDA pin is a data pin, which is used to communicate with other devices.

The NC pin (Not Connected Pin) is a type of pin found on various integrated circuit packages. Such pin has
no functional purpose to the outside circuit (but may have an unknown functionality during manufacture
and test). It should not be connected to any of the circuit connections.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com

support@freenove.com

Component List

Freenove Projects Board for Raspberry Pi

Raspberry Pi

‘ O .
I

(GPI012)

Passive Buzzer

JoyStick

Blue LED
(GPIOT7)
P

BCM Numbering

Shift Clock(GPIO17) ~ Storage Register Clock(GPIO27) Data Input(GPI022)
74HC595

nnnnn nnnm
1

4-Digit, 7-Segment LED Display

LED Matrix
4 1-Stepping Motor ARy
2-Button
W 3-Active Buzzer
u 4-Relay
5-Blue LED
A 6-Motor
7-LED Matrix
8-7-Segment LED
9-LED Bar Graph

i

S8
{GPI020)

5
(Gioz1)

RP1

(A2) RFID-RC522

Potentiometer

WWW.freenove.com

IMSen WS2812LED ®

12CLCD1602

Keypad ® & Ultrasoni

un

Stepping

un2

= GPIO16
" GPIO20
" GPIO21
" GPIO26
= GPIO19
» GPIO13
* GPIOB
GPIOS

R SCL
» SDA
" sV

= GND

33V

= GND

sV

= GND

= GPIO18
= 5V
= GND

(GPIO15)
(GPIO14)

.0

P10

Motor &
1

Thermistor

RGBLED ¢ Photoresistor

(GPIO19)
(GPIO13)
(GPI06)
(GPI05)

29z2 o
<286= 2
S

" 5V

» GPIO13E
GPIOB(G)
GPIOS(R)

GPIO Ribbon Cable

Jumper Wire

DHT11 Module

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

268 support@freenove.com www.freenove.com [l

Circuit

Schematic diagram

— DHT11

ouTt

Hardware connection.

BCM Numbering

1 9P v 1d Ausqdsey
WS2812 LED ®

INaH

301908 1 3pov

O ariau

8102 Id Ausqdsey @

IM Sen

LED Matrix

Steppil

Passive Buzzer Active Buzzer =

A
°

=

§

8

g
5%
-
.
b

?
g
S
3
<

()

RFID-RC522

RGBLED # P

A1 i
MPUB050 ADS7830 A0 JoyStick Button & Potentiometer

12CLCD1602
Thermistor

Freenove Projects Board for Raspberry Pi WWW.freenove.com

If you have any concerns, please send an email to: support@freenove.com

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

The code is used to read the temperature and humidity data of DHT11, and display them.

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please send an email to:

1.

Use cd command to enter 20_DHT11 directory of C code.

cd ~/Freenove_Kit/Code/C_Code/20_DHT11

2. The code used in this project contains a custom header file. Use the following command to compile the
code DHT11.cpp and DHT.cpp and generate executable file DHT11. The custom header file will be
compiled at the same time.

gcc DHT.cpp DHT1l.cpp -o DHT11l -lwiringPi
3. Run the generated file "DHT11".
sudo ./DHT11

After the program runs, the Terminal window will display the current total number of read times, the read

state, as well as temperature and humidity values as is shown below:

The following is the program code:

1

© 0 N O O1 = W DD

—_ =
— O

#tinclude <wiringPi.h>
#include <stdio.h>
#include <stdint.h>
#include “DHT. hpp”

ttdefine DHT11 Pin 4 //define the pin of sensor
int main() {

DHT dht; //create a DHT class object

int chk, sumCnt;//chk:read the return value of sensor;

sumCnt:times of reading sensor

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

printf ("Program is starting ...\n”);

wiringPiSetup();

while (1) {
chk = dht. readDHT11(DHT11 Pin); //read DHT11 and get a return value. Then determine
whether data read is normal according to the return value
sumCnt++; //counting number of reading times
printf("The sumCnt is : %d \n”, sumCnt) ;
switch (chk) {

case DHTLIB OK: //if the return value is DHTLIB OK, the data is normal.
printf ("DHT11, OK! \n”);
break;

case DHTLIB ERROR CHECKSUM: //data check has errors
printf ("DHTLIB_ERROR_CHECKSUM! \n”) ;
break;

case DHTLIB ERROR TIMEOUT: //reading DHT times out
printf ("DHTLIB_ERROR_TIMEOUT! \n”);
break;

case DHTLIB_INVALID VALUE: //other errors
printf ("DHTLIB_INVALID VALUE! \n”);
break;

}
printf ("Humidity is %. 2f %%, \t Temperature is %.2f
*C\n\n”, dht. humidity, dht. temperature) ;
delay (3000) ;
}

return 1;

In this project code, we use a custom library file "DHT.hpp". It is located in the same directory with the program
files "DHT11.cpp” and "DHT.cpp", and methods for reading DHT sensor are provided in the library file. By
using this library, we can easily read the DHT Sensor. First, we create a DHT class object in the code.

DHT dht;

In the "while" loop, the value of DHT11 is read every 3 seconds through the dht.readdht11 () function.
while(1) {
chk = dht. readDHT11(DHT11 Pin); //read DHT11 and get a return value. Then determine

whether data read is normal according to the return value

sumCnt++; //counting number of reading times
printf ("The sumCnt is : %d \n”, sumCnt) ;
switch (chk) {
case DHTLIB OK: //if the return value is DHTLIB OK, the data is normal.
printf ("DHT1L, OK! \n”);

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

break;
case DHTLIB ERROR CHECKSUM: //data check has errors
printf ("DHTLIB_ERROR CHECKSUM! \n”) ;
break;
case DHTLIB ERROR TIMEOUT: //reading DHT times out
printf (“DHTLIB_ERROR TIMEOUT! \n”);
break;
case DHTLIB INVALID VALUE: //other errors
printf ("DHTLIB_INVALID VALUE! \n”);
break;
}
printf ("Humidity is %.2f %%, \t Temperature is %.2f
#C\n\n”, dht. humidity, dht. temperature) ;
delay (3000) ;
}

Finally display the results:

_ printf ("Humidity is %. 2f %%, \t Temperature is %. 2f *C\n\n”, dht. humidity, dht. temperature) ;

Library file "DHT.hpp" contains a DHT class and this public member function int readDHT11 (int pin) is used

to read sensor DHT11 and store the temperature and humidity data read to member variables double

humidity and temperature. The implementation method of the function is included in the file "DHT.cpp".
fidefine DHT H

#include <wiringPi.h>
#tinclude <stdio.h>
ftinclude <stdint.h>

////read return flag of sensor
#define DHTLIB OK 0
#define DHTLIB_ERROR_CHECKSUM -1
#define DHTLIB ERROR TIMEOUT -2
#define DHTLIB_INVALID VALUE -999

#define DHTLIB DHT11 WAKEUP 18

fidefine DHTLIB DHT WAKEUP 1
#idefine DHTLIB TIMEOUT 100
class DHT{
public:
double humidity, temperature; //use to store temperature and humidity data read
int readDHT11 (int pin); //read DHT11
private:
uint8 t bits[5]; //Buffer to receiver data
int readSensor(int pin, int wakeupDelay); //

support@freenove.com [l

271

mailto:support@freenove.com
http://www.freenove.com/

25
26 | };

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please send an email to:

1. Use cd command to enter 20_DHT11 directory of Python code.
cd ~/Freenove_Kit/Code/Python_Code/20_DHT11

2. Use Python command to execute code "DHT11.py".

python DHT11.py

After the program runs, the Terminal window will display the current total number of read times, the read

state, as well as temperature and humidity values as is shown below:

The following is the program code:

Then determine

1 import RPi.GPIO as GPIO

2 import time

3 import Freenove DHT as DHT

4 DHTPin = 16 ftdefine the pin of DHTI1

5

6 def loop(Q:

7 dht = DHT. DHT (DHTPin) ficreate a DHT class object

8 counts = 0 # Measurement counts

9 while(True) :

10 t=time. time ()

11 counts += 1

12 print ("Measurement counts: 7, counts)

13 for i in range(0, 15):

14 chk = dht. readDHT11 () #tread DHT11 and get a return value. Then determine
15 whether data read is normal according to the return value.

16 if (chk is dht.DHTLIB OK) : #iread DHT11 and get a return value.
17 whether data read is normal according to the return value

18 print ("DHT11, OK!”)

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

break
time. sleep(0.1)
print ("Humidity : % 2f, \t Temperature : %. 2f
\n”"%(dht. humidity, dht. temperature), time. time () —t)
time. sleep (2)

if name == main
print (Program is starting ...)
try:
Loop ()

except KeyboardInterrupt:
GPIO0. cleanup ()
exit()

In this project code, we use a module "Freenove_DHT.py", which provides the method of reading the DHT
Sensor. It is located in the same directory with program files "DHT11.py". By using this library, we can easily
read the DHT Sensor. First, we create a DHT class object in the code.

_ dht = DHT.DHT (DHTPin) #icreate a DHT class object

Then in the "while" loop, use chk = dht.readDHT11 (DHT11Pin) to read the DHT11, and determine whether
the data read is normal according to the return value "chk".
while (True) :

t=time. time ()

counts += 1
print ("Measurement counts: 7, counts)
for i in range(0, 15):
chk = dht. readDHT11 () tiread DHT11 and get a return value. Then determine
whether data read is normal according to the return value.
if (chk is dht.DHTLIB OK) : #iread DHT11 and get a return value. Then determine
whether data read is normal according to the return value
print ("DHT11, OK!”)
break
time. sleep(0.1)
print ("Humidity : % 2f, \t Temperature : %. 2f
\n”"%(dht. humidity, dht. temperature), time. time () —t)

time. sleep (2)

Module "Freenove_DHT.py" contains a DHT class. The class function of the def readDHT11 (pin) is used to
read the DHT11 Sensor and store the temperature and humidity data read to member variables humidity
and temperature.

This is a Python module for reading the temperature and humidity data of the DHT Sensor. Partial
functions and variables are described as follows:
Variable humidity: store humidity data read from sensor

support@freenove.com Il

273

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Variable temperature: store temperature data read from sensor
def readblIT11 (pin): read the temperature and humidity of sensor DHT11, and return values used to
determine whether the data is normal.

Chapter 21 Matrix Keypad

Earlier we learned about a single Push Button Switch. In this chapter, we will learn about Matrix Keyboards,
which integrates a number of Push Button Switches as Keys for the purposes of Input.

Project 21 Matrix Keypad

In this project, we will attempt to get every key code on the Matrix Keypad to work.

