ASSIGNMENT – 3

Exercise 1 – To verify the functional table of CD4543

Hardware Required

- Decoder (CD4543)
- Seven Segment Display
- Single core connecting wires
- Tinkercad Software tool (https://www.tinkercad.com/)

Theory

The decoder (CD4543) is a combinational digital circuit that decodes an 4-bit binary input in the range 0000-1001 (BCD) in to its corresponding decimal level. Example for the binary value 0101 we need to display 5. Hence the decoder will output a HIGH on segments (a, c, d, f and g) with output a LOW on segments (b and e). The latch signal is normally connected to 5V via 10Kohm resistor as per the circuit diagram. This allows the decoder to decode the present binary input (the latch is said to be in a transparent state). When the latch is connected to 0V via the jumper provided its logic state changes to a LOW and the decoder will decode the binary input prior to the latch going low (i.e. the display is frozen when the latch is LOW).

Schematic Diagram

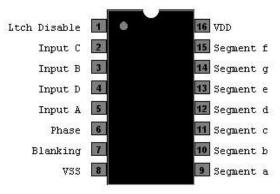


Figure 1: Pin diagram of CD4543

1.0	BL	191	1)	C	В	A	. 8	h.	il.	d	0	1		DOSPLAY
1	II.	0	D	0	9)	0	1	1	1.1	1.1	1	1	0	- 0
1	0	D	0	0	0	1	0	-1	1	0	.0	-0	-0	1
1	0	0	.9	0	1	0	1	- 3	0	-1	7	:0	1	2
1	0	0	0	0	1.	1	1	1	- 1	1.0	D	D	2.5	- 3
1	0	.0	.0	1.	0.	- 6	.0	1	- 1	0	0.	1	-1	4
1	0	0	0	1	0	1	1	0	1	-1	0	1	1	5
1	0	0	. 0	-1	1	0	1	0.	1	11.	1	1	1.1	- 6
1	0	0	9	1	1	1	- 1	1	1.0	0	0	0	0	7
1	0	0	1	0	0	0	1	1	10	1	31	1	-1	8
1	. 0	0	1	. 0	0	1	1	1	17	10	0	11	1	9

Figure 2: Functional table of CD4543

Exercise 2 – BCD (binary coded decimal) to 7 Segment Display

Hardware Required

- Decoder (CD4543)
- Seven Segment Display
- Single core connecting wires
- Tinkercad Software tool (https://www.tinkercad.com/)
- Arduino Uno

Theory

The decoder (CD4543) is a combinational digital circuit that decodes an 4-bit binary input in the range 0000-1001 (BCD) in to its corresponding decimal level. Example for the binary value 0101 we need to display 5. Hence the decoder will output a HIGH on segments (a, c, d, f and g) with output a LOW on segments (b and e). The latch signal is normally connected to 5V via 10Kohm resistor as per the circuit diagram.

This allows the decoder to decode the present binary input (the latch is said to be in a transparent state). When the latch is connected to 0V via the jumper provided its logic state changes to a LOW and the decoder will decode the binary input prior to the latch going low (i.e. the display is frozen when the latch is LOW).

Schematic Diagram

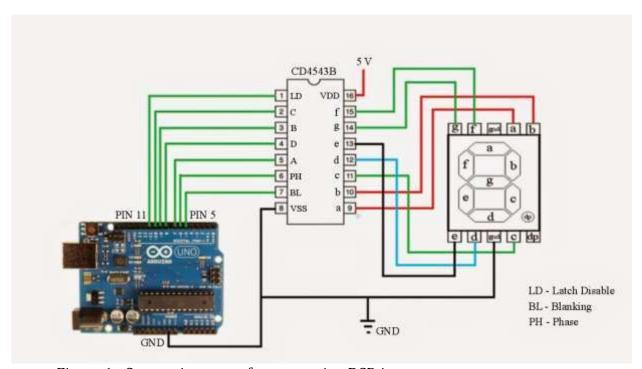


Figure 1: Connection setup for converting BCD input to seven segment ouput.

Experimental connection diagram:

Code:

Reflections:

Exercise 3 – Write an Arduino sketch to make an up counter which counts from 0 to 9 & repeat it infinitely. Display the digits using BCD code on the 7-segment display on digital trainer kit.

Hardware Required

- Decoder (CD4543)
- Seven Segment Display
- Single core connecting wires
- Arduino Uno

Theory (Write the theory as per your understanding during self-effort and lab hours)

Code:

Experimental connection diagram:

Reflections:

Assignment Tasks:

- Use Tinkercad to redesign Exercise 2 and display the last digit of your Roll Number on the 7-segment display.
- Using Tinkercad, write an Arduino sketch to make an up counter which counts from 0 to 9 & repeat it infinitely using Tinkercad