
Balancing Robot Maths !

The maths behind the balancing robot is simpler and more interesting than you might think !

Firstly let’s have a quick look at the MPU-6050 accelerometer and

gyroscope sensor. The x, y and z directions of the MPU-6050 have an

accelerometer and gyroscope senor as shown in the diagram – note

also the x and y directions are marked on the board.

Accelerometers are devices that

measure acceleration - the rate of

change of the velocity of an object, measured in units of m/s2

(meters per second per second) or sometimes expressed in G-

forces (g). The G-force for us here on Earth is 9.8 m/s2. So, when

the MPU-6050 is lying on the desk the accelerometer in the z

direction will measure 9.8 m/s2 (or 1 g), and 0 m/s2 (or 0 g) in the

x and y directions.

Gyro sensors, also known as angular velocity sensors, are devices

that measure angular velocity. Angular velocity is the change in rotational angle per unit of time,

generally measured in units of deg/s (degrees per second).

Accelerometers give an absolute way of finding angles (because gravity can be used as a reference

direction), but are sensitive to noise (vibration). Gyroscopes are less sensitive to vibrations, but tend

to drift over time. We need to combine the two to obtain stable measurements (called fusion).

Maths for calculating pitch angle from accelerometers

Vehicles that are free to move in three dimensions can change their direction around three axes:

 longitudinal (x) axis (the axis the vehicle is moving in) - motion about this axis is called roll

 lateral (y) axes - motion about this axis is called pitch

 vertical (z) axis - motion about this axes is called yaw

http://www.itsqv.com/QVM/index.php?title=File:IMU024a.png

On earth the acceleration due to gravity g (g=9.8m/s2) is always acting downwards, so we can use

this as a reference direction to calculate pitch, roll and yaw angles from the accelerometers.

To keep our robot stable we are only

interested in the pitch angle (we use this

angle to drive the robot wheels to keep the

robot upright).

When the robot is upright and stationary, the

accelerometer in the z direction measures

the full g value and the x and y accelerators

measure zero. However when the robot tilts

(pitches), the z and x accelerators each measure a component of g (zg and xg). So to calculate the

pitch angle θ we can use trigonometry:

𝑥𝑔 = 𝑔 × 𝑆𝑖𝑛(𝜃)

𝜃 = sin−1(
𝑥𝑔

𝑔
)

In Arduino code this is:

acc_x_data = Wire.read()<<8|Wire.read(); // read the x accelerometer from MPU-6050

pitch_angle_acc = asin(acc_x_data/9.8) * 57.29578 ; // pitch angle in degrees

Note: asin() is the Arduino function for sin-1(), it returns results in Radians. To convert to degrees

multiply by
360

2π
 = 57.29578.

Maths for calculating pitch angle from gyros

We said earlier that accelerometers are sensitive to noise (vibration), and although gyros are less

sensitive to noise, they tend to drift over time. So if we combine the two we obtain a stable pitch

angle measurement.

Therefore we also need to calculate the pitch angle from the gyros. Again we only need to measure

the pitch angle (not roll and yaw), and we can do this by taking gyro measurements about the y axis.

Gyros measure angular velocity (in degrees/sec). So to calculate an angle through which an object

has rotated we need to integrate the gyro measurement over time (just like integrating velocity to

obtain distance travelled).

To do this integration numerically we sample (take measurements) the y gyro on the MPU6050 at

regular intervals (at period = T secs, e.g. at 4 milliseconds), add them all up and multiply by the

period T:

𝐴𝑛𝑔𝑙𝑒𝑟𝑜𝑡𝑎𝑡𝑒𝑑 = 𝑇 × ∑ 𝐺𝑦𝑟𝑜𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡

𝑡=𝑠𝑡𝑎𝑟𝑡

A very simple way to do this calculation is to add the previous value 𝑜𝑓 𝐴𝑛𝑔𝑙𝑒𝑟𝑜𝑡𝑎𝑡𝑒𝑑 to the new

𝐺𝑦𝑟𝑜𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 × 𝑇. In Arduino code this is (note the += in the second line of code):

gyro_y_data = Wire.read()<<8|Wire.read(); // read the y gyro from MPU-6050

pitch_angle_gyro += gyro_y_data * T; // integrate to obtain an angle

Putting it all together - Obtaining a stable pitch angle

We have now calculated the pitch angle from both the accelerometers and the gyros. We now need

to combine these to obtain a stable pitch angle, called fusion.

