

1

Index

1. Getting Started .. 3

a. Getting Started with Windows Batch Scripting

b. Launching the Command Prompt

c. Editing Batch Files

d. Viewing Batch Files

e. Batch File Names and File Extensions

f. Saving Batch Files in Windows

g. Running your Batch File

h. Comments

i. Silencing Display of Commands in Batch Files

j. Debugging Your Scripts

2. Variables .. 7

a. Variable Declaration

b. Variable Assignment

c. Reading the Value of a Variable

d. Listing Existing Variables

e. Variable Scope (Global vs Local)

f. Special Variables

g. Command Line Arguments to Your Script

h. Tricks with Command Line Arguments

i. Some Final Polish

3. Return Codes ... 12

a. Return Code Conventions

b. Checking Return Codes In Your Script Commands

c. Conditional Execution Using the Return Code

d. Tips and Tricks for Return Codes

e. Some Final Polish

4. Stdin, Stdout, Stderr 15

a. File Numbers

b. Redirection

c. Suppressing Program Output

d. Redirecting Program Output As Input to Another Program

e. A Cool Party Trick

2

5. If/Then Conditionals 17

a. Checking that a File or Folder Exists

b. Checking If A Variable Is Not Set

c. Checking If a Variable Matches a Text String

d. Artimetic Comparisons

e. Checking a Return Code

6. Loops .. 19

a. Old School with GOTO

b. New School with FOR

c. Looping Through Files

d. Looping Through Directories

7. Functions .. 20

a. Defining a function

b. Calling a function

c. Return values

8. Parsing Input .. 22

a. The Easy Way to read Command Line Arguments

b. Optional parameters

c. Switches

d. Named Parameters

e. Variable Number of Arguments

f. Reading user input

9. Logging .. 23

a. Log function

b. Displaying startup parameters

10. Advanced Tricks .. 25

a. Boilplate info

b. Conditional commands based on success/failure

c. Getting the full path to the parent directory of

the script

d. Making a script sleep for N seconds

e. Supporting “double-click” execution (aka invoking

from Windows Explorer)

3

Getting Started

Getting Started with Windows Batch Scripting

Windows batch scripting is incredibly accessible – it works on just about any modern

Windows machine. You can create and modify batch scripts on just about any modern

Windows machine. The tools come out of the box: the Windows command prompt and a text

editor like Notepad.exe. It’s definitely far from the best shell scripting langauge, but, it gets

the job done. It’s my “duct tape” for Windows.

Launching the Command Prompt

Windows gurus launch the command prompt using the keyboard shortcut Windows Logo

Key+R (i.e., “Run”) > Type cmd.exe then Enter. This is way faster than navigating the

Windows Start Menu to find the Command Prompt.

Editing Batch Files

The universal text editor for batch files is Notepad (Windows Logo Key + R > Type notepad

then Enter). Since batch files are just ASCII text, you can probably use just about any text

editor or word processor. Very few editors do anything special for Batch files like syntax

highlighting or keyword support, so notepad is good enough fine and will likely be installed

on just about every Windows system you encounter.

Viewing Batch Files

I would stick with Notepad for viewing the contents of a batch file. In Windows Explorer

(aka, “My Computer”), you should be able to view a batch file in Notepad by right clicking

the file and seleting Edit from the context menu. If you need to view the contents within a

command prompt window itself, you can use a DOS command like TYPE myscript.cmd or

MORE myscript.cmd or EDIT myscript.cmd

Batch File Names and File Extensions

Assuming you are using Windows XP or newer, I recommend saving your batch files with

the file extension .cmd. Some seriously outdated Windows versions used .bat, though I

recommend sticking with the more modern .cmd to avoid some rare side effects with .bat

files.

