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1.  IntroducƟon and Overview -   
 

The sustainable use of energy is one of the most significant challenges that our society is facing 
today. With the rapid growth in populaƟon, urbanizaƟon, and technological advancement, the 
demand for energy, parƟcularly electricity, is increasing at an unprecedented rate. This growing 
demand underscores the criƟcal need for innovaƟve soluƟons to manage and uƟlize energy 
efficiently. One such soluƟon lies in developing systems that provide accurate and real-Ɵme data 
on energy consumpƟon. This project focuses on designing and implemenƟng a smart energy 
meter using Arduino, a microcontroller-based plaƞorm that facilitates the monitoring of electrical 
parameters like current and voltage. The aim is to provide real-Ɵme informaƟon about energy 
usage, which can enable users to opƟmize consumpƟon and reduce wastage effecƟvely. Smart 
energy meters are a cornerstone of modern energy management systems, as they enable 
accurate monitoring, efficient uƟlizaƟon of energy resources, and enhanced awareness of 
consumpƟon paƩerns. 
 
While the project is sƟll in progress and incomplete, the current phase demonstrates local energy 
monitoring funcƟonality. This includes measuring current, calculaƟng power consumpƟon in a 
simulaƟon environment, and displaying the results on an LCD. AddiƟonally, the project has been 
designed with the potenƟal for future scalability, including the incorporaƟon of advanced 
features such as remote data transmission and IoT connecƟvity. These enhancements would 
enable remote monitoring and control, opening up possibiliƟes for cloud-based analyƟcs, trend 
analysis, and anomaly detecƟon in energy usage. The implementaƟon of such advanced systems 
has the potenƟal to revoluƟonize energy consumpƟon pracƟces, enabling individuals and 
industries to make data-driven decisions for energy savings, reduced costs, and improved 
reliability. This aligns closely with global sustainability goals, promoƟng the reducƟon of carbon 
footprints and the responsible use of natural resources. 
 
The smart energy meter designed as part of this project employs an Arduino microcontroller to 
measure current (and voltage in simulaƟon), calculate energy usage, and display the results on an 
LCD using I2C. In the pracƟcal implementaƟon, the ACS712 sensor is used for current 
measurement, providing a cost-effecƟve and reliable soluƟon for small-scale applicaƟons. The 
LCD serves as an accessible interface, allowing users to view energy consumpƟon data in real 
Ɵme without requiring addiƟonal devices or soŌware. While the current prototype does not 
include voltage measurement or remote transmission of data, the groundwork has been laid for 
these features. Future developments could involve integraƟng IoT-based components to enable 
cloud-based monitoring and remote access. These improvements would make the system more 
versaƟle, suitable for a wide range of applicaƟons, and aligned with the vision of a fully 
connected smart grid. 
 
This report outlines the design, implementaƟon, and evaluaƟon of the smart energy meter, 
presenƟng detailed insights into both the simulaƟon and the pracƟcal setup. It provides an in-
depth analysis of the project's architecture, hardware components, soŌware algorithms, and 
operaƟonal performance. AddiƟonally, it discusses the challenges encountered during the 
development process, the limitaƟons of the current system, and the prospects for future 
advancements. By addressing these aspects comprehensively, this report aims to offer a thorough 
understanding of the smart energy meter and its potenƟal contribuƟons to energy management 
and sustainability. 
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2.  ObjecƟve -   
 

a) Monitor power consumpƟon locally by measuring voltage and current using sensors. 
 ObjecƟve: The goal is to create a system capable of real-Ɵme monitoring of power usage 

by measuring key electrical parameters such as voltage and current to calculate power 
consumpƟon. 

 How it’s achieved: 
o In the simulaƟon, both voltage and current are measured using sensors, and the 

calculated power is displayed on an LCD screen. 
o In the pracƟcal implementaƟon, only the ACS712 current sensor is used to 

measure the AC current, with the data displayed on the serial monitor and LCD 
screen. 

 Importance: Monitoring energy usage locally provides insights into consumpƟon paƩerns, 
helping users make informed decisions about energy efficiency and resource opƟmizaƟon. 
 

b) Display power consumpƟon using LCD. 
 ObjecƟve: To present real-Ɵme data to users in a simple, readable format without 

requiring external devices like smartphones or computers. 
 How it’s achieved: 

o In the simulaƟon, an LCD (e.g., 16x2) is used to display real-Ɵme values of voltage, 
current, and power. 

o In the pracƟcal project, data is displayed on the serial monitor and LCD using I2C, 
and only current measurement is implemented. 