Component knowledge

4x4 Matrix Keypad
A Keypad Matrix is a device that integrates a number of keys in one package. As is shown below, a 4x4 Keypad
Matrix integrates 16 keys (think of this as 16 Push Button Switches in one module):

4x4 Keypad

4] 3] 2 1]

@ 5 8l B

[z 8 E8[C
(x][0] [# D]

o for [~

-

Similar to the integration of an LED Matrix, the 4x4 Keypad Matrix has each row of keys connected with one
pin and this is the same for the columns. Such efficient connections reduce the number of processor ports
required. The internal circuit of the Keypad Matrix is shown below.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D< support@freenove.com AR

1 2 3 A
—_ _ — e]
4 5 6 B
e [S e [s
~— O—l — 01 — 01 — 01 7
7 8 9 C
e L [R e PR R
— Dj *~— D—J *~— 01 *—C D—l 6
*
— o—l — oj *—0 oj — oj 5

The method of usage is similar to the Matrix LED, by using a row or column scanning method to detect the
state of each key’s position by column and row. Take column scanning method as an example, send low level
to the first 1 column (Pin1), detect level state of rows 5, 6, 7, 8 to judge whether the keys A, B, C, D are pressed.
Then send low level to columns 2, 3, 4 in turn to detect whether other keys are pressed. Therefore, you can
get the state of all of the keys.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

support@freenove.com

www.freenove.com [l

Component List

Freenove Projects Board for Raspberry Pi

Raspberry Pi

‘ O .
I

(GPI012)

Passive Buzzer

JoyStick

i

Blue LED

(GPIOT7)
P

33v
= GND
Shift Clock(GPIO17) ~ Storage Register Clock(GPIO27) Data Input(GPI022)

74HC595
I

sV
= GND

= GPIO18
= 5V
= GND

WS2812LED

nnnnn nnnm
1

IM Sen

(GPIO15)
(GPIO14)

4-Digit, 7-Segment LED Display

.0

H P10

LED Matrix

un

® ;::e:::‘"g Mok = Stepping Motor ¢

® 3-Active Buzzer uiz i

m 4-Relay -
5-Blue LED ,

A 8-Motor . (GPIOB)
7-LED Matrix ' (GPIOs)
8-7-Segment LED
9-LED Bar Graph

(GPIO19)
(GPIO13)

29z2 o
<286= 2
S

= GPIO16
" GPIO20
" GPIO21
" GPIO26
= GPIO19
» GPIO13
* GPIOB
GPIOS

S8
{GPI020)

" 5V

» GPIO13E
GPIOB(G)
GPIOS(R)

Keypad ® & Ultrasoni

5
(Gioz1)

RGBLED ¢ Photoresistor

RP1

RFID-RC522
(A2) » SCL
» SDA
» 5V

Potentiometer B o

12CLCD1602
Thermistor

WWW.freenove.com

ETHERNET

GPIO Ribbon Cable

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com AN

Circuit

Schematic diagram

fid K] 7] Rl
1k 1k 103 1k
dxd Keypad
_ crioe —+—5| EEEE
GPIQ20 — 7 | F 1 1 |
GPI021 4 aAFTT1T
GPIOZE 3 HEEER
j 3 2| 1
GPIO1S
GPIO13 ——
GPIOE
GFIOS |

All the rows are held high until a switch is pressed.

Hardware connection.

MEZE A
w S meEs
seiEel] g (e

I o ENEE

reenove.com

If you have any concerns, please send an email to: support@freenove.com

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

This code is used to obtain all key codes of the 4x4 Matrix Keypad, when one of the keys is pressed, the key
code will be displayed in the terminal window.

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please send an email to:

1. Use cd command to enter 21_MatrixKeypad directory of C code.

cd ~/Freenove_Kit/Code/C_Code/21_MatrixKeypad
2. Code of this project contains a custom header file. Use the following command to compile the code

MatrixKeypad.cpp, Keypad.cpp and Key.cpp generate executable file MatrixKeypad. The custom header
file will be compiled at the same time.

gcc MatrixKeypad.cpp Keypad.cpp Key.cpp -o MatrixKeypad -lwiringPi

3. Run the generated file "MatrixKeypad".

sudo ./MatrixKeypad
After the program runs, pressing any key on the MatrixKeypad, will display the corresponding key code on

the Terminal. As is shown below:

= O LN s)) I—'II I

1

[l

I
E
E
=
=
=
E
E
E
E
E
=
=
=
E
E

11
H %

The following is the program code:

1 #include “Keypad. hpp”

2 #include <stdio. h>

3 const byte ROWS = 4; //four rows

4 const byte COLS = 4; //four columns

5 char keys[ROWS][COLS] = { //key code
6 Ur,2,3,0},

7 {4,5,’6,’ B},

8 {7,8,79,°C},

9 U+,70,#,' D}

10 }

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com PR

{27,28,29,25 }; //define the row pins for the keypad
{24, 23,22, 21} ; //define the column pins for the keypad

byte rowPins[ROWS]
byte colPins[COLS]
//create Keypad object

Keypad keypad = Keypad(makeKeymap (keys), rowPins, colPins, ROWS, COLS):

int main() {

printf ("Program is starting ... \n”);

wiringPiSetup() ;

char key = 0;
keypad. setDebounceTime (50) ;
while (1) {
key = keypad. getKey(); //get the state of keys
if (key) { //if a key is pressed, print out its key code
printf ("You Pressed key : %c \n”, key) ;

}

return 1;

In this project code, we use two custom library file "Keypad.hpp" and "Key.hpp". They are located in the same
directory with program files "MatrixKeypad.cpp’, "Keypad.cpp" and "Key.cpp'. The Library Keypad is
“transplanted” from the Arduino Library Keypad. This library file provides a method to read the Matrix
Keyboard's input. By using this library, we can easily read the pressed keys of the Matrix Keyboard.

First, we define the information of the Matrix Keyboard used in this project: the number of rows and columns,
code designation of each key and GPIO pin connected to each column and row. It is necessary to include the
header file "Keypad.hpp".

#include “Keypad. hpp”
#include <stdio.h>
const byte ROWS
const byte COLS = 4; //four columns
char keys[ROWS][COLS] = { //key code
Cr,2,3,'0),

4; //four rows

{,4”,5”76’,)]3’},
{r7,’v8)’v9)’,cx}’
{r*7’a0)’r#)’,DJ}

}
byte rowPins[ROWS]
byte colPins[COLS]

{1, 4, 5, 61}; //connect to the row pinouts of the keypad
{12,3, 2, 0}; //connect to the column pinouts of the keypad

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Then, based on the above information, initiates a Keypad class object to operate the Matrix Keyboard.

‘ ‘ Keypad keypad = Keypad(makeKeymap (keys), rowPins, colPins, ROWS, COLS); ‘

Set the debounce time to 50ms, and this value can be set based on the actual characteristics of the keyboard's
flexibly, with a default time of 10ms.

‘ ‘ keypad. setDebounceTime (50) ; ‘

In the "while" loop, use the function key= keypad.getKey () to read the keyboard constantly. If there is a key
pressed, its key code will be stored in the variable "key", then be displayed.
while (1) {

key = keypad. getKey(); //get the state of keys

if (key) { // if a key is pressed, print out its key code

printf("You Pressed key : %c \n”, key) ;

}

The Keypad Library used for the RPi is transplanted from the Arduino Keypad Library. And the source files can
be obtained by visiting http://playground.arduino.cc/Code/Keypad. As for transplanted function library, the
function and method of all classes, functions, variables, etc. are the same as the original library. Partial contents
of the Keypad library are described below:

class Keypad

Keypad (char *userKeymap, byte *row, byte *col, byte numRows, byte numCols) ;

Constructor, the parameters are: key code of keyboard, row pin, column pin, the number of rows, the
number of columns.

char getKey Q) ;

Get the key code of the pressed key. If no key is pressed, the return value is NULL.
void setDebounceTime (uint) ;

Set the debounce time. And the default time is 10ms.

void setHoldTime (uint) ;

Set the time when the key holds stable state after pressed.

bool isPressed(char keyChar) :

Judge whether the key with code "keyChar" is pressed.

char waitForKey () ;

Wait for a key to be pressed, and return key code of the pressed key.

KeyState getState();

Get state of the keys.

bool keyStateChanged() ;

Judge whether there is a change of key state, then return True or False.

For More information about Keypad, please visit: http://playground.arduino.cc/Code/Keypad or through the
opening file "Keypad.hpp".

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
http://playground.arduino.cc/Code/Keypad
http://playground.arduino.cc/Code/Keypad

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 21_MatrixKeypad directory of Python code.

cd ~/Freenove_Kit/Code/Python_Code/21_MatrixKeypad

2. Use Python command to execute code "MatrixKeypad.py".

python MatrixKeypad.py

After the program runs, pressing any key on the MatrixKeypad, will display the corresponding key code on
the Terminal. As is shown below:

[= N N e]

The following is the program code:

1 import RPi.GPIO as GPIO

2 import Keypad #import module Keypad

3 ROWS = 4 # number of rows of the Keypad

4 COLS = 4 #number of columns of the Keypad

5 keys= [’17,72,73,7A, #tkey code

6 4,°5,76,’ B,

7 7T,8,79,C,

8 K0, 8,D]

9 #trowsPins = [12, 16, 18, 22] ficonnect to the row pinouts of the keypad

10 #tcolsPins = [19, 15,13, 11] fconnect to the column pinouts of the keypad

11 rowsPins = [36, 38, 40, 37] fconnect to the row pinouts of the keypad

12 colsPins = [35, 33, 31, 29] #connect to the column pinouts of the keypad

13 | def loop():

14 keypad = Keypad. Keypad (keys, rowsPins, col sPins, ROWS, COLS) ttcreat Keypad object
15 keypad. setDebounceTime (100) #tset the debounce time

16 while(True) :

17 key = keypad. getKey () #obtain the state of keys

18 if (key !'= keypad.NULL) : #if there is key pressed, print its key code.
19 print (“You Pressed Key : %c “%(key))

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

if name == main : #Program start from here
print ("Program is starting ... ”)
try:
loop ()

except KeyboardInterrupt: #When ’Ctrl+C’ is pressed, exit the program.
GPIO. cleanup()

Import Keypad. Define row and column. Define key value variable. Define row pins and column pins.

import Keypad #import module Keypad
ROWS = 4 # number of rows of the Keypad
COLS = 4 #number of columns of the Keypad
keys= [1,72 ,°3,A, ttkey code
4’5 ,°6, B,
'7,08,79,C
K00, ,D]
rowsPins = [36, 38, 40, 37] #connect to the row pinouts of the keypad
colsPins = [35, 33, 31, 29] #connect to the column pinouts of the keypad

Then, based on the above information, initiates a Keypad class object to operate the Matrix Keyboard.
- keypad = Keypad. Keypad (keys, rowsPins, colsPins, ROWS, COLS) tcreat Keypad object

Set the debounce time to 100ms, and this value can be set based on the actual characteristics of the
keyboard’s flexibly, with a default time of 10ms.

- keypad. setDebounceTime (100) #set the debounce time

In the "while" loop, use the function key= keypad.getKey () to read the keyboard constantly. If there is a key
pressed, its key code will be stored in the variable "key", and then be displayed.

while (True) :
key = keypad. getKey () #obtain the state of keys
if (key !'= keypad.NULL) : #if there is key pressed, print its key code
print ("You Pressed Key : %c "%(key))

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

def init_ (self, usrKeyMap, row Pins, col Pins, num_Rows, num Cols) :
Constructed function, the parameters are: key code of keyboard, row pin, column pin, the number of rows,
the number of columns.

def getKey (self):

Get a pressed key. If no key is pressed, the return value is keypad NULL.
def setDebounceTime (self, ms) :

Set the debounce time. And the default time is 10ms.

def setHoldTime (self, ms) :

Set the time when the key holds stable state after pressed.

def isPressed(keyChar) :

Judge whether the key with code "keyChar" is pressed.

def waitForKey() :

Wait for a key to be pressed, and return key code of the pressed key.
def getState():

Get state of the keys.

def keyStateChanged() :

Judge whether there is a change of key state, then return True or False.

support@freenove.com [l

PASK)

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Chapter 22 Infrared Motion Sensor

In this chapter, we will learn a widely used sensor, Infrared Motion Sensor.