With the .cmd file extension, you can use just about filename you like. I recommend avoiding

spaces in filenames, as spaces only create headaches in shell scripting. Pascal casing your

filenames is an easy way to avoid spaces (e.g., HelloWorld.cmd instead of Hello

World.cmd). You can also use punctuation characters like . or - or _ (e.g. Hello.World.cmd,

Hello-World.cmd, Hello_World.cmd).

http://waynes-world-it.blogspot.fr/2008/08/difference-between-bat-and-cmd.html
http://waynes-world-it.blogspot.fr/2008/08/difference-between-bat-and-cmd.html

4

Another thing with names to consider is avoiding names that use the same name of any built-

in commands, system binaries, or popular programs. For example, I would avoid naming a

script ping.cmd since there is a widely used system binary named ping.exe. Things might

get very confusing if you try to run ping and inadvertently call ping.cmd when you really

wanted ping.cmd. (Stay tuned for how this could happen.) I might called the script

RemoteHeartbeat.cmd or something similar to add some context to the script’s name and

also avoid any naming collisions with any other executable files. Of course, there could be a

very unique circumstance in which you want to modify the default behavior of ping in which

this naming suggestion would not apply.

Saving Batch Files in Windows

Notepad by default tries to save all files as plain jane text files. To get Notepad to save a file

with a .cmd extension, you will need to change the “Save as type” to “All Files (.)”. See the

screenshot below for an example of saving a script named “HelloWorld.cmd” in Notepad.

SIDEBAR: I’ve used a shortcut in this screenshot that you will learn more about later. I’ve

saved the file to my “user profile folder” by naming the file

%USERPROFILE%\HelloWorld.cmd. The %USERPROFILE% keyword is the Windows

environmental variable for the full path to your user profile folder. On newer Windows

systems, your user profile folder will typically be C:\Users\<your username>. This

shortcut saves a little bit of time because a new command prompt will generally default the

5

“working directory” to your user profile folder. This lets you run HelloWorld.cmd in a new

command prompt without changing directories beforehand or needing to specify the path to

the script.

Running your Batch File

The easy way to run your batch file in Windows is to just double click the batch file in

Windows Explorer (aka “My Computer”). Unfortunately, the command prompt will not give

you much of a chance to see the output and any errors. The command prompt window for the

script will disappear as soon as the script exits. (We will learn how to handle this problem in

Part 10 – Advanced Tricks).

When editing a new script, you will likely need to run the batch file in an existing command

window. For newbies, I think the easiest foolproof way to run your script is to drag and drop

the script into a command prompt window. The command prompt will enter the full path to

your script on the command line, and will quote any paths containing spaces.

Some other tips to running batch files:

 You can recall previous commands using the up arrow and down arrow keys to

navigate the command line history.

 I usually run the script as %COMPSPEC% /C /D

"C:\Users\User\SomeScriptPath.cmd" Arg1 Arg2 Arg3 This runs your script in

a new command prompt child process. The /C option instructs the child process to

quit when your script quits. The /D disables any auto-run scripts (this is optional, but,

I use auto-run scripts). The reason I do this is to keep the command prompt window

from automatically closing should my script, or a called script, call the EXIT

command. The EXIT command automatically closes the command prompt window

unless the EXIT is called from a child command prompt process. This is annoying

because you lose any messages printed by your script.

Comments

The official way to add a comment to a batch file is with the REM (Remark) keyword:

 REM This is a comment!

The power user method is to use ::, which is a hack to uses the the label operator : twice,

which is almost always ignored.

Most power authors find the :: to be less distracting than REM. Be warned though there are a

few places where :: will cause errors.

 :: This is a comment too!! (usually!)

For example, a FOR loop will error out with :: style comments. Simply fall back to using REM

if you think you have a situation like this.

http://steve-jansen.github.io/blog/2012/03/DD/title/

6

Silencing Display of Commands in Batch Files

The first non-comment line of a batch file is usually a command to turn off printing

(ECHO’ing) of each batch file line.

 @ECHO OFF

The @ is a special operator to suppress printing of the command line. Once we set ECHO’ing

to off, we won’t need the @ operator again in our script commands.

You restore printing of commands in your script with:

ECHO ON

Upon exit of your script, the command prompt will automatically restore ECHO to it’s

previous state.

Debugging Your Scripts

Batch files invole a lot of trial and error coding. Sadly, I don’t know of any true debugger for

Windows batch scripts. Worse yet, I don’t know of a way to put the command processor into

a verbose state to help troubleshoot the script (this is the common technique for Unix/Linux

scripts.) Printing custom ad-hoc debugging messages is about your only option using the

ECHO command. Advanced script writers can do some trickery to selectively print debugging

messages, though, I prefer to remove the debugging/instrumentation code once my script is

functioning as desired.