 Importance: The LCD in the simulaƟon eliminates the need for complex setups, ensuring 
that even non-technical users can easily understand their power usage at a glance. 
 

c) Simulate the circuit using Proteus to ensure funcƟonality before hardware implementaƟon. 
 ObjecƟve: Use simulaƟon tools to validate the design and funcƟonality of the smart 

energy meter before building the hardware prototype. 
 How it’s achieved: 

o The Proteus simulaƟon models both the ACS712 current sensor and the voltage 
sensor. It displays power data on a virtual LCD. 

o This simulaƟon allows tesƟng of various scenarios, debugging of code, and ensures 
the accuracy of calculaƟons before moving to physical hardware. 

 Importance: SimulaƟon helps idenƟfy potenƟal issues early, reduces development Ɵme, 
minimizes hardware costs, and facilitates a smoother transiƟon to physical 
implementaƟon. 
 

d) Provide real-Ɵme data on energy usage to help users manage and opƟmize consumpƟon. 
 ObjecƟve: Enable users to make informed decisions about their energy usage by providing 

them with up-to-date informaƟon on power consumpƟon. 
 How it’s achieved: 

o In the simulaƟon, both voltage and current sensors contribute to the real-Ɵme data 
displayed on the LCD. In the pracƟcal project, current measurements are displayed 
on the serial monitor and LCD screen. 

o ConƟnuous monitoring helps users track and potenƟally reduce excessive energy 
consumpƟon. 
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 Importance: This feature promotes energy conservaƟon, cost savings, and increased 
awareness of consumpƟon paƩerns, supporƟng sustainable energy use. 
 

e) Future ObjecƟve: Incorporate remote data transmission for cloud-based monitoring 
(currently pending). 

 ObjecƟve: Prepare for future integraƟon of remote monitoring capabiliƟes, such as 
sending energy data to a cloud plaƞorm for advanced analyƟcs and management. 

 How it will be achieved: 
o Future iteraƟons could incorporate modules like ESP8266 or GSM with the Arduino 

to transmit data to a remote server. 
o Users would be able to access the data remotely via mobile or web plaƞorms for 

beƩer control and analysis. 
 Importance: Remote monitoring enables trend analysis, anomaly detecƟon, and the ability 

to manage energy use from anywhere, providing a modern IoT-enabled soluƟon. 
 
 
 

3.  Components -

 
 
 
 

Arduino UNO (ATmega328P) 

 

Analog Input Pins: 6 (DIP) or 8 (SMD) 

DC Current per I/O Pin: 40 mA 

Flash Memory: 32 KB 

SRAM: 2 KB 

EEPROM: 1 KB 

 

  

  

 
  volt and 5 volt. 

  
 

  
from an external power source, like AC mains power supply. 
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Why Use Arduino in the Smart Energy Meter Project? 

  

Arduino is chosen as the central processing unit for the smart energy meter project for several 
compelling reasons. Below are the key advantages and features that make Arduino ideal for this 
application: 

1. Ease of Use 

 User-Friendly Platform: Arduino boards are designed to be beginner-friendly, with an intuitive 
interface and easy-to-use IDE for programming. This makes it suitable for both novice and 
experienced developers. 

 Simple Programming: The Arduino language is based on C/C++, which is well-documented and 
easy to learn, allowing for quick prototyping and implementation. 

2. Versatility 

 Wide Range of Applications: Arduino is highly versatile and can be adapted to numerous 
projects, from simple data collection to complex IoT systems. 

 Compatibility with Sensors and Modules: It supports a wide range of sensors (e.g., ACS712 
current sensor) and modules (e.g., LCD, GSM), making it a flexible choice for smart energy 
monitoring. 

3. Open-Source Ecosystem 

 Access to Libraries: Arduino offers a vast library ecosystem that simplifies working with 
various components, such as sensors, displays, and communication modules. 

 Community Support: Arduino has a large and active community of developers who contribute 
tutorials, forums, and solutions to common issues. 

4. Cost-Effectiveness 

 Affordable Hardware: Arduino boards, such as the Arduino Uno, are inexpensive compared to 
other microcontrollers, making them accessible for small-scale projects. 