Over the short term, we want to use the gyro data, because it is not susceptible to noise (vibration),

but over the long term we want to use the accelerometer data as it does not drift.

There is an optimal way to do this called Kalman filtering, but this is complicated to tune and

requires a lot of code. A simpler method which is nearly as good for our robot is called a

Complementary filter.

A complementary filter weights the pitch angles from the acc and gyro and adds them together:

𝑝𝑖𝑡𝑐ℎ_𝑎𝑛𝑔𝑙𝑒 = (1 − 𝛼) × 𝑝𝑖𝑡𝑐ℎ_𝑎𝑛𝑔𝑙𝑒_𝑔𝑦𝑟𝑜 + 𝛼 × 𝑝𝑖𝑡𝑐ℎ_𝑎𝑛𝑔𝑙𝑒_𝑎𝑐𝑐

and then sets the pitch_angle_gyro to the new filtered pitch_angle, so the drift in the gyro pitch

angle is corrected over time. The weighting factor α is made small so that individual measurement

noise in the acc derived pitch angle does not have a large affect and averages out over time.

Putting all the acc and gyro pitch angle Arduino code together:

// calculate pitch angle using acc data

acc_x_data = Wire.read()<<8|Wire.read(); // read the x accelerometer from MPU-6050

pitch_angle_acc = asin(acc_x_data/9.8) * 57.29578; // pitch angle in degrees

// calculate pitch angle using gyro data

gyro_y_data = Wire.read()<<8|Wire.read(); // read the y gyro from MPU-6050

pitch_angle_gyro += gyro_y_data * T; // integrate to obtain an angle

// complementary filter

pitch_angle = pitch_angle_gyro * 0.9996 + pitch_angle_acc * 0.0004;

pitch_angle_gyro = pitch_angle; // corrects the pitch_angle_gyro drift

Balancing Robot Program Blocks

The main program blocks for the balancing robot are shown here. If you look carefully at your

Arduino sketch you might be able to make out these blocks in the loop() function.

This code runs every 4ms (250 times per second).

This blocks reads the three accelerometers and three gyroscopes

(along the x, y, and z axises) from the MPU-6050 sensor.

This block calculates the pitch angle (how much the robot is

leaning) of the robot. It combines angle calculations from the

accelerometers and the gyroscopes to obtain a stable pitch angle,

through a process called a complementary filter. Trigometry and

integration is used to calculate the angle – see the maths section.

Using the angle calculated above, this block determines how the

motors should be controlled to keep the robot upright. It uses an

algorithm called Proportional-Integral-Derivative (PID) control. It

is a common algorithm used in many control situations.

This block receives the remote control data from the phone app

joystick (and buttons). The x and y coordinates of the joystick

position are converted into a length (using Pythagoras) and an

angle (using the trig function Tan) which are then used to

determine the speed and direction of the robot.

This block combines the PID motor control (which keeps the

robot upright) with the controls received from the phone app

and drives the motors so that the robot balances and moves

according to the phone app joystick. The motors are controlled

using Pulse Width Modulation (PWM).

Read MPU-6050
accelerometer
and gyroscopes

Calculate pitch angle
(complementary filter)

Proportional-Integral-
Derivative (PID) control

Receive remote control
Phone app data over
Bluetooth

Combine PID and remote
control data from phone
app to drive the motors