Project 22.1 PIR Infrared Motion Detector with LED Indicator

In this project, we will make a Motion Detector, with the human body infrared pyroelectric sensors.

When someone is in close proximity to the Motion Detector, it will automatically light up and when there is
no one close by, it will be out.

This Infrared Motion Sensor can detect the infrared spectrum (heat signatures) emitted by living humans and
animals.

Component Knowledge

The following is the diagram of the Infrared Motion Sensor (HC SR-501) a PIR Sensor:
Top Bottom Schematic

D)

Infrared Motion Sensor(HC SR501)

Description:

1. Working voltage: 5v-20v(DC) Static current: 65uA.

2. Automatic Trigger. When a living body enters into the active area of sensor, the module will output high
level (3.3V). When the body leaves the sensor’s active detection area, it will output high level lasting for
time period T, then output low level(OV). Delay time T can be adjusted by the potentiometer R1.

3. According to the position of Fresnel lenses dome, you can choose non-repeatable trigger modes or
repeatable modes.

L: non-repeatable trigger mode. The module outputs high level after sensing a body, then when the
delay time is over, the module will output low level. During high level time, the sensor no longer actively
senses bodies.

H: repeatable trigger mode. The distinction from the L mode is that it can sense a body until that body
leaves during the period of high level output. After this, it starts to time and output low level after delaying
T time.

4. Induction block time: the induction will stay in block condition and does not induce external signal at
lesser time intervals (less than delay time) after outputting high level or low level

5. Initialization time: the module needs about 1 minute to initialize after being powered ON. During this
period, it will alternately output high or low level.

6. One characteristic of this sensor is when a body moves close to or moves away from the sensor's dome

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com DX} support@freenove.com [V

edge, the sensor will work at high sensitively. When a body moves close to or moves away from the
sensor’'s dome in a vertical direction (perpendicular to the dome), the sensor cannot detect well (please
take note of this deficiency). Actually this makes sense when you consider that this sensor is usually placed
on a celling as part of a security product. Note: The Sensing Range (distance before a body is detected)
is adjusted by the potentiometer.

We can regard this sensor as a simple inductive switch when in use.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

286 support@freenove.com www.freenove.com [l

Component List

Freenove Projects Board for Raspberry Pi

Raspberry Pi

~./
O Blue LED
/ (GPIOTT)
~ BCM Numbering
FREENDOVEM™
3av
= GND
Shift Clock(GPIO17) Storage Register Clock(GPIO27) Data Input(GPI022) 7
C595 = GND
nnnun
= GPIO18
Y
= GND

WS2812LED

nnnnn nnnm
2 1

IM Sen

(GPIO15)
(GPIO14)

4-Digit, 7-Segment LED Display

)

H P10

. DDDDDDD-DDDDDDDDDDDDD .
I

LED Matrix

un
® ;:?:::‘"g Mok = Stepping Motor ¢
11

® 3-Active Buzzer ur2 (GPI019)

u 4-Relay H §
5-Blue LED (GPior3)

A 6-Motor 3 G (GPI06)
7-LED Matrix ' (GPIOs)
8-7-Segment LED
9-LED Bar Graph

(GPIO)

29z2 o
<286= 2
S

= GPIO16
" GPIO20
" GPIO21
" GPIO26
GPIO19
» GPIO13
* GPIOB

GPIOS

5\"21) RFID-RC522

Passive Buzzer
= SV

» GPIO13(8]
GPIOB(G)
GPIOS(R)

Keypad ® & Ultrasoni
RGBLED ¢ Photoresistor

R SCL
» SDA
" sV
= GND
%

JoyStick Potentiometer

12CLCD1602
Thermistor

WWW.freenove.com

Raspberry Pi GPIO Ribbon Cable

Jumper Wire HC SR501

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com

Circuit

Schematic diagram

(7]
=2
=]
]
i
[
LA

_,__1 . '))

Infrared Motion Sensor{HC SR501)

Hardware connection.

WS28'

[T COR T e [T T

8102 Id Aueqdsen g

§ 19pOW v 1d Auoqdsey

IM Sen

Keypad » &

i
i

(A2
A -
MPU6050 ADS7830 A0 JoyStick Button @ Potentiometer

Freenove Projects Board for Raspberry Pi .10 WWW.freenove.com ')

How to use this sensor?

Top Bottom

OmOm(
—s+

Description:

1. You can choose non-repeatable trigger modes or repeatable modes.
L: non-repeatable trigger mode. The module outputs high level after sensing a body, then when the
delay time is over, the module will output low level. During high level time, the sensor no longer actively
senses bodies.
H: repeatable trigger mode. The distinction from the L mode is that it can sense a body until that body

support@freenove.com [l

287

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

leaves. After this, it starts to time and output low level after delaying T time.
2. Rl is used to adjust HIGH level lasting time when sensor detects human motion, 1.2s-320s.
3. R2is used to adjust the maxmum distance the sensor can detect, 3~5m.

Here we connect L and adjust R1 and R2 like below to do this project.

Put you hand close and away from the sensor slowly. Obsever the LED in previous circuit.

It need some time between two detections.
-

If you have any concerns, please send an email to: support@freenove.com

Code

In this project, we will use the Infrared Motion Sensor to trigger an LED, essentially making the Infrared Motion
sensor act as a Motion Switch. Therefore, the code is very similar to the earlier project "Push Button Switch
and LED". The difference is that, when Infrared Motion Sensor detects change, it will output high level; when
button is pressed, it will output low level. When the sensor output high level, the LED turns ON, or it will turn
OFF.

C Code 22.1 SenselLED

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please send an email to: support@freenove.com

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

1. Use cd command to enter 22_1_InfraredSensor directory of C code.

cd ~/Freenove_Kit/Code/C_Code/22_1_InfraredSensor

2. Use following command to compile "SenseLED.c" and generate executable file "SenseLED".
gcc SenseLED.c -o SenseLED -lwiringPi

3. Run the generated file "SenseLED".

sudo ./SenselLED

After the program runs, wait 1 minute for initialization. Then move away from or move closer to the Infrared
Motion Sensor and observe whether the LED turns ON or OFF. The Terminal window will continuously display

the state of LED. As is shown below:

—

O (M M @ D DD

—

—

1

—

—

—

The following is the program code:

1 #include <wiringPi.h>

2 #include <stdio.h>

3

4 fidefine ledPin 0 //define the ledPin

5 fidefine sensorPin b5 /define the sensorPin

6

7 int main(void)

8 {

9 printf ("Program is starting ... \n”);

10

11 wiringPiSetup () ;

12

13 pinMode (ledPin, OUTPUT) ;

14 pinMode (sensorPin, INPUT);

15

16 while (1) {

17

18 if(digitalRead(sensorPin) == HIGH) { //if read value of sensor is HIGH level
19 digitalWrite(ledPin, HIGH); //make led on
20 printf (“led turned on >>> \n”);

21 }

22 else {

23 digitalWrite(ledPin, LOW); //make led off
24 printf (“led turned off <<< \n”);

25 }

26 }

27

mailto:support@freenove.com
http://www.freenove.com/

28 return 0;
29 }

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 22_InfraredSensor directory of Python code.
cd ~/Freenove_Kit/Code/Python_Code/22_InfraredSensor

2. Use Python command to execute code "SenselED.py".

python SenseLED.py

After the program runs, wait 1 minute for initialization. Then move away from or move closer to the Infrared
Motion Sensor and observe whether the LED turns ON or OFF. The Terminal window will continuously display
the state of LED. As is shown below:

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com

D4 support@freenove.com

The following is the program code:

import RPi.GPIO as GPIO

ledPin = 11 # define ledPin

sensorPin = 18 # define sensorPin

def setup():
GPI0. setmode (GPI0. BOARD) # use PHYSICAL GPIO Numbering
GPIO. setup(ledPin, GPIO.OUT) # set ledPin to OUTPUT mode
GPIO. setup(sensorPin, GPIO.IN) # set sensorPin to INPUT mode

def loop():
while True:

if GPIO. input (sensorPin)==GPI0. HIGH:
GPIO. output (ledPin, GPIO. LOW) # turn off led
print (led turned off >>>")

else :
GPIO. output (ledPin, GPIO. HIGH) # turn on led
print (led turned on <<<)

def destroy():

GPI0. cleanup () # Release GPIO resource
if name == main # Program entrance
print (Program is starting...’)
setup ()
try:
Loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy()

support@freenove.com [l

291

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Chapter 23 Ultrasonic Ranging

In this chapter, we learn a module which use ultrasonic to measure distance, HC SR04,

Project 23.1 Ultrasonic Ranging

In this project, we use ultrasonic ranging module to measure distance, and print out the data in the terminal.

Component Knowledge

The Ultrasonic Ranging Module uses the principle that ultrasonic waves will be reflected when they encounter
any obstacles. This is possible by counting the time interval between when the ultrasonic wave is transmitted
to when the ultrasonic wave reflects back after encountering an obstacle. Time interval counting will end after
an ultrasonic wave is received, and the time difference (delta) is the total time of the ultrasonic wave's journey
from being transmitted to being received. Because the speed of sound in air is a constant, and is about
v=340m/s, we can calculate the distance between the Ultrasonic Ranging Module and the obstacle: s=vt/2.

RIC (€ CC(
T])))))))

< S > as=ve

The HC-SR04 Ultrasonic Ranging Module integrates both an ultrasonic transmitter and a receiver. The
transmitter is used to convert electrical signals (electrical energy) into high frequency (beyond human hearing)
sound waves (mechanical energy) and the function of the receiver is opposite of this. The picture and the
diagram of the HC SR04 Ultrasonic Ranging Module are shown below:

HC-SR04
R E
) R
HC-SR04
Pin description:
VCC power supply pin
Trig trigger pin
Echo Echo pin
GND GND
Technical specs:
Working voltage: 5V Working current: 12mA
Minimum measured distance: 2cm Maximum measured distance: 200cm

Instructions for Use: output a high-level pulse in Trig pin lasting for least 10uS, the module begins to transmit
ultrasonic waves. At the same time, the Echo pin is pulled up. When the module receives the returned

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com DX} support@freenove.com [VASES

ultrasonic waves from encountering an obstacle, the Echo pin will be pulled down. The duration of high level
in the Echo pin is the total time of the ultrasonic wave from transmitting to receiving, s=vt/2. This is done
constantly.

10us

Trigger signal
(Input)

Echo time

Echo signal
(Output)

Distance = Echo time x sound velocity / 2 .

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

294

support@freenove.com

www.freenove.com [l

Component List

Freenove Projects Board for Raspberry Pi

Raspberry Pi

‘ O .
I

(GPI012)

Passive Buzzer

JoyStick

Blue LED
(GPIOT7)
P

BCM Numbering

Shift Clock(GPIO17) ~ Storage Register Clock(GPIO27) Data Input(GPI022)
74HC595

nnnnn nnnm
1

4-Digit, 7-Segment LED Display

LED Matrix
4 1-Stepping Motor ARy
2-Button
W 3-Active Buzzer
u 4-Relay
5-Blue LED
A 6-Motor
7-LED Matrix
8-7-Segment LED
9-LED Bar Graph

i

S8
{GPI020)

5
(Gioz1)

RP1

(A2) RFID-RC522

Potentiometer

WWW.freenove.com

IMSen WS2812LED ®

12CLCD1602

Keypad ® & Ultrasoni

un =
Stepping

un2

= GPIO16
" GPIO20
" GPIO21
" GPIO26
= GPIO19
» GPIO13
* GPIOB
GPIOS

R SCL
» SDA
" sV

= GND

33V

= GND

sV

= GND

= GPIO18
= 5V
= GND

(GPIO15)
(GPIO14)

.0

P10

Motor &
1

Thermistor

RGBLED ¢ Photoresistor

(GPIO19)
(GPIO13)
(GPI06)
(GPI05)

29z2 o
<286= 2
S

" 5V

» GPIO13E
GPIOB(G)
GPIOS(R)

GPIO Ribbon Cable

Jumper Wire

HC SR04

HC-SR04

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com S

Circuit

Schematic diagram

GPION4 —————t
GPICNS ————

=

s/))))
ano R

HC-5R04

B o

Hardware connection.