7

Variables

Variable Declaration

DOS does not require declaration of variables. The value of undeclared/uninitialized

variables is an empty string, or "". Most people like this, as it reduces the amount of code to

write. Personally, I’d like the option to require a variable is declared before it’s used, as this

catches silly bugs like typos in variable names.

Variable Assignment

The SET command assigns a value to a variable.

SET foo=bar

NOTE: Do not use whitespace between the name and value; SET foo = bar will not work

but SET foo=bar will work.

The /A switch supports arthimetic operations during assigments. This is a useful tool if you

need to validated that user input is a numerical value.

SET /A four=2+2

4

A common convention is to use lowercase names for your script’s variables. System-wide

variables, known as environmental variables, use uppercase names. These environmental

describe where to find certain things in your system, such as %TEMP% which is path for

temporary files. DOS is case insensitive, so this convention isn’t enforced but it’s a good idea

to make your script’s easier to read and troubleshoot.

WARNING: SET will always overwrite (clobber) any existing variables. It’s a good idea to

verify you aren’t overwriting a system-wide variable when writing a script. A quick ECHO

%foo% will confirm that the variable foo isn’t an existing variable. For example, it might be

tempting to name a variable “temp”, but, that would change the meaning of the widely used

“%TEMP%” environmental varible. DOS includes some “dynamic” environmental variables

that behave more like commands. These dynamic varibles include %DATE%, %RANDOM%, and

%CD%. It would be a bad idea to overwrite these dynamic variables.

Reading the Value of a Variable

In most situations you can read the value of a variable by prefixing and postfixing the

variable name with the % operator. The example below prints the current value of the variable

foo to the console output.

C:\> SET foo=bar

C:\> ECHO %foo%

bar

8

There are some special situations in which variables do not use this % syntax. We’ll discuss

these special cases later in this series.

Listing Existing Variables

The SET command with no arguments will list all variables for the current command prompt

session. Most of these varaiables will be system-wide environmental variables, like %PATH%

or %TEMP%.

NOTE: Calling SET will list all regular (static) variables for the current session. This listing

excludes the dynamic environmental variables like %DATE% or %CD%. You can list these

dynamic variables by viewing the end of the help text for SET, invoked by calling SET /?

Variable Scope (Global vs Local)

By default, variables are global to your entire command prompt session. Call the SETLOCAL

command to make variables local to the scope of your script. After calling SETLOCAL, any

variable assignments revert upon calling ENDLOCAL, calling EXIT, or when execution reaches

the end of file (EOF) in your script.

9

This example demonstrates changing an existing variable named foo within a script named

HelloWorld.cmd. The shell restores the original value of %foo% when HelloWorld.cmd

exits.

A real life example might be a script that modifies the system-wide %PATH% environmental

variable, which is the list of directories to search for a command when executing a command.

10

Special Variables

There are a few special situations where variables work a bit differently. The arguments

passed on the command line to your script are also variables, but, don’t use the %var% syntax.

Rather, you read each argument using a single % with a digit 0-9, representing the ordinal

position of the argument. You’ll see this same style used later with a hack to create

functions/subroutines in batch scripts.

There is also a variable syntax using !, like !var!. This is a special type of situation called

delayed expansion. You’ll learn more about delayed expansion in when we discuss

conditionals (if/then) and looping.

Command Line Arguments to Your Script

You can read the command line arguments passed to your script using a special syntax. The

syntax is a single % character followed by the ordinal position of the argument from 0 – 9.

The zero ordinal argument is the name of the batch file itself. So the variable %0 in our script

HelloWorld.cmd will be “HelloWorld.cmd”.