 Minimal Development Costs: The open-source software and availability of resources reduce the 
cost of development. 

5. Real-Time Data Processing 

 Analog and Digital Inputs: Arduino can read both analog and digital signals, enabling it to 
interface seamlessly with sensors like the ACS712. 

 Efficient Data Processing: It processes real-time sensor data to calculate current and power 
consumption, displaying the results on an LCD. 

6. Scalability 

 Expandable Functionality: Arduino projects can be easily expanded to include more advanced 
features, such as remote monitoring via GSM modules or IoT integration. 
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 Future Upgrades: The Arduino platform supports adding features like Wi-Fi connectivity or 
data storage, which are useful for future iterations of the smart energy meter. 

7. Low Power Consumption 

 Arduino boards are energy-efficient, consuming minimal power during operation. This makes 
them suitable for continuous monitoring in projects like energy meters. 

8. Educational Value 

 Learning Opportunity: Arduino serves as a learning tool, allowing developers to understand 
embedded systems, programming, and circuit design. 

 Practical Application: By using Arduino, the project bridges theoretical concepts with hands-on 
practical implementation. 

 

Why Not Use Other Microcontrollers?  

 While there are alternatives like Raspberry Pi, ESP32, or STM32, Arduino is preferred for this 
project because: 

o Simpler Setup: Arduino requires less setup compared to platforms like Raspberry Pi, 
which involves an operating system. 

o Low Complexity: For a project focused on basic current measurement and power 
calculation, Arduino provides all the necessary functionality without overcomplicating the 
design. 

o Cost Efficiency: Compared to advanced boards, Arduino is more affordable and 
sufficient for the project's requirements. 

LCD (16x2)  
 

A register select (RS) pin that controls where in the LCD's memory you're wriƟng data 
to. You can select either the data register, which holds what goes on the screen, or an 
instrucƟon register, which is where the LCD's controller looks for instrucƟons on what 
to do next. 

A Read/Write (R/W) pin that selects reading mode or wriƟng mode 

An Enable pin that enables wriƟng to the registers 

8 data pins (D0 -D7). The states of these pins (high or low) are the bits that you're wriƟng 
to a register when you write, or the values you're reading when you read.  
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I2C (Inter-Integrated Circuit)
 

I2C (Inter-Integrated Circuit) is a synchronous, mulƟ-master, mulƟ-slave communicaƟon 
protocol commonly used to connect low-speed peripherals to microcontrollers and 
processors. Developed by Philips Semiconductor (now NXP) in the 1980s, I2C has become 
a standard for inter-device communicaƟon due to its simplicity and efficiency. 

Key Features of I2C 

1. Two-Wire Interface: 
o SDA (Serial Data): Transfers data between devices. 
o SCL (Serial Clock): Synchronizes data transfer. 

2. Addressable Devices: 
o Each device on the I2C bus has a unique 7-bit or 10-bit address, allowing multiple devices 

to connect to the same bus. 
3. Bidirectional Communication: 

o Both master and slave devices can send and receive data, enabling full-duplex 
communication. 

4. Multi-Master Capability: 
o Multiple master devices can coexist on the same bus, although only one can control the 

bus at a time. 
5. Clock Speed: 

o Supports various speeds, such as standard mode (100 kbps), fast mode (400 kbps), and 
high-speed mode (up to 3.4 Mbps). 
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Acs712

 

 

ACS712ELCTR-05B-T can measure 5 to -5 Ampere current. Where 185mV change in Output 
voltage from iniƟal state represents 1-Ampere change in Input current.  

ACS712ELCTR-20A-T can measure 20 to -20 Ampere current. Where 100mV change in 
Output voltage from iniƟal state represents 1-Ampere change in Input current.  

ACS712ELCTR-30A-T can measure 30 to -30 Ampere current. Where 66mV change in 
Output voltage from iniƟal state represents 1-Ampere change in Input current.  

What is the Hall Effect? 

The Hall Effect occurs when a current-carrying conductor is placed in a magnetic field. Due to the 
interaction of the magnetic field with the moving charges in the conductor, a voltage is generated 
perpendicular to both the current and the magnetic field. This voltage is called the Hall Voltage, and it is 
directly proportional to the strength of the magnetic field and the current flowing through the conductor. 