After running the program, hold an object in front of the sensor and change their distance.

BCM Numbering

i

LED Bar Gragh

8102 Id Auegdsey.
@ | 8O ¥ 1l AuqdsEM

MPUG050 ADS7830 JayStick Bution & Potentiometer

Freenove Projects Board for Raspberry Pi .10 WWW.freenove.com

If you have any concerns, please send an email to: support@freenove.com

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 23_UltrasonicRanging directory of C code.

cd ~/Freenove_Kit/Code/C_Code/23_UltrasonicRanging

2. Use following command to compile "UltrasonicRanging.c" and generate executable file
"UltrasonicRanging".

gcc UltrasonicRanging.c -o UltrasonicRanging -lwiringPi

3. Then run the generated file "UltrasonicRanging".

sudo ./UltrasonicRanging

After the program runs, aim the Ultrasonic Ranging Module’s detectors (“eyes”) perpendicular to the surface

of an object (try using your hand). The distance between the ultrasonic module and the object will be displayed

in the terminal. As is shown below:

The following is the program code:

1 #include <wiringPi.h>

2 #include <stdio.h>

3 #include <sys/time.h>

4

5 #define trigPin 15

(8 #define echoPin 16

7 ftidefine MAX DISTANCE 220 // define the maximum measured distance

8 #tdefine timeOut MAX DISTANCE#60 // calculate timeout according to the maximum measured
9 distance

10 //function pulseln: obtain pulse time of a pin

11 int pulseln(int pin, int level, int timeout);

12 float getSonar() { //get the measurement result of ultrasonic module with unit: cm
13 long pingTime;

14 float distance;

15 digitalWrite (trigPin, HIGH); //send 10us high level to trigPin

16 delayMicroseconds (10) ;

17 digitalWrite (trigPin, LOW) ;

18 pingTime = pulselIn(echoPin, HIGH, timeOut) ; //read plus time of echoPin

19 distance = (float)pingTime * 340.0 / 2.0 / 10000.0; //calculate distance with sound speed
20 340m/s

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [ASH

return distance;

int main() {

printf ("Program is starting ... \n”);

wiringPiSetup() ;

float distance = 0;

pinMode (trigPin, OUTPUT) ;

pinMode (echoPin, INPUT) ;

while (1) {
distance = getSonar() ;
printf("The distance is : % 2f cm\n”, distance) ;
delay (1000) ;

}

return 1;

int pulseln(int pin, int level, int timeout)
{

struct timeval tn, tO0, tl;

long micros;

gettimeofday (&t0, NULL) ;

micros = 0;

while (digitalRead(pin) != level)

{
gettimeofday (&tn, NULL) ;
if (tn. tv_sec > t0.tv_sec) micros = 1000000L; else micros = 0;
micros += (tn.tv usec — t0.tv usec);
if (micros > timeout) return 0;
}

gettimeofday (&t1, NULL) ;
while (digitalRead(pin) == level)

{
gettimeofday (&tn, NULL) ;
if (tn. tv _sec > t0.tv sec) micros = 1000000L; else micros = 0;
micros = micros + (tn.tv usec — t0.tv usec);
if (micros > timeout) return 0;
}

if (tn.tv_sec > tl.tv_sec) micros = 1000000L; else micros = 0;
micros = micros + (tn.tv usec — tl.tv_usec);

return micros;

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

First, define the pins and the maximum measurement distance.
fidefine trigPin 15
#tdefine echoPin 16
#define MAX_DISTANCE 220 // define the maximum measured distance

If the module does not return high level, we cannot wait for this forever, so we need to calculate the time
period for the maximum distance, that is, time Out. timeOut= 2*xMAX_DISTANCE/100/340+x1000000. This
formula is (not approximately) 58.8 and 60 is used as an approximation.

_ #define timeOut MAX DISTANCE*60 // calculate timeout according to the maximum measured distance

Subfunction getSonar () function is used to start the Ultrasonic Module to begin measurements and return
the measured distance in cm units. In this function, first let trigPin send 10us high level to start the Ultrasonic
Module. Then use pulseln () to read the Ultrasonic Module and return the duration time of high level. Finally,
the measured distance according to the time is calculated.

float getSonar() { //get the measurement result of ultrasonic module with unit: cm

long pingTime;

float distance;

digitalWrite (trigPin, HIGH); //send 10us high level to trigPin

delayMicroseconds (10) ;

digitalWrite (trigPin, LOW) ;

pingTime = pulseln(echoPin, HIGH, timeOut); //read plus time of echoPin

distance = (float)pingTime * 340.0 / 2.0 / 10000.0; //calculate distance with sound speed
340m/s

return distance;

Lastly, in the while loop of main function, get the measurement distance and display it continually.
while (1) {

distance = getSonar() ;

printf ("The distance is : % 2f cm\n”, distance) ;
delay (1000) ;

About function pulseIn():

Return the length of the pulse (in microseconds) or O if no pulse is completed before the timeout (unsigned
long).

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please send an email to: support@freenove.com

1. Use cd command to enter 23_UltrasonicRanging directory of Python code.

cd ~/Freenove_Kit/Code/Python_Code/23_UltrasonicRanging

2. Use Python command to execute code "UltrasonicRanging.py".

python UltrasonicRanging.py

After the program runs, aim the Ultrasonic Ranging Module’s detectors (“eyes”) perpendicular to the surface
of an object (try using your hand). The distance between the ultrasonic module and the object will be displayed
in the terminal. As is shown below:

The following is the program code:

1 import RPi.GPIO as GPIO

2 import time

3

4 trigPin = 8

5 echoPin = 10

(§) MAX DISTANCE = 220 # define the maximum measuring distance, unit: cm

7 timeOut = MAX DISTANCE*%60 # calculate timeout according to the maximum measuring distance
8

9 def pulseln(pin, level, timeOut): # obtain pulse time of a pin under timeOut

10 t0 = time. time ()

11 while (GPIO. input (pin) != level):

12 if ((time. time) - t0) > timeOut*0.000001) :

13 return 0;

14 t0 = time. time ()

15 while (GPIO. input (pin) == level):

16 if ((time. time) - t0) > timeOut*0.000001) :

17 return 0;

18 pulseTime = (time.time () — t0)*1000000

19 return pulseTime

20

21 def getSonar(): # get the measurement results of ultrasonic module, with unit: cm
22 GPIO. output (trigPin, GPTO. HIGH) # make trigPin output 10us HIGH level

23 time. sleep (0. 00001) # 10us

24 GPIO. output (trigPin, GPTO. LOW) # make trigPin output LOW level

25 pingTime = pulseln(echoPin, GPIO. HIGH, timeOut) # read plus time of echoPin

26 distance = pingTime * 340.0 / 2.0 / 10000. 0 # calculate distance with sound speed

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com

www.freenove.com Il

340m/s

return distance

def setup():

GPI0. setmode (GPT0. BOARD) # use PHYSICAL GPIO Numbering
set trigPin to OUTPUT mode
set echoPin to INPUT mode

GPIO. setup(trigPin, GPIO. OUT)
GPIO. setup(echoPin, GPIO. IN)

def loop():
while (True) :

distance = getSonar() # get distance

print (“The distance is : % 2f cm”%(distance))

time. sleep (1)

if name == main : # Program entrance
print (' Program is starting...’)
setup()
try:
loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program

GPIO. cleanup () # release GPIO resource

First, define the pins and the maximum measurement distance.

trigPin = 8
echoPin = 10
MAX DISTANCE = 220 # define the maximum measuring distance, unit: cm

If the module does not return high level, we cannot wait for this forever, so we need to calculate the time
period for the maximum distance (200cm). Then timOut= 2*MAX_DISTANCE/100/340+1000000. The result

of the constant part in this formula is approximately 58.8.

[] time0ut = MAX DISTANCEx60

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Subfunction getSonar () function is used to start the Ultrasonic Module to begin measurements, and return
the measured distance in cm units. In this function, first let trigPin send 10us high level to start the Ultrasonic
Module. Then use pulseln () to read the Ultrasonic Module and return the duration time of high level. Finally,
the measured distance according to the time is calculated.

def getSonar(): # get the measurement results of ultrasonic module, with unit: cm
GPIO. output (trigPin, GPTO. HIGH) # make trigPin output 10us HIGH level
time. sleep(0.00001) # 10us
GPIO. output (trigPin, GPTO. LOW) # make trigPin output LOW level
pingTime = pulseln(echoPin, GPI0. HIGH, timeOut) # read plus time of echoPin
distance = pingTime * 340.0 / 2.0 / 10000. 0 # calculate distance with sound speed
340m/s

return distance

Finally, in the while loop of main function, get the measurement distance and display it continually.

while (True) :
distance = getSonar ()

print (“The distance is : % 2f cm”%(distance))

time. sleep (1)

About function def pulseln(pin, level, timeOut) :

Return the length of the pulse (in microseconds) or O if no pulse is completed before the timeout (unsigned
long).

support@freenove.com [l

301

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com

www.freenove.com Il

Chapter 24 Attitude Sensor MPU6050

In this chapter, we will learn about a MPU6050 Attitude sensor, which integrates an Accelerometer and

Gyroscope.

Project 24.1 Read an MPU6050 Sensor Module

In this project, we will read Acceleration and Gyroscope Data of the MPU6050 Sensor.

Component knowledge

MPU6G050

MPUGB050 Sensor Module is a complete 6-axis Motion Tracking Device. It combines a 3-axis Gyroscope, a 3-
axis Accelerometer and a DMP (Digital Motion Processor) all in a small package. The settings of the
Accelerometer and Gyroscope of MPUG050 can be changed. A precision wide range digital temperature
sensor is also integrated to compensate data readings for changes in temperature, and temperature values
can also be read. The MPU6050 Module follows the 12C communication protocol and the default address is

Ox68.

The port description of the MPU6050 Module is as follows:

—_

®) vcC

o

®) GND
®) scL

N oW

@) spA
®) XDA
@) xcL
®) ADO

xR ~N O U

®) INT

o

,GEy

MPUE050

oo Mo Jon | foo o |

VCC
GND
SCL
SDA
XDA
XCL
ADO
INT

MPU6050

VCC 1 Positive pole of power supply with voltage 5V
GND 2 Negative pole of power supply
SCL 3 I2C communication clock pin
SDA 4 I2C communication data pin
XDA 5 I2C host data pin which can be connected to other devices.
XCL 6 I2C host clock pin which can be connected to other devices.
ADO 7 |2C address bit control pin.
Low level: the device address is 0x68
High level: the device address is 0x69
INT 8 Output interrupt pin

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com DX} support@freenove.com SIS

For more detail, please refer to the MPU6050 datasheet.