The command line argument variables are * %0: the name of the script/program as called on

the command line; always a non-empty value * %1: the first command line argument; empty

if no arguments were provided * %2: the second command line argument; empty if a second

argument wasn’t provided * …: * %9: the ninth command line argument

NOTE: DOS does support more than 9 command line arguments, however, you cannot

directly read the 10th argument of higher. This is because the special variable syntax doesn’t

recognize %10 or higher. In fact, the shell reads %10 as postfix the %0 command line argument

with the string “0”. Use the SHIFT command to pop the first argument from the list of

arguments, which “shifts” all arguments one place to the left. For example, the the second

argument shifts from position %2 to %1, which then exposes the 10th argument as %9. You will

learn how to process a large number of arguments in a loop later in this series.

Tricks with Command Line Arguments

Command Line Arguments also support some really useful optional syntax to run quasi-

macros on command line arguments that are file paths. These macros are called variable

substitution support and can resolve the path, timestamp, or size of file that is a command line

argument. The documentation for this super useful feature is a bit hard to find – run ‘FOR /?’

and page to the end of the output.

 %~1 removes quotes from the first command line argument, which is super useful when
working with arguments to file paths. You will need to quote any file paths, but, quoting a
file path twice will cause a file not found error.

SET myvar=%~1

 %~f1 is the full path to the folder of the first command line argument

11

 %~fs1 is the same as above but the extra s option yields the DOS 8.3 short name path

to the first command line argument (e.g., C:\PROGRA~1 is usually the 8.3 short name

variant of C:\Program Files). This can be helpful when using third party scripts or

programs that don’t handle spaces in file paths.

 %~dp1 is the full path to the parent folder of the first command line argument. I use

this trick in nearly every batch file I write to determine where the script file itself

lives. The syntax SET parent=%~dp0 will put the path of the folder for the script file

in the variable %parent%.

 %~nx1 is just the file name and file extension of the first command line argument. I

also use this trick frequently to determine the name of the script at runtime. If I need

to print messages to the user, I like to prefix the message with the script’s name, like

ECHO %~n0: some message instead of ECHO some message . The prefixing helps the

end user by knowing the output is from the script and not another program being

called by the script. It may sound silly until you spend hours trying to track down an

obtuse error message generated by a script. This is a nice piece of polish I picked up

from the Unix/Linux world.

Some Final Polish

I always include these commands at the top of my batch scripts:

SETLOCAL ENABLEEXTENSIONS

SET me=%~n0

SET parent=%~dp0

The SETLOCAL command ensures that I don’t clobber any existing variables after my script

exits. The ENABLEEXTENSIONS argument turns on a very helpful feature called command

processor extensions. Trust me, you want command processor extensions. I also store the

name of the script (without the file extension) in a variable named %me%; I use this variable as

the prefix to any printed messages (e.g. ECHO %me%: some message). I also store the parent

path to the script in a variable named %parent%. I use this variable to make fully qualified

filepaths to any other files in the same directory as our script.

12

Return Codes

Today we’ll cover return codes as the right way to communicate the outcome of your script’s

execution to the world. Sadly, even skilled Windows programmers overlook the importance

of return codes.

Return Code Conventions

By convention, command line execution should return zero when execution succeeds and

non-zero when execution fails. Warning messages typically don’t effect the return code.

What matters is did the script work or not?

Checking Return Codes In Your Script Commands

The environmental variable %ERRORLEVEL% contains the return code of the last executed

program or script. A very helpful feature is the built-in DOS commands like ECHO, IF, and

SET will preserve the existing value of %ERRORLEVEL%.

The conventional technique to check for a non-zero return code using the NEQ (Not-Equal-To)

operator of the IF command:

IF %ERRORLEVEL% NEQ 0 (

 REM do something here to address the error

)

Another common technique is:

IF ERRORLEVEL 1 (

 REM do something here to address the error

)

The ERRORLEVEL 1 statement is true when the return code is any number equal to or greater

than 1. However, I don’t use this technique because programs can return negative numbers as

well as positive numbers. Most programs rarely document every possible return code, so I’d

rather explicity check for non-zero with the NEQ 0 style than assuming return codes will be 1

or greater on error.

You may also want to check for specific error codes. For example, you can test that an

executable program or script is in your PATH by simply calling the program and checking

for return code 9009.