 

How the ACS712 Utilizes the Hall Effect 

The ACS712 is a Hall-effect-based current sensor that can measure both AC (alternating current) and 
DC (direct current). Here's how it works: 

1. Internal Current Path: 
o The ACS712 has an internal conductive path where the measured current flows. 
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o As current flows through this path, it generates a magnetic field around it. 
2. Hall Effect Sensor: 

o Inside the ACS712, there is a Hall-effect sensor positioned near the internal conductive 
path. 

o This sensor detects the magnetic field generated by the current and converts it into a 
proportional Hall voltage. 

3. Signal Processing: 
o The Hall voltage is amplified and processed within the ACS712 to produce an output 

voltage that is linearly proportional to the input current. 
o This voltage can then be read by a microcontroller like the Arduino for further 

calculations. 

 

Application of the Hall Effect in the Smart Energy Meter Project 

In this project, the Hall Effect allows the ACS712 to measure AC current without the need for direct 
electrical contact, providing several advantages: 

1. Current Measurement: 
o The ACS712 detects the current flowing through a load by measuring the magnetic field 

generated by the current. 
o The Arduino reads the sensor's output voltage and translates it into the corresponding 

current value using a calibration factor. 
2. Safety: 

o The Hall Effect enables non-invasive current measurement. There is no direct electrical 
connection between the sensor and the high-current path, reducing the risk of electrical 
hazards. 

3. Accuracy: 
o The ACS712 provides precise readings of both AC and DC currents, making it versatile 

for various applications. 
o In this project, it is used specifically to measure AC current from household appliances. 

4. Power Calculation: 
o The Arduino uses the current readings from the ACS712 and assumes a known or fixed 

voltage (if not measured) to calculate power consumption using the formula: P=V×IP = V 
\times IP=V×I 

5. Real-Time Monitoring: 
o By continuously measuring current, the project provides real-time data on energy usage, 

displayed on the LCD. 

 

Advantages of the Hall Effect in the ACS712 for This Project 

1. Isolation: 
o The Hall Effect ensures electrical isolation between the current-carrying conductor and 

the sensing circuit, making it safe to measure high currents. 
2. AC and DC Compatibility: 

o The ACS712 can measure both AC and DC currents, but in this project, it is focused on 
AC current measurement. 
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3. Compact Design: 
o The ACS712 integrates the Hall sensor and the signal processing circuitry into a single 

compact module, simplifying the project’s hardware design. 
4. Ease of Integration: 

o The sensor outputs an analog voltage proportional to the current, which can be easily read 
by the Arduino's ADC (Analog-to-Digital Converter) pins. 

 

Limitations and Considerations 

While the Hall Effect and the ACS712 are effective, there are some considerations to keep in mind: 

 Accuracy: The ACS712's accuracy can be affected by external magnetic fields or noise, so 
shielding or careful placement is required. 

 Voltage Measurement: In this project, only current is measured. To measure power accurately, 
voltage must either be assumed constant or measured separately. 

 Temperature Drift: The sensor's performance may vary slightly with temperature changes, 
which could affect long-term stability. 

 

Proteus SimulaƟon 
 

The Proteus simulation played a critical role in the development of the smart energy 
meter, offering several advantages during the design phase. Below are the key purposes 
and benefits of using Proteus for this project: 

1. Circuit Validation 

The primary purpose of using Proteus for simulation was to validate the circuit design. It ensured that all 
components, including the Arduino Uno, ACS712 current sensor, and LCD, were correctly connected 
and functioned as intended. By simulating the circuit before building the physical prototype, potential 
design errors could be identified and corrected early in the development process. This step minimized the 
risk of hardware failure and ensured that the system would work efficiently once implemented 
physically. 

2. Behavioural Analysis 

Proteus allowed for the observation of the system's behaviour in real-time. This included monitoring how 
the ACS712 current sensor measured current and how the Arduino processed these measurements. It also 
enabled verification of how the results were displayed on the LCD screen. Through simulation, the 
system's responsiveness to changes in load and how accurately the readings were displayed were 
analyzed. This step ensured the functionality of the energy meter before physical assembly. 
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3. Cost-Effectiveness 

Simulating the smart energy meter circuit in Proteus provided a cost-effective method to identify and 
resolve any potential issues without the need for purchasing physical components. This approach 
prevented unnecessary expenditure on parts and reduced the risk of damaging hardware during testing. 
Additionally, the ability to simulate different scenarios and conditions (such as varying the load or sensor 
behaviour) allowed for troubleshooting without requiring expensive trial-and-error with actual 
components. 