MPUG050 is widely used to assist with balancing vehicles, robots and aircraft, mobile phones and other
products which require stability to control stability and attitude or which need to sense same.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

support@freenove.com

www.freenove.

com

Component List

Raspberry Pi

‘ O .
I

Passive Buzzer Active Buzzer =

Freenove Projects Board for Raspberry Pi

o4

FREENOVE™

JoyStick

Blue LED
(GPIOTT)
BCM Numbering os(§)

74HC595

LED Matrix

4 1-Stepping Motor
® 2-Button
W 3-Active Buzzer
u 4-Relay
5-Blue LED
8-Motor
7-LED Matrix
8-7-Segment LED
9-LED Bar Graph

»
L]

Button &

vi.0

Shift Clock(GPIO17)

Storage Register Clock(GPI027) Data Input(GPI022)

GPIO18
. 5V
GND

WS2812 LED

IM Sen

4-Digit, 7-Segment LED Display

un

Stepping

un2

- R

06

(GPIO12)

= GPIO16
" GPIO20
" GPIO21
" GPIO26
= GPIO19
» GPIO13
* GPIOB
GPIOS

Keypad ® ¢ Ultrasol

RP1

(A2) RFID-RC522

R SCL
» SDA

Potentiometer

12CLCD1602

WWW.freenove.com

GND

sV
= GND

GPIO18

(GPIO15)
(GPIO14)

sV

GPIO13(8]
GPIOB(G)
GPIOS(R)

RGBLED ¢ Photoresistor

Thermistor

GPIO Ribbon Cable

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com (RIS

Circuit

Schematic diagram

——— e e
- 21 GND
el

3
—41 spa
21 xpA
6
wa
-1

ACL
ADOD
INT

MPUB0S50

Hardware connection.

After running the program, hold the board and turn it over to observe the changes in the running results.

s

9 | 9pop ¥ I Ausqdsey

o4

8102 Id Aueqdsed @

ssive Buzzer Active Buzzer =

00000000 *

MPUB050 y 0 AQ yStick Button & Potentiometer

. WWW.freenove.com

If you have any concerns, please send an email to: support@freenove.com

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

In this project, we will read the acceleration data and gyroscope data of MPU6050, and print them out.

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please send an email to:

1. Use cd command to enter 24_MPUG6050 directory of C code.

cd ~/Freenove_Kit/Code/C_Code/24_MPU6O50

2. Use following command to compile "MPUB050RAW.c", "MPU6050.cpp” and "I12Cdev.cpp”, and generate
executable file "MPUGO50RAW".

gcc MPU6O5ORAW. cpp MPU6050.cpp I2Cdev.cpp —o MPU6O50RAW

3. Then run the generated file "MPUB6050RAW".

sudo ./MPU6050RAW

After the program runs, the Terminal will display active accelerometer and gyroscope data of the MPU6050,
as well as the conversion to gravity acceleration and angular velocity as units of data. As shown in the following
figure:

The following is the program code:

1 #include <stdio. h>

2 #include <stdint.h>

3 #include <unistd.h>

4 #tinclude “I2Cdev.h”

5 tinclude “MPU6050. h”

6

7 MPU6050 accelgyro; //creat MPU6050 class object
8

9 intle t ax, ay, az; //store acceleration data
10 intle t gx, gy, gz; //store gyroscope data

11

12 void setup() {

13 // initialize device

14 printf (“Initializing 12C devices...\n”);

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com el

accelgyro. initialize() ; //initialize MPU6050

// verify connection
printf ("Testing device connections...\n”);
printf (accelgyro. testConnection() ? “MPU6050 connection successful\n” : ”“MPU6050

connection failed\n”);

}

void loop() {
// read accel/gyro values of MPU6050
accelgyro. getMotion6 (&ax, &ay, &az, &gx, &gy, &gz);
// display accel/gyro x/y/z values
printf(“a/g: %6hd %6hd %6hd %6hd %6hd %6hd\n”, ax, ay, az, gx, gy, g2) ;
printf ("a/g: %.2f g % 2f g % 2f g % 2f d/s % 2f d/s %.2f d/s
\n”, (float) ax/16384, (float)ay/16384, (float)az/16384,
(float)gx/131, (float) gy/131, (float)gz/131);

}

int main()

{
setup() ;
while (1) {

loop () ;

}
return 0;

}

Two library files "MPU6050.h" and "I2Cdev.h" are used in the code and will be compiled with others. Class
MPUG050 is used to operate the MPU6050 Sensor. When used, first it initiates an object.
i MPU6050 accelgyro; //creat MPU6050 class object

In the setup function, the MPUG050 is initialized and the result of the initialization will be tested.

void setup() {
// initialize device
printf("Initializing 12C devices...\n”);
accelgyro. initialize() ; //initialize MPU6050

// verify connection
printf("Testing device connections...\n”);
printf(accelgyro. testConnection() ? “MPU6050 connection successful\n” : “MPU6050

connection failed\n”):

}

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

In the loop function, read the original data of MPU6050, display them and then convert the original data into
the corresponding acceleration and angular velocity values, then display the converted data out.

void loop() {
// read accel/gyro values of MPU6050
accelgyro. getMotion6 (&ax, &ay, &az, &gx, &gy, &gz);
// display accel/gyro x/y/z values
printf(“a/g: %6hd %6hd %6hd %6hd %6hd %6hd\n”, ax, ay, az, gx, gy, g2) ;
printf("a/g: %.2f g % 2f g %.2f g % 2f d/s % 2f d/s %.2f d/s
\n”, (float) ax/16384, (float)ay/16384, (float)az/16384,
(float) gx/131, (float) gy/131, (float)gz/131) ;

Finally, the main functions, called setup function and loop function respectively.

int main()

{
setup() ;
while (1) {

loop() ;

}
return 0;

}

About class MPU6050:

This is a class library used to operate the MPU6050, which can directly read and set the MPU6050. Here are
its functions:

MPU6050 () /MPU6050 (uint8_t address) :

Constructor. The parameter is I2C address, and the default 12C address is 0x68.

void initialize();

Initialization function, used to wake up MPUG6050. Range of accelerometer is £2g and range of gyroscope
is +250 degrees/sec.

void getMotion6(intl6 t* ax, intl6 t* ay, intl6 t* az, intl6 t* gx, intl6 t* gy, intl6 t* gz);
Get the original data of accelerometer and gyroscope.

int16_t getTemperature();

Get the original temperature data of MPU6050.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please send an email to:

1. Use cd command to enter 24_MPUG050 directory of Python code.

cd ~/Freenove_Kit/Code/Python_Code/24_MPU6050

2. Use Python command to execute code "MPUG050RAW.py".

python MPU6O50RAW. py

After the program runs, the Terminal will display active accelerometer and gyroscope data of the MPU6050,
as well as the conversion to gravity acceleration and angular velocity as units of data. As shown in the following
figure:

The following is the program code:

1 import MPU6050

2 import time

3

4 mpu = MPU6050. MPU6050 () # instantiate a MPU6050 class object

5 accel = [0]%*3 # define an arry to store accelerometer data
(§) gyro = [0]*3 # define an arry to store gyroscope data
7 def setup():

8 mpu. dmp_initialize() # initialize MPU6050

9

10 | def loop():

11 while(True) :

12 accel = mpu. get_acceleration() # get accelerometer data
13 gyro = mpu. get_rotation () # get gyroscope data

14 print ("a/g:%d\t%d\ t%d\t%d\ t%d\t%d

15 | “%(accel [0], accel[1], accel [2], gyro[0], gyrol1], gyro[2]))

16 print ("a/g:%. 2f g\t% 2f g\t%. 2f g\t%. 2f d/s\t%. 2f d/s\t%. 2f
17 d/s”% (accel [0]/16384. 0, accel[1]/16384. 0,

18 accel[2]/16384.0, gyro[0]/131.0, gyro[1]/131.0, gyro[2]/131.0))
19 time. sleep (0. 1)

20

21 if name == main : # Program entrance

29 print ("Program is starting ... ”)

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

setup ()
try:
loop ()
except KeyboardInterrupt: # Press ctrl-c¢ to end the program.

pass

A module "MPU6050.py" is used in the code. The module includes a class used to operate MPU6050. When
using it, first initiate an object.
[] mpu = MPUB050.MPUB050() # instantiate a MPUG050 class object

In the setup function, the MPUG050 is initialized.

def setup():
mpu. dmp_initialize()

In the loop function, read the original data of MPU6050, display them and then convert the original data into
the corresponding acceleration and angular velocity values, then display the converted data out.

def loop():
while (True) :
accel = mpu. get acceleration() ttget accelerometer data
gyro = mpu. get rotation() #get gyroscope data

print ("a/g:%d\t%d\t%d\t%d\ t%d \t%d
"% (accel[0], accel[1], accel[2], gyrol0], gyro[1], gyro[2]))
print ("a/g:%. 2f g\t%. 2f g\t%. 2f g\t%. 2f d/s\t%. 2f d/s\t%. 2f
d/s"% (accel[0]/16384. 0, accel[1]/16384. 0,
accel[2]/16384.0, gyro[0]/131.0, gyro[1]/131.0, gyro[2]/131.0))
time. sleep (0. 1)

This is a class library used to operate MPU6050, which can directly read and set MPU6050. Here are some
member functions:
def init_ (self, a_bus=1, a address=C.MPU6050 DEFAULT ADDRESS,
a xAOff=None, a yAOff=None, a zAOff=None, a xGOff=None,
a_yGOff=None, a_ zGOff=None, a_debug=False) :
Constructor
def dmp initialize (self):
Initialization function, used to wake up MPUG6050. Range of accelerometer is £2g and range of gyroscope
is +250 degrees/sec.
def get acceleration(self): & def get rotation(self):
Get the original data of accelerometer and gyroscope.

For details of more relevant member functions, please refer to MPU6050.py in the code folder.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Chapter 25 RFID

In this chapter, we will learn how to use RFID.

Project 25.1 RFID

In this project, we will use RC522 RFID card reader to read and write the M1-S50 card.

Component Knowledge

RFID

RFID (Radio Frequency ldentification) is a form of wireless communication technology. A complete RFID
system is generally composed of a transponder and a reader. Generally, the transponder may be known as a
tag, and each tag has a unique code, which is attached to an object to identify the target object. The reader
is a device that reads (or writes) information in the tag.

Products derived from RFID technology can be divided into three categories: passive RFID products, active
RFID products and semi active RFID products, among which, Passive RFID products are the earliest, the most
mature and most widely used products in the market. It can be seen everywhere in our daily life such as, the
bus card, dining card, bank card, hotel access cards, etc., and all of them are classified as close-range contact
recognition. The main operating frequency of Passive RFID products are: 125KHZ (low frequency), 13.56MHZ
(high frequency), 433MHZ (ultrahigh frequency), 915MHZ (ultrahigh frequency). Active and semi active RFID
products work at higher frequencies.

The RFID module we use is a passive RFID product with the operating frequency of 13.56MHz.

MFRC522

The MFRC522 is a highly integrated reader/writer IC for contactless communication at 13.56MHz.

The MFRC522’s internal transmitter is able to drive a reader/writer antenna designed to communicate with
ISO/IEC 14443 A/MIFARE cards and transponders without additional active circuitry. The receiver module
provides a robust and efficient implementation for demodulating and decoding signals from ISO/IEC 14443
A/MIFARE compatible cards and transponders. The digital module manages the complete ISO/IEC 14443A
framing and error detection (parity and CRC) functionality

This RFID Module uses MFRC522 as the control chip, and SPI (Peripheral Interface Serial) as the reserved
interface.