SomeFile.exe

IF %ERRORLEVEL% EQU 9009 (

 ECHO error - SomeFile.exe not found in your PATH

)

It’s hard to know this stuff upfront – I generally just use trial and error to figure out the best

way to check the return code of the program or script I’m calling. Remember, this is duct tape

programming. It isn’t always pretty, but, it gets the job done.

13

Conditional Execution Using the Return Code

There’s a super cool shorthand you can use to execute a second command based on the

success or failure of a command. The first program/script must conform to the convention of

returning 0 on success and non-0 on failure for this to work.

To execute a follow-on command after sucess, we use the && operator:

SomeCommand.exe && ECHO SomeCommand.exe succeeded!

To execute a follow-on command after failure, we use the || operator:

SomeCommand.exe || ECHO SomeCommand.exe failed with return code

%ERRORLEVEL%

I use this technique heavily to halt a script when any error is encountered. By default, the

command processor will continue executing when an error is raised. You have to code for

halting on error.

A very simple way to halt on error is to use the EXIT command with the /B switch (to exit the

current batch script context, and not the command prompt process). We also pass a specific

non-zero return code from the failed command to inform the caller of our script about the

failure.

SomeCommand.exe || EXIT /B 1

A simliar technique uses the implicit GOTO label called :EOF (End-Of-File). Jumping to

EOF in this way will exit your current script with the return code of 1.

SomeCommand.exe || GOTO :EOF

Tips and Tricks for Return Codes

I recommend sticking to zero for success and return codes that are positive values for DOS

batch files. The positive values are a good idea because other callers may use the IF

ERRORLEVEL 1 syntax to check your script.

I also recommend documenting your possible return codes with easy to read SET statements

at the top of your script file, like this:

SET /A ERROR_HELP_SCREEN=1

SET /A ERROR_FILE_NOT_FOUND=2

Note that I break my own convention here and use uppercase variable names – I do this to

denote that the variable is constant and should not be modified elsewhere. Too bad DOS

doesn’t support constant values like Unix/Linux shells.

14

Some Final Polish

One small piece of polish I like is using return codes that are a power of 2.

SET /A ERROR_HELP_SCREEN=1

SET /A ERROR_FILE_NOT_FOUND=2

SET /A ERROR_FILE_READ_ONLY=4

SET /A ERROR_UNKNOWN=8

This gives me the flexibility to bitwise OR multiple error numbers together if I want to record

numerous problems in one error code. This is rare for scripts intended for interactive use, but,

it can be super helpful when writing scripts you support but you don’t have access to the

target systems.

@ECHO OFF

SETLOCAL ENABLEEXTENSIONS

SET /A errno=0

SET /A ERROR_HELP_SCREEN=1

SET /A ERROR_SOMECOMMAND_NOT_FOUND=2

SET /A ERROR_OTHERCOMMAND_FAILED=4

SomeCommand.exe

IF %ERRORLEVEL% NEQ 0 SET /A errno^|=%ERROR_SOMECOMMAND_NOT_FOUND%

OtherCommand.exe

IF %ERRORLEVEL% NEQ 0 (

 SET /A errno^|=%ERROR_OTHERCOMMAND_FAILED%

)

EXIT /B %errno%

If both SomeCommand.exe and OtherCommand.exe fail, the return cde will be the bitwise

combination of 0x1 and 0x2, or decimal 3. This return code tells me that both errors were

raised. Even better, I can repeatedly call the bitwise OR with the same error code and still

interpret which errors were raised.

15

Stdin, Stdout, Stderr

DOS, like Unix/Linux, uses the three universal “files” for keyboard input, printing text on the

screen, and the printing errors on the screen. The “Standard In” file, known as stdin, contains

the input to the program/script. The “Standard Out” file, known as stdout, is used to write

output for display on the screen. Finally, the “Standard Err” file, known as stderr, contains

any error messages for display on the screen.

File Numbers

Each of these three standard files, otherwise known as the standard streams, are referernced

using the numbers 0, 1, and 2. Stdin is file 0, stdout is file 1, and stderr is file 2.

Redirection

A very common task in batch files is sending the output of a program to a log file. The >

operator sends, or redirects, stdout or stderr to another file. For example, you can write a

listing of the current directory to a text file:

DIR > temp.txt

The > operator will overwrite the contents of temp.txt with stdout from the DIR command.