4. Prototyping 

Proteus offered the opportunity to create a virtual prototype of the smart energy meter. This virtual 
prototype allowed for iterative improvements before committing to the physical build. Changes to the 
design could be easily implemented in the simulation, tested, and refined. This iterative approach 
ensured that the final physical implementation of the energy meter would be both reliable and efficient. 
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4.  Circuit Design and SimulaƟon -

 

For the smart energy meter project, I used Proteus for circuit simulation to ensure the system's 
functionality before moving to physical implementation. 

1. Voltage Measurement: 
o A step-down transformer is used to measure the voltage in the circuit. It steps down the 

AC voltage to a manageable level, which is then measured using the Arduino. 
2. Current Measurement: 

o The ACS712 current sensor is used to measure the AC current. This sensor is ideal for 
monitoring the current without direct contact with the high-voltage part of the circuit, 
providing accurate measurements for energy consumption. 

3. Display: 
o The measured voltage, current, and power consumption are displayed on a 16x2 LCD. 

This provides a simple, readable interface for users to view their real-time energy 
consumption data. 

4. Arduino UNO: 
o The Arduino UNO is used as the controller for processing the sensor data. It reads the 

data from both the voltage and current sensors and computes the power consumption. This 
data is then sent to the LCD for display. 

5. Proteus Simulation: 
o The simulation ensures the entire system works as expected by modelling the interaction 

between the components. It helps visualize how the data flows from the sensors to the 
Arduino and how the final output is presented on the LCD screen. The simulation also 
allows for testing and debugging before the physical setup. 

In the simulation, both voltage and current are displayed on the LCD, along with the calculated power (in 
watts). The ACS712 provides accurate real-time current measurements, while the step-down 
transformer helps simulate voltage readings. This allows for a comprehensive simulation of the energy 
meter. 

 



15 
 

 

Smart Energy Meter Circuit Diagram (Idle Mode) 

Smart Energy Meter Circuit Diagram (Run Mode) 
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 Need to convert AC current to low voltage 
 

In this project, we are working with AC mains voltage, which is typically 220V. These high voltage levels 
are dangerous and far exceed the operaƟng limits of the Arduino. Arduino boards are designed to 
operate at low voltages, typically between 5V and 12V, and cannot directly handle high-voltage AC 
signals. Therefore, it is crucial to step down the high AC voltage to a safe, low voltage before interfacing 
it with the Arduino. This is achieved through a voltage transformer and voltage divider circuits: 

The voltage transformer steps down the high-voltage AC signal to a much lower AC voltage. The 
stepped-down voltage is then further condiƟoned using resistors and capacitors to bring it within the 
safe operaƟng range of the Arduino’s analog input pins. 

Without this conversion, directly applying high voltage to the Arduino would result in severe damage to 
the microcontroller and could potenƟally cause safety hazards. AddiƟonally, Arduino’s analog inputs 
are designed to measure low-voltage signals (in the 0-5V range), so proper voltage conversion ensures 
that the system can safely read and process the voltage data for energy monitoring. 

By stepping down the voltage, we ensure: 

                 Safety for both the user and the components. 

                 Accurate measurement of the voltage and current for calculaƟng power consumpƟon. 

5.  Building the Physical Smart Energy Meter-

 
Challenges Encountered in Building the Physical Smart Energy Meter

 

1. Hardware Challenges: 
o Wiring and Connections: Issues with ensuring proper connections between the ACS712, 

Arduino, and LCD. Loose connections or incorrect wiring caused unreliable readings 
initially. 

o I2C Communication: Configuring the I2C LCD required debugging to ensure proper 
data transmission, especially addressing conflicts with other I2C devices on the same bus. 

o Sensor Placement: The ACS712 required careful placement to avoid interference from 
external magnetic fields, which affected measurement accuracy. 

2. Software Challenges: 
o Code Calibration: Calibrating the ACS712 output to map its analog voltage to accurate 

current values took significant effort due to variations in the sensor's sensitivity. 
o Display Issues: Ensuring the data was displayed correctly on the LCD and serial monitor 

required fine-tuning the code, especially formatting the output for readability. 
o Noise Filtering: Addressing noise in the sensor's output to ensure stable and accurate 

current readings was a challenge. 
3. Time Constraints: 

o Balancing debugging efforts and time available for the project's completion proved 
challenging. 