Technical specs:

Operating Voltage 13-26mA (DC) \3. 3V
Idle current 10-13mA (DC) \3. 3V
Sleep current in the <80uA

Peak current <30mA

Operating frequency 13. 56MHz

Mifarel S50. Mifarel S70. Mifare
Ultralight. Mifare Pro. Mifare Desfire
Size 40mmX60mm

Supported card type

support@freenove.com [l

311

mailto:support@freenove.com
http://www.freenove.com/

support@freenove.com www.freenove.com [l

Operation temperature | 20-80 degrees(Celsius)
Storage temperature 40-85 degrees (Celsius)
Operation humidity 5%-95% (Relative humidity)
Mifare1 S50 Card
Mifare S50 is often called Mifare Standard with the capacity of 1K bytes. And each card has a 4 -bytes global
unique identifier number (USN/UID), which can be rewritten 100 thousand times and read infinite times. Its

storage period can last for 10 years.
The Mifare S50 capacity (1K byte) is divided into 16 sectors (SectorO-Sector15). Each sector contains 4 data
block (Block0-Block3. 64 blocks of 16 sectors will be numbered according absolute address, from 0 to 63).

And each block contains 16 bytes (Byte0-Bytel5), 64x16=1024. As is shown in the following table:

Sector No. | Block No. Storage area Block type Absolute
block No.
sector 0 block 0 vendor code vendor block 0
block 1 data block 1
block 2 data block 2
block 3 | Password A-access control-password B control block 3
sector 1 block 0 data block 4
block 1 data block 5
block 2 data block 6
block 3 | Password A-access control-password B control block 7
sector 15 block 0 data block 60
block 1 data block 61
block 2 data block 62
block 3 | Password A-access control-password B control block 63

Each sector has a set of independent password and access control put in its last block, that is, Block 3, which

is also known as sector trailer. Sector 0, block 0 (namely absolute address 0) of S50 is used to store the card

serial number and vendor code, which has been solidified and can’t be changed. Except the manufacturer

and the control block, the rest of the cards are data blocks, which can be used to store data. Data block can

be used for two kinds of applications:

(1) used as general data storage and can be operated for reading and writing data.

(2) used as data value, and can be operated for initializing, adding, subtracting and reading the value.

The sector trailer block in each sector is the control block, including a 6-byte password A, a 4-byte access

control and a 6-byte password B. For example, the control block of a brand new card is as follows:
A0 Al A2 A3 A4 A5 FF 07 80 69 BO B1 B2 B3 B4 B5
password A access control password B

The default password of a brand new card is generally 0ATA2A3A4A5 for password A and BOB1B2B3B4B5 for
password B, or both the password A and password B are 6 FF. Access control is used to set the access
conditions for each block (including the control block itself) in a sector.

Blocks of S50 are divided into data blocks and control blocks. There are four operations, "read”, "write", "add
value”, "subtract value (including transmission and storage)" for data blocks, and there are two operations,

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com DX} support@freenove.com [SEKS

"read" and "write" for control blocks.

For more details about how to set data blocks and control blocks, please refer to Datasheet.

By default, after verifying password A or password B, we can do reading or writing operation to data blocks.
And after verifying password A, we can do reading or writing operation to control blocks. But password A can
never be read, so if you choose to verify password A but forget the password A, the block will never be able
to read again. It is highly recommended that beginners should not try to change the contents of control
blocks.

For Mifarel S50 card equipped in Freenove RFID Kit, the default password A and B are both FFFFFFFFFFFF.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

support@freenove.com www.freenove.com [l

Component List

Freenove Projects Board for Raspberry Pi

Raspberry Pi

-/
ol

FREENOVE™

33v
= GND
Shift Clock(GPIO17) ~ Storage Register Clock(GPIO27) Data Input(GPI022)

74HC595 C595
[TTTTTT T TTTTTTT o nnnnn

sV
= GND

= GPIO'8 8 = GPIO1B
" 5V FEEY
=G 8

c & = oNo

WS2812LED

nnnnm o nnnnn nnnm
B2 RZ3 1

IM Sen

(GPIO15)
(GPIO14)

4-Digit, 7-Segment LED Display

)

H P10

. DDDDDDD-DDDDDDDDDDDDD .
I

LED Matrix

unt
¢ 12:?::;"9 Hotor Stepping Motor
W 3-Active Buzzer iz ’ (GPIO19)
m 4-Relay H 'GPbO!;\
5.Blue LED . St
A 6-Motor - R i
7-LED Matrix 06
8-7-Segment LED
e eey | (GPIOT2) Relay

(cPIo4) n
1 tH % 2
® GPIO16
Passive Buzzer - - g:g;}
- " GPI026 o = SV
e e * GPiO1g - (m GPIOTXE)
. " GPIO13 GPIOB(G)
b

* GPIOB GPIOS(R)
GPIOS

Keypad ® & Ultrasoni

RGB

RP1

(A2) RFID-RC522

R SCL
» SDA
" sV
= GND
%

JoyStick Potentiometer

12CLCD1602
Thermistor

WWW.freenove.com

GPIO Ribbon Cable

Mifarel S50 Standard card Mifarel S50 Non-standard card
e ™\

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com [

Schematic diagram

sDAl—— GPICd
SCKp——_GPIO1
I‘.r"-_-‘-\ o
=3 MOSI{—— GPIO10
= MISOR—— GPIDY
= RQ}—
Ry GMD
RST}—— crio2s
3.3V
RFID-RC522 Module L -

Hardware connection.
Put RFID card down on here. When the program is running, don’'t move it away.

BCM Numbering

9 | 9pop ¥ I Ausqdsey

o4

8102 Id Aueqdsed @

LED Matrix

Passive Buzzer Active Buzzer =

RP1
(A2)

MPUG050 / i Button & Potentiometer

Freenove Projects Board for Raspberry Pi 10 WWW. freg

If you have any concerns, please send an email to: support@freenove.com

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

M support@freenove.com www.freenove.com [l

Configure SPI

Enable SPI
The SPI interface of raspberry pi is closed by default. You need to open it manually. You can enable the SPI
interface in the following way.

Type the following command in the terminal:

Then open the following dialog box:

Choose “5 Interfacing Options”>“P4 SPI">"“Yes">“Finish” in order and then restart your RPi. Then the SPI
module is started.

Type the following command to check whether the module SPI is loaded successfully:

The following result indicates that the module SPI has been loaded successfully:

dev/spideve.® /dev/spidevo.l

Install Python module SPI-Py

If you use Python language to write the code, please follow the steps below to install the module SPI-Py. If
you use C/C++ language, you can skip this step.

Open the terminal and type the following command to install:

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://github.com/Freenove/SPI-Py

The project code uses human-computer interaction command line mode to read and write the M1-S50 card.

First observe the running result, and then learn about the code in detail.
If you have any concerns, please send an email to:

1. Use cd command to enter 25_RFID directory of C code.

cd ~/Freenove_Kit/Code/C_Code/25_RFID
2. Use the following command to compile and generate executable file "RFID".

sudo sh ./build.sh
3. Then run the generated file "RFID".

sudo ./RFID

After the program runs, the following contents will be displayed in the terminal:

plfraspberrypi:
Build finished
ifiraspberrypi:

Here, type the command “quit” to exit the program.

Type command "scan”, and then the program begins to detect whether there is a card close to the sensing
area of MFRC522 reader. Place a M1-S50 card in the sensing area. The following results indicate that the M1 -
S50 card has been detected, the UID of which is EGCF5C8EFB (HEX).

mailto:support@freenove.com
http://www.freenove.com/

In the command read<blockstart>, the parameter blockstart is the address of the data block, and the range
is 0-63. This command is used to display all the data from blockstart address to the end of the sector. For
example, sector 0 contains data block 0,1,2,3. Using the command “read 0" can display all contents of data
block 0,1,2,3. Using the command “read 1" can display all contents of data block 1,2,3. As is shown below:

Command “dump” is used to display the content of all data blocks in all sectors.

Command <address> <data> is used to write “data” to data block with address “address”, where the address
range is 0-63 and the data length is 0-16. For example, if you want to write the string "Freenove" to the data
block with address “1”, you can type the following command.

write 1 Freenove

u||‘r|| E- ;
Try

Read the contents of this sector and check the data just written.

read 0
The following results indicate that the string "Freenove" has been written successfully into the data block 1.

Command “clean <address>" is used to remove the contents of the data block with address "address". For
example, if you want to clear the contents of the data block 1 that has just been written, you can type the
following command.

uufh E1n-: (Ox01) with key OxFF 0xFF OxFF OxFF OxFF ...0K
Try to clean block 1...0K

mailto:support@freenove.com
http://www.freenove.com/

Read the contents of data blocks in this sector again to check whether the data is erased.
results indicate that the contents of data block 1 have been erased.

The following is the program code:

The following

1 #include <stdio.h>

2 #include <stdint.h>

3 #tinclude <unistd. h>

4 #include <string.h>

5 #include <getopt.h>

(S #tinclude <stdlib.h>

7 #include “mfrcb22. h”

8 #define DISP_COMMANDLINE () printf ("RC522>”)
9

10 int scan_loop (uint8 t *CardlD);

11 int tag select(uint8 t *CardID) ;

12

13 int main(int arge, char skargv) {

14 MFRC522 Status t ret;

15 //Recognized card ID

16 uint8 t CardID[5] = { 0x00, };

17 uint8 t tagType[16] = {0x00,} ;

18 static char command buffer[1024];

19

20 ret = MFRC522 Init(B’);

21 if (ret < 0) {

22 printf ("Failed to initialize. \r\nProgram exit. \r\n”);
23 exit(-1);

24 1

25

20 printf ("User Space RC522 Application\r\n”):
27

28 while (1) {

mailto:support@freenove.com
http://www.freenove.com/

M support@freenove.com www.freenove.com [l

/#Main Loop Start#*/
DISP_COMMANDLINE () ;

scanf ("%s”, command buffer) ;

if (stremp(command buffer, “scan”) == 0) {
puts(“Scanning ... 7);
while (1) {

ret = MFRC522 Request (PICC_REQIDL, tagType);
if (ret == MI OK) {
printf (“Card detected!\r\n”);
ret = MFRC522 Anticoll (CardID);
if(ret == MI _OK) {
ret = tag select (CardID) ;
if (ret == MI 0K) {
ret = scan_loop(CardID) ;
if (ret < 0) {
printf (“"Card error...\r\n”);
break;
} else if (ret == 1) {
puts (“Halt...\r\n”);

break;

}

elsef

printf ("Get Card ID failed!\r\n”);

}

MFRC522 Halt () ;
}
MFRC522 Halt () ;
MFRC522 Init('B’);

} else if (strcmp(command buffer, “quit”) == 0
|| stremp(command buffer, “exit”) == 0) {
return 0;
}oelse {

puts (“Unknown command”) ;
puts (“scan:scan card and dump”) ;
puts(“quit:exit program”);