The >> operator is a slight variant that appends the output to a target file, rather than

overwriting the target file.

A common technique is to use > to create/overwrite a log file, then use >> subsequently to

append to the log file.

SomeCommand.exe > temp.txt

OtherCommand.exe >> temp.txt

By default, the > and >> operators redirect stdout. You can redirect stderr by using the file

number 2 in front of the operator:

DIR SomeFile.txt 2>> error.txt

You can even combine the stdout and stderr streams using the file number and the & prefix:

DIR SomeFile.txt 2>&1

This is useful if you want to write both stdout and stderr to a single log file.

DIR SomeFile.txt > output.txt 2>&1

To use the contents of a file as the input to a program, instead of typing the input from the

keyboard, use the < operator.

SORT < SomeFile.txt

16

Suppressing Program Output

The pseudofile NUL is used to discard any output from a program. Here is an example of

emulating the Unix command sleep by calling ping against the loopback address. We

redirect stdout to the NUL device to avoid printing the output on the command prompt screen.

PING 127.0.0.1 > NUL

Redirecting Program Output As Input to Another

Program

Let’s say you want to chain together the output of one program as input to another. This is

known as “piping” output to another program, and not suprisingly we use the pipe character |

to get the job done. We’ll sort the output of the DIR commmand.

DIR /B | SORT

A Cool Party Trick

You can quickly create a new text file, say maybe a batch script, from just the command line

by redirecting the command prompt’s own stdin, called CON, to a text file. When you are done

typing, hit CTRL+Z, which sends the end-of-file (EOF) character.

TYPE CON > output.txt

There are a number of other special files on DOS that you can redirect, however, most are a

bit dated like like LPT1 for parallel portt printers or COM1 for serial devices like modems.

17

If/Then Conditionals

Computers are all about 1’s and 0’s, right? So, we need a way to handle when some condition

is 1, or else do something different when it’s 0.

The good news is DOS has pretty decent support for if/then/else conditions.

Checking that a File or Folder Exists

IF EXIST "temp.txt" ECHO found

Or the converse:

IF NOT EXIST "temp.txt" ECHO not found

Both the true condition and the false condition:

IF EXIST "temp.txt" (

 ECHO found

) ELSE (

 ECHO not found

)

NOTE: It’s a good idea to always quote both operands (sides) of any IF check. This avoids

nasty bugs when a variable doesn’t exist, which causes the the operand to effectively

disappear and cause a syntax error.

Checking If A Variable Is Not Set

IF "%var%"=="" (SET var=default value)

Or

IF NOT DEFINED var (SET var=default value)

Checking If a Variable Matches a Text String

SET var=Hello, World!

IF "%var%"=="Hello, World!" (

 ECHO found

)

Or with a case insensitive comparison

IF /I "%var%"=="hello, world!" (

 ECHO found

)

18

Artimetic Comparisons

SET /A var=1

IF /I "%var%" EQU "1" ECHO equality with 1

IF /I "%var%" NEQ "0" ECHO inequality with 0

IF /I "%var%" GEQ "1" ECHO greater than or equal to 1

IF /I "%var%" LEQ "1" ECHO less than or equal to 1

Checking a Return Code

IF /I "%ERRORLEVEL%" NEQ "0" (

 ECHO execution failed

)

19

Loops

Looping through items in a collection is a frequent task for scripts. It could be looping

through files in a directory, or reading a text file one line at a time.

Old School with GOTO

The old-school way of looping on early versions of DOS was to use labels and GOTO

statements. This isn’t used much anymore, though it’s useful for looping through command

line arguments.

:args

SET arg=%~1

ECHO %arg%

SHIFT

GOTO :args

New School with FOR

The modern way to loop through files or text uses the FOR command. In my opinion, FOR is

the single most powerful command in DOS, and one of the least used.

GOTCHA: The FOR command uses a special variable syntax of % followed by a single letter,

like %I. This syntax is slightly different when FOR is used in a batch file, as it needs an extra

percent symbol, or %%I. This is a very common source of errors when writing scripts. Should

your for loop exit with invalid syntax, be sure to check that you have the %% style variables.