1

/#Main Loop End*/

}

int scan_loop (uint8 t *CardID) {

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [EeyAl

while (1) {

char input[32];
int block start;
DISP_COMMANDLINE () ;
printf ("%02X%02X%02X%02X>”, CardID[0], CardID[1], CardID[2], CardID[3]);
scanf ("%s”, input);
puts ((char*) input) ;
if (stremp(input, “halt”) == 0) {
MFRC522_Halt () ;
return 1;
} else if (stremp(input, “dump”) == 0) {
if (MFRC522 Debug CardDump (CardID) < 0)
return —1;
} else if (stremp(input, “read”) == 0) {
scanf ("%d”, &block start);
if (MFRC522 Debug DumpSector (CardID, block start) < 0) {
return —1;
1
} else if(stremp(input, “clean”) == 0) {
char c;
scanf ("%d”, &block start);
while ((c = getchar()) !=’\n’ & c != EOF)

if (MFRC522 Debug Clean (CardID, block start)) {

return -1;

} else if (stremp(input, “write”) == 0) {

char write buffer[256];

size t len = 0;

scanf ("%d”, &block start);

scanf ("%s”, write buffer) ;

if (len >=0) {

if (MFRC522 Debug Write (CardID, block start, write buffer,
strlen(write buffer)) < 0) {

return —1;

}
} oelse {

printf (
“Usage:\r\n” “\tread <blockstart>\r\n” “\tdump\r\n” “\thalt\r\n”

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

“\tclean <blockaddr>\r\n” “\twrite <blockaddr> <data>\r\n”);
//return 0;

}

return 0;

}
int tag select(uint8 t *CardID) {
int ret int;
printf (
“Card UID: 0x%02X 0x%02X 0x%02X 0x%02X, Check Sum = 0x%02X\r\n”
CardID[0], CardID[1], CardID[2], CardID[3], CardID[4]);
ret_int = MFRC522 SelectTag(CardID);
if (ret_int == 0) {
printf (“Card Select Failed\r\n”);
return —1;
} else {
printf ("Card Selected, Type:%s\r\n”,
MFRC522 TypeToString (MFRC522 ParseType (ret int))) ;
1
ret int = 0;

return ret int;

In the code, first initialize the MFRC522. If the initialization fails, the program will exit.
ret = MFRC522 Init(CB’);
if (ret <0) {
printf ("Failed to initialize. \r\nProgram exit. \r\n”);

exit(-1);

In the main function, wait for the command input. If command "scan" is received, the function will begin to
detect whether there is a card close to the sensing area. If a card is detected, the card will be selected and
card UID will be acquired. Then enter the function scan_loop (). If command "quit" or "exit" is received, the
program will exit.

scanf ("%s”, command buffer) ;

if (stremp(command buffer, “scan”) == 0) {
puts(“Scanning ... 7);
while (1) {

ret = MFRC522 Request (PICC_REQIDL, tagType);
if (ret == MI OK) {

printf (“"Card detected!\r\n”);

ret = MFRC522 Anticoll (CardID);

if(ret == MI OK) {

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com

D4 support@freenove.com

ret = tag select (CardID) ;

if (ret == MI_OK) {
ret = scan_loop(CardID) ;
if (ret < 0) {

printf (“Card error...\r\n”);

break;
} else if (ret == 1) {
puts(“Halt...\r\n”);

break;

}

else{

printf ("Get Card ID failed!\r\n”);

1

MFRC522 Halt();
1
MFRC522 Halt () ;
MFRC522 Init('B’);

} else if (strcmp(command buffer, “quit”) == 0
|| stremp(command buffer, “exit”) == 0) {
return 0;
} else {

puts (“Unknown command”) ;
puts(“scan:scan card and dump”) ;
puts(“quit:exit program”);

}

/*Main Loop End*/

The function scan_loop() will detect command read, write, clean, halt, dump and do the corresponding
processing to each command. The functions of each command and the method have been introduced before.

int scan_loop (uint8 t *CardID) {
while (1) {
char input[32];

int block start;
DISP COMMANDLINE () ;

printf ("%02X%02X%02X%02X>", CardID[0], CardID[1], CardID[2], CardID[3]);

scanf ("%s”, input);

puts ((char*) input) ;

if (stremp(input, “halt”) == 0) {
MFRC522 Halt () ;

support@freenove.com [l

323

mailto:support@freenove.com
http://www.freenove.com/

M support@freenove.com www.freenove.com [l

return 1;
} else if (stremp(input, “dump”) == 0) {
if (MFRC522 Debug CardDump (CardID) < 0)
return —1;

} else if (stremp(input, “read”) == 0) {
scanf ("%d”, &block start);
if (MFRC522 Debug DumpSector(CardID, block start) < 0) {
return —1;
}
} else if(stremp (input, “clean”) == 0) {
char c;
scanf ("%d”, &block start);
while ((¢ = getchar()) !=’'\n" && c != EOF)

if (MFRC522 Debug Clean(CardID, block start)) {

return —1;

} else if (stremp(input, “write”) == 0) {

char write buffer[256];

size t len = 0;

scanf ("%d”, &block start);

scanf ("%s”, write buffer);

if (len >= 0) f

if (MFRC522 Debug Write (CardID, block start, write buffer
strlen(write buffer)) < 0) {

return —1;
}
}
} else {
printf (
“Usage:\r\n” “\tread <blockstart>\r\n” “\tdump\r\n” “\thalt\r\n”
“\tclean <blockaddr>\r\n” “\twrite <blockaddr> <{data>\r\n”);
//return 0;
1
1
return 0;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

There are two code files for this project. They are respectively under Python?2 folder and Python3 folder. Their
functions are the same, but they are not compatible. Code under Python2 folder can only run on Python?2.
And code under Python3 folder can only run on Python3.

First observe the project result, and then learn about the code in detail.

If you have any concerns, please send an email to:

1. Use cd command to enter RFID directory of Python code.
If you use Python2, it is needed to enter Python2 code folder.
cd ~/Freenove_Kit/Code/Python_Code/25_RFID/Python2
If you use Python3, it is needed to enter Python3 code folder.
cd ~/Freenove_Kit/Code/Python_Code/25_RFID/Python3
2. Use python command to execute code "RFID.py".
python RFID.py
After the program runs, the following contents will be displayed in the terminal:

pi@raspberrypi cd ~/Freenove_Kit/Code/Python_Code/24.1.1 RFID/Python3
pi@raspberrypi
m is starting

Here, if you need to exit the program, you type the command quit.

Type command "scan”, then the program begins to detect whether there is a card close to the sensing area
of MFRC522 reader. Place a M1-S50 card in the sensing area. The following results indicate that the M1-S50
card has been detected, the UID of which is EEBCF5C8EFB (HEX).

In the command read<blockstart>, the parameter blockstart is the address of the data block, and the range
is 0-63. As is shown below:

In the command read<blockstart>, the parameter blockstart is the address of the data block, and the range
is 0-63. This command is used to read the data of data block with address “blockstart”. For example, using
command “read 0" can display the content of data block 0. Using the command “read 1" can display the
content of data block 1. As is shown below:

mailto:support@freenove.com
http://www.freenove.com/

Command “dump” is used to display the content of all data blocks in all sectors.

Command <address> <data> is used to write “data” to data block with address “address”, where the address
range is 0-63 and the data length is 0-16. In the process of writing data to the data block, both the contents
of data block before written and after written will be displayed. For example, if you want to write the string
"Freenove" to the data block with address “1”, you can type the following command.

write 1 Freenove

0 0 | Freenove
Command “clean <address>" is used remove the contents of the data block with address "address". For
example, if you want to clear the contents of the data block 1 that has just been written, you can type the
following command.
clean 1

00000 | Freenove

The following is the program code (python2 code):

1 import RPi.GPIO as GPIO
import MFRC522
import sys

import os

Create an object of the class MFRC522
mfrc = MFRC522. MFRC522 ()

© 0 3 O O1 = W DD

def dis ConmandLine() :
print ("RC522>”, end="")
def dis CardlD(cardID) :

—_ =
= O

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

print ("%2X%2X%2X%2X%2X>"% (cardID[0], cardID[1], cardID[2], cardID[3], cardID[4]), end="")
def setup() :

print ("Program is starting ... 7)

print ("Press Ctrl-C to exit.”)

pass

def loop():
global mfrec3s
while (True) :
dis_ConmandLine ()
inCmd = input ()
print (inCmd)
if (inCmd == “scan”):
print (“Scanning ... ”)
mfrc = MFRC522. MFRC522 ()
isScan = True
while isScan:
Scan for cards
(status, TagType) = mfrc. MFRC522 Request (mfrc. PICC_REQIDL)
If a card is found
if status == mfrc.MI OK:
print (“Card detected”)
Get the UID of the card
(status, uid) = mfrc. MFRC522 Anticoll ()
If we have the UID, continue
if status == mfrc.MI_OK:
print (“Card UID: “+ str(map(hex, uid)))
Select the scanned tag
if mfrc. MFRC522 SelectTag(uid) == 0:
print ("MFRC522 SelectTag Failed!”)
if cmdloop(uid) < 1

isScan = False

elif inCmd == "quit”:
destroy ()
exit (0)

else :

print (“\tUnknown command\n”+”\tscan:scan card and dump\n”+”\tquit:exit

program\n”)

def cmdloop (cardID) :
pass
while(True) :

dis_ConmandLine ()

support@freenove.com [l

327

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

dis CardID(cardID)
inCmd = input ()
cmd = inCmd. split(” 7)
print (cmd)
if(emd[0] == "read”):
blockAddr = int(cmd[1])
if ((blockAddr<0) or (blockAddr>63)):
print (“Invalid Address!”)
This is the default key for authentication
key = [0xFF, 0xFF, 0xFF, OxFF, OxFF, OxFF]
Authenticate
status = mfrc. MFRC522 Auth (mfrc. PICC_AUTHENT1A, blockAddr, key, cardID)
Check if authenticated
if status == mfrc. MI OK:
mfrc. MFRC522 Readstr (blockAddr)
else:
print (“Authentication error”)

return 0

elif emd[0] == "dump”:
This is the default key for authentication
key = [0xFF, 0xFF, OxFF, OxFF, 0xFF, 0xFF]
mfrc. MFRC522 Dump_Str (key, cardID)

elif cmd[0] == "write”:
blockAddr = int(cmd[1])
if ((blockAddr<0) or (blockAddr>63)):
print (“Invalid Address!”)
data = [0]*16
if(len(cmd)<2) :
data = [0]*16

else:

data = cmd[2] [0:17]

data = map(ord, data)

data = list (data)

lenData = len(list (data))

if lenData<16:

datat=[0]*(16-1enData)

This is the default key for authentication
key = [OxFF, 0xFF, 0xFF, 0xFF, OxFF, 0xFF]
Authenticate
status = mfrc. MFRC522 Auth (mfrc. PICC_AUTHENT1A, blockAddr, key, cardID)
Check if authenticated

if status == mfrc.MI OK:

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [RCYAS

print ("Before writing , The data in block %d is: "%(blockAddr))
mfrc. MFRC522_ Readstr (blockAddr)
mfrc. MFRC522 Write (blockAddr, data)
print (“"After written , The data in block %d is: “%(blockAddr))
mfrc. MFRC522_Readstr (blockAddr)

else:
print (“Authentication error”)

return 0

elif emd[0] == “clean”:

blockAddr = int(emd[1])

if((blockAddr<0) or (blockAddr>63)):
print (“"Invalid Address!”)

data = [0]*16

This is the default key for authentication

key = [0xFF, OxFF, OxFF, 0xFF, OxFF, 0xFF]

Authenticate

status = mfrc. MFRC522 Auth (mfrc. PICC_AUTHENT1A, blockAddr, key, cardID)

Check if authenticated

if status == mfrc.MI OK:
print (“Before cleaning , The data in block %d is: "% (blockAddr))
mfrc. MFRC522 Readstr (blockAddr)
mfrc. MFRC522 Write (blockAddr, data)
print (“After cleaned , The data in block %d is: “%(blockAddr))
mfrc. MFRC522_Readstr (blockAddr)

else:

print (“Authentication error”)

return 0
elif emd[0] == "halt”:
return 0

else :
print (“Usage:\r\n” “\tread <blockstart>\r\n” “\tdump\r\n” “\thalt\r\n” “\tclean
<blockaddr>\r\n” “\twrite <blockaddr> <data>\r\n”)

def destroy():
GPIO. cleanup()

if name ==" main ”
setup ()
try:
loop ()
except KeyboardInterrupt: # Ctrl+C captured, exit
destroy ()

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

M support@freenove.com

www.freenove.com Il

In the code, first create an MFRC522 class object.