Looping Through Files

FOR %I IN (%USERPROFILE%*) DO @ECHO %I

Looping Through Directories

FOR /D %I IN (%USERPROFILE%*) DO @ECHO %I

Recursively loop through files in all subfolders of the %TEMP% folder

FOR /R "%TEMP%" %I IN (*) DO @ECHO %I

Recursively loop through all subfolders in the %TEMP% folder

FOR /R "%TEMP%" /D %I IN (*) DO @ECHO %I

20

Functions

Functions are de facto way to reuse code in just about any procedural coding language. While

DOS lacks a bona fide function keyword, you can fake it till you make it thanks to labels and

the CALL keyword.

There are a few gotchas to pay attention to:

1. Your quasi functions need to be defined as labels at the bottom of your script.
2. The main logic of your script must have a EXIT /B [errorcode] statement. This keeps

your main logic from falling through into your functions.

Defining a function

In this example, we’ll implement a poor man’s version of the *nix tee utility to write a

message to both a file and the stdout stream. We’ll use a variable global to the entire script,

%log% in the function.

@ECHO OFF

SETLOCAL

:: script global variables

SET me=%~n0

SET log=%TEMP%\%me%.txt

:: The "main" logic of the script

IF EXIST "%log%" DELETE /Q %log% >NUL

:: do something cool, then log it

CALL :tee "%me%: Hello, world!"

:: force execution to quit at the end of the "main" logic

EXIT /B %ERRORLEVEL%

:: a function to write to a log file and write to stdout

:tee

ECHO %* >> "%log%"

ECHO %*

EXIT /B 0

Calling a function

We use the CALL keyword to invoke the quasi function labelled :tee. We can pass command

line arguments just like we’re calling another batch file.

We have to remember to EXIT /B keyword at the end our function. Sadly, there is no way to

return anything other than an exit code.

21

Return values

The return value of CALL will always be the exit code of the function. Like any other

invokation of an executable, the caller reads %ERRORLEVEL% to get the exit code.

You have to get creative to pass anything other than integer return codes. The function can

ECHO to stdout, letting the caller decide to handle the output by pipeling the output as the

input to another executable, redirecting to a file, or parsing via the FOR command.

The caller could also pass data by modifying a global variable, however, I try to avoid this

approach.

22

Parsing Input

Robust parsing of command line input separates a good script from a great script. I’ll share

some tips on how I parse input.

The Easy Way to read Command Line Arguments

By far the easiest way to parse command line arguments is to read required arguments by

ordinal position.

Here we get the full path to a local file passed as the first argument. We write an error

message to stderr if the file does not exist and exit our script:

SET filepath=%~f1

IF NOT EXIST "%filepath%" (

 ECHO %~n0: file not found - %filepath% >&2

 EXIT /B 1

)

Optional parameters

I assign a default value for parameters as such

SET filepath=%dp0\default.txt

:: the first parameter is an optional filepath

IF EXIST "%~f1" SET filepath=%~f1

Switches

Named Parameters

Variable Number of Arguments

Reading user input

:confirm

SET /P "Continue [y/n]>" %confirm%

FINDSTR /I "^(y|n|yes|no)$" > NUL || GOTO: confirm

23

Logging

I use basic logging facilities in my scripts to support troubleshooting both during execution

and after execution. I use basic logging as a way to instrument what my scripts are doing at

runtime and why. I remember watching a network operations center trying to troubleshoot a

legacy batch process where the sysadmins literrally had to try to read the lines of a console

window as they trickled by. This technique worked fine for years when the batch machines

used dial-up modems for connectivity to remote resources. However, the advent of

brooadband meant the batch script executed faster than anyone could read the output. A

simple log file would have made troubleshooting work much easier for these sysadmins.

Log function

I really like the basic tee implementation I wrote in Part 7 – Functions.

@ECHO OFF

SETLOCAL ENABLEEXTENSIONS

:: script global variables

SET me=%~n0

SET log=%TEMP%\%me%.txt

:: The "main" logic of the script

IF EXIST "%log%" DELETE /Q %log% >NUL

:: do something cool, then log it

CALL :tee "%me%: Hello, world!"