- mfrc = MFRC522.MFRC522 ()

In the function loop, wait for the command input. If command "scan" is received, the function will begin to

detect whether there is a card close to the sensing area. If a card is detected, the card will be selected and

card UID will be acquired. Then enter the function scan_loop (). If command "quit" or "exit" is received, the

program will exit.

if (inCmd == “scan”):
print “Scanning ... ”
isScan = True

while isScan:

if cmdloop(uid) < 1 :

isScan = False
elif inCmd == "quit”:
destroy ()
exit (0)

else :

print ”“\tUnknown command\n”+”\tscan:scan card and dump\n”+”\tquit:exit

program\n”

The function cmdloop() will detect command read, write, clean, halt, dump and do the corresponding

processing to each command. The functions of each command and the method have been introduced before.

def cmdloop(cardID) :

pass

while (True) :
dis ConmandLine ()
dis CardID(cardID)
inCmd = raw input()
cmd = inCmd. split(”)
print cmd
if (emd[0] == "read”):

elif cmd[0] == "dump”:

elif emd[0] == "write”:

elif emd[0] == "clean”:

elif cmd[0] =

return 0

"halt”:

else :

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [EEEEI

print “Usage:\r\n” “\tread <blockstart>\r\n” “\tdump\r\n” “\thalt\r\n”
“\tclean <blockaddr>\r\n” “\twrite <blockaddr> <data>\r\n”

The file "MFRC522.py" contains the associated operation method for the MFRC522. You can open the file to

view all the definitions and functions.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

What's Next?

THANK YOU for participating in this learning experience! If you have completed all of the projects successfully
you can consider yourself a Raspberry Pi Master.

We have reached the end of this Tutorial. If you find errors, omissions or you have suggestions and/or
questions about the Tutorial or component contents of this Kit, please feel free to contact us:
support@freenove.com

We will make every effort to make changes and correct errors as soon as feasibly possible and publish a
revised version.

If you are interested in processing, you can study the Processing.pdf in the unzipped folder.

If you want to learn more about Arduino, Raspberry Pi, Smart Cars, Robotics and other interesting products
in science and technology, please continue to visit our website. We will continue to launch fun, cost -effective,
innovative and exciting products.

http://www.freenove.com/

Thank you again for choosing Freenove products.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
http://www.freenove.com/

	Getting Started
	Safety and Precautions
	Car and Robot for Raspberry Pi
	About Freenove
	Copyright

	Contents
	Preface
	Raspberry Pi
	Installing an Operating System
	Component List
	Required Components

	Optional Components
	Required Accessories for Monitor
	Required Accessories for Remote Desktop

	Raspberry Pi OS
	Automatically
	Manually
	Write System to Micro SD Card

	Enable ssh

	Getting Started with Raspberry Pi
	Monitor desktop
	Remote desktop & VNC
	MAC OS Remote Desktop
	Windows OS Remote Desktop
	VNC Viewer & VNC

	Chapter 0 Preparation
	Linux Command
	Shortcut Key

	Install WiringPi
	WiringPi Installation Steps

	Obtain the Project Code
	Python2 & Python3
	Projects Board for Raspberry Pi
	Assembly

	Chapter 1 LED
	Project 1.1 Blink
	GPIO
	BCM GPIO Numbering
	PHYSICAL Numbering
	WiringPi GPIO Numbering

	Component List
	Circuit
	Component knowledge
	LED
	Resistor

	Code
	C Code 1.1 Blink
	Python Code 1.1 Blink

	Chapter 2 FlowingLight
	Project 2.1 Flowing Water Light
	Component List
	Circuit
	Code
	C Code 2.1 LightWater
	Python Code 2.1 LightWater

	Chapter 3 Buttons & LEDs
	Project 3.1 Push Button Switch & LED
	Component knowledge
	Push Button Switch

	Component List
	Circuit
	Code
	C Code 3.1 ButtonLED
	Python Code 3.1 ButtonLED

	Chapter 4 Analog & PWM
	Project 4.1 Breathing LED
	Component Knowledge
	Analog & Digital
	PWM

	Component List
	Circuit
	Code
	C Code 4.1 BreathingLED
	Python Code 4.1 BreathingLED

	Chapter 5 RGB LED
	Project 5.1 RainbowLED
	Component List
	Circuit
	Code
	C Code 5.1 RainbowLED
	Python Code 5.1 RainbowLED

	Chapter 6 Buzzer
	Project 6.1 Doorbell
	Component knowledge
	Buzzer
	Transistors

	Component List
	Circuit
	Code
	C Code 6.1 Doorbell
	Python Code 6.1 Doorbell

	Project 6.2 Alertor
	Component List
	Circuit
	Code
	C Code 6.2 Alertor
	Python Code 6.2 Alertor

	(Important) Chapter 7 ADC
	Project 7.1 Read the Voltage of Potentiometer
	Circuit knowledge
	ADC
	DAC

	Component knowledge
	Potentiometer
	Rotary potentiometer
	ADS7830
	I2C communication

	Component List
	Circuit
	Configure I2C and Install Smbus
	Enable I2C
	Install I2C-Tools
	Install Smbus Module

	Code
	C Code 7.1 ADC
	Python Code 7.1 ADC
	Reference

	Project 7.2 Soft Light
	Component List
	Circuit
	Code
	C Code 7.2 Softlight
	Python Code 7.2 Softlight

	Project 7.3 Colorful Light
	Component List
	Circuit
	Code
	C Code 7.3 Colorful Softlight
	Python Code 7.3 ColorfulSoftlight

	Chapter 8 Photoresistor & LED
	Project 8.1 NightLamp
	Component List
	Circuit
	Code
	C Code 8.1 Nightlamp
	Python Code 8.1 Nightlamp

	Chapter 9 Thermistor
	Project 9.1 Thermometer
	Component knowledge
	Thermistor

	Component List
	Circuit
	Code
	C Code 9.1 Thermometer
	Python Code 9.1 Thermometer

	Chapter 10 Joystick
	Project 10.1 Joystick
	Component knowledge
	Joystick

	Component List
	Circuit
	Code
	C Code 10.1 Joystick
	Python Code 10.1 Joystick

	Chapter 11 Motor & Driver
	Project 11.1 Control a DC Motor with a Potentiometer
	Component knowledge
	DC Motor
	L293D

	Component List
	Circuit
	Code
	C Code 11.1 Motor
	Python Code 11.1 Motor

	Chapter 12 Relay & LED
	Project 12.1 Relay & LED
	Component knowledge
	Relay
	Inductor

	Component List
	Circuit
	Code
	C Code 12.1 Relay
	Python Code 12.1 Relay

	Chapter 13 Servo
	Project 13.1 Sweep
	Component knowledge
	Servo

	Component List
	Circuit
	Code
	C Code 13.1 Sweep
	Python Code 13.1 Sweep

	Project 13.2 Knob
	Component List
	Circuit
	Code
	C Code 13.2 Knob
	Python Code 13.2 Knob

	Chapter 14 Stepper Motor
	Project 14.1 Stepper Motor
	Component knowledge
	Stepper Motor
	ULN2003 Stepper Motor driver

	Component List
	Circuit
	Code
	C Code 14.1 SteppingMotor
	Python Code 14.1 SteppingMotor

	Chapter 15 LEDpixel
	Project 15.1 LEDpixel
	Component knowledge
	Freenove 8 RGB LED Module

	Component List
	Circuit
	Code
	C Code 15.1 Ledpixel
	Python Code 15.1 Ledpixel

	Project 15.2 Rainbow Light
	Component List
	Circuit
	Code
	C Code 15.2 Rainbow Light
	Python Code 15.2 Rainbow Light

	Chapter 16 74HC595 & Bar Graph LED
	Project 16.1 Flowing Water Light
	Component knowledge
	Bar Graph LED
	74HC595

	Component List
	Circuit
	Code
	C Code 16.1 LightWater02
	Python Code 16.1 LightWater02

	Chapter 17 74HC595 & 4-Digit 7-Segment Display
	Project 17.1 4-Digit 7-Segment Display
	Component List
	Circuit
	Component knowledge
	4 Digit 7-Segment Display

	Code
	C Code 17.1 SevenSegmentDisplay
	Python Code 17.1 SevenSegmentDisplay

	Project 17.2 4-Digit 7-Segment Display
	Component List
	Circuit
	Code
	C Code 17.2 StopWatch
	Python Code 17.2 StopWatch

	Chapter 18 74HC595 & LED Matrix
	Project 18.1 LED Matrix
	Component knowledge
	LED matrix

	Component List
	Circuit
	Code
	C Code 18.1 LEDMatrix
	Python Code 18.1 LEDMatrix

	Chapter 19 LCD1602
	Project 19.1 I2C LCD1602
	Component List
	Circuit
	Code
	C Code 19.1 I2CLCD1602
	Python Code 19.1 I2CLCD1602

	Chapter 20 Hygrothermograph DHT11
	Project 20.1 Hygrothermograph
	Component knowledge
	Component List
	Circuit
	Code
	C Code 20.1 DHT11
	Python Code 20.1 DHT11

	Chapter 21 Matrix Keypad
	Project 21 Matrix Keypad
	Component knowledge
	4x4 Matrix Keypad

	Component List
	Circuit
	Code
	C Code 21.1 MatrixKeypad
	Python Code 21.1 MatrixKeypad

	Chapter 22 Infrared Motion Sensor
	Project 22.1 PIR Infrared Motion Detector with LED Indicator
	Component Knowledge
	Component List
	Circuit
	Code
	C Code 22.1 SenseLED
	Python Code 22.1 SenseLED

	Chapter 23 Ultrasonic Ranging
	Project 23.1 Ultrasonic Ranging
	Component Knowledge
	Component List
	Circuit
	Code
	C Code 23.1 UltrasonicRanging
	Python Code 23.1 UltrasonicRanging

	Chapter 24 Attitude Sensor MPU6050
	Project 24.1 Read an MPU6050 Sensor Module
	Component knowledge
	MPU6050

	Component List
	Circuit
	Code
	C Code 24.1 MPU6050RAW
	Python Code 24.1 MPU6050RAW

	Chapter 25 RFID
	Project 25.1 RFID
	Component Knowledge
	RFID
	MFRC522
	Mifare1 S50 Card

	Component List
	Circuit
	Configure SPI
	Enable SPI
	Install Python module SPI-Py

	Code
	C Code 25.1 RFID
	Python Code 25.1 RFID

	What's Next?