:: force execution to quit at the end of the "main" logic

EXIT /B %ERRORLEVEL%

:: a function to write to a log file and write to stdout

:tee

ECHO %* >> "%log%"

ECHO %*

EXIT /B 0

This tee quasi function enable me to write output to the console as well as a log file. Here I

am reusing the same log file path, which is saved in the users %TEMP% folder as the name of

the batch file with a .txt file extension.

If you need to retain logs for each execution, you could simply parse the %DATE% and

%TIME% variables (with the help of command line extensions) to generate a unique

filename (or at least unique within 1-second resolution).

REM create a log file named [script].YYYYMMDDHHMMSS.txt

SET

log=%TEMP%\%me%.%DATE:~10,4%_%DATE:~4,2%_%DATE:~7,2%%TIME:~0,2%_%TIME:~3,2%

_%TIME:~6,2%.txt

http://steve-jansen.github.io/blog/2012/03/08/fundamentals-of-windows-shell-scripting-part-7-functions/

24

Taking a queue from the *nix world, I also like to include a prefix custom output from my

own script as script: some message. This technique drastically helps to sort who is

complaining in the case of an error.

Displaying startup parameters

I also like to display the various runtime conditions for non-interactive scripts, like something

that will be run on a build server and redirected to a the build log.

Sadly, I don’t know of any DOS tricks (yet) to discrimintate non-interactive sessions from

interactive sessions. C# and .Net has the System.Environment.UserInteractive property

to detect if this situation; *nix has some tricks with tty file descriptors. You could probably

hack up a solution by inspecting a custom environmental variable like %MYSCRIPT_DEBUG%

that defaults to being false.

25

Advanced Tricks

Boilplate info

I like to include a header on all of scripts that documents the who/what/when/why/how. You

can use the :: comment trick to make this header info more readable:

:: Name: MyScript.cmd

:: Purpose: Configures the FooBar engine to run from a source control tree

path

:: Author: stevejansen_github@icloud.com

:: Revision: March 2013 - initial version

:: April 2013 - added support for FooBar v2 switches

@ECHO OFF

SETLOCAL ENABLEEXTENSIONS ENABLEDELAYEDEXPANSION

:: variables

SET me=%~n0

:END

ENDLOCAL

ECHO ON

@EXIT /B 0

Conditional commands based on success/failure

The conditional operators || and && provide a convenient shorthand method to run a 2nd

command based on the succes or failure of a 1st command.

The && syntax is the AND opeartor to invoke a 2nd command when the first command

returns a zero (success) exit code.

DIR myfile.txt >NUL 2>&1 && TYPE myfile.txt

The || syntax is an OR operator to invoke a 2nd command when the first command returns a

non-zero (failure) exit code.

DIR myfile.txt >NUL 2>&1 || CALL :WARNING file not found - myfile.txt

We can even combined the techniques. Notice how we use the () grouping construct with &&

to run 2 commands together should the 1st fail.

DIR myfile.txt >NUL 2>&1 || (ECHO %me%: WARNING - file not found -

myfile.txt >2 && EXIT /B 1)

26

Getting the full path to the parent directory of the script

:: variables

PUSHD "%~dp0" >NUL && SET root=%CD% && POPD >NUL

Making a script sleep for N seconds

You can use PING.EXE to fake a real *nix style sleep command.

:: sleep for 2 seconds

PING.EXE -N 2 127.0.0.1 > NUL

Supporting “double-click” execution (aka invoking from

Windows Explorer)

Test if %CMDCMDLINE% is equal to %COMSPEC% If they are equal, we can assume that we are

running in an interactive session. If not equal, we can inject a PAUSE into the end of the

script to show the output. You may also want to change to a valid working directory.

@ECHO OFF

SET interactive=0

ECHO %CMDCMDLINE% | FINDSTR /L %COMSPEC% >NUL 2>&1

IF %ERRORLEVEL% == 0 SET interactive=1

ECHO do work

IF "%interactive%"=="0" PAUSE

EXIT /B 0

	cover.pdf (p.1)
	Windows Batch Scripting.pdf (p.2-27)