4. Learning Curve: 
o Understanding how the ACS712 sensor works and integrating the I2C protocol with the 

Arduino required research and trial-and-error. 
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5.1 Code 

 
 
#include <Wire.h> 
#include <LiquidCrystal_I2C.h> 
 
// Constants for AC current measurement 
const int CurrentAnalogInputPin = A1;   // Pin connected to ACS712 sensor 
const float mVperAmpValue = 185.0;      // SensiƟvity for ACS712-5A (adjust as needed) 
const float voltageAC = 230.0;          // Assume fixed voltage (230V AC) 
const int decimalPrecision = 2;         // Decimal precision for prinƟng 
 
// Variables for current measurement 
float offsetSampleRead = 0; 
float currentSampleRead = 0; 
float currentLastSample = 0; 
float currentSampleSum = 0; 
float currentSampleCount = 0; 
float currentMean; 
float RMSCurrentMean; 
float adjustRMSCurrentMean; 
float FinalRMSCurrent; 
float power;  // To store calculated power 
 
// Offset variables to remove DC bias from AC readings 
int OffsetRead = 0; 
float currentOffset1 = 0; 
float currentOffset2 = 0; 
float offsetSampleSum = 0; 
float offsetCurrentMean = 0; 
float offsetLastSample = 0; 
float offsetSampleCount = 0; 
 
// IniƟalize LCD with I2C address 0x27 
LiquidCrystal_I2C lcd(0x27, 16, 2); // 16x2 LCD 
 
void setup() { 
  Serial.begin(9600);  // Start serial communicaƟon 
  delay(1000);         // Allow sensor to stabilize 
 
  // IniƟalize the LCD 
  lcd.init(); 
  lcd.backlight(); 
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  lcd.setCursor(0, 0); 
  lcd.print("IniƟalizing..."); 
  delay(2000); // Display message for 2 seconds 
  lcd.clear(); 
} 
 
void loop() { 
  // AC Current Measurement 
  if (millis() >= currentLastSample + 1) { 
    // Remove DC bias (midpoint of 512 for 10-bit ADC) 
    offsetSampleRead = analogRead(CurrentAnalogInputPin) - 512; 
    offsetSampleSum += offsetSampleRead; 
 
    // Read current sample and add offset 
    currentSampleRead = analogRead(CurrentAnalogInputPin) - 512 + currentOffset1; 
    currentSampleSum += sq(currentSampleRead); 
    currentSampleCount++; 
 
    // Update last sample Ɵme 
    currentLastSample = millis(); 
  } 
 
  // Calculate RMS Current aŌer 1000 samples 
  if (currentSampleCount == 1000) { 
    offsetCurrentMean = offsetSampleSum / currentSampleCount; 
 
    // Calculate RMS (Root Mean Square) current 
    currentMean = currentSampleSum / currentSampleCount; 
    RMSCurrentMean = sqrt(currentMean); 
 
    // Adjust for any secondary offset if needed 
    adjustRMSCurrentMean = RMSCurrentMean + currentOffset2; 
 
    // Calculate final RMS current in amps 
    FinalRMSCurrent = (((adjustRMSCurrentMean / 1024) * 5000) / mVperAmpValue); 
 
    // Calculate apparent power (Power = Voltage * RMS Current) 
    power = voltageAC * FinalRMSCurrent; 
 
    // Print the RMS current and power to LCD 
    lcd.clear(); 
    lcd.setCursor(0, 0); 
    lcd.print("RMS Curr: "); 
    lcd.print(FinalRMSCurrent, decimalPrecision); 
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    lcd.print(" A"); 
 
    lcd.setCursor(0, 1); 
    lcd.print("Power: "); 
    lcd.print(power, decimalPrecision); 
    lcd.print(" W"); 
 
    // Print to Serial Monitor for debugging 
    Serial.print("Current RMS value: "); 
    Serial.print(FinalRMSCurrent, decimalPrecision); 
    Serial.print(" A, Power: "); 
    Serial.print(power, decimalPrecision); 
    Serial.println(" W"); 
 
    // Reset sums and counts 
    offsetSampleSum = 0; 
    currentSampleSum = 0; 
    currentSampleCount = 0; 
  } 
 
  // Offset AC Current CalculaƟon 
  if (OffsetRead == 1) { 
    currentOffset1 = 0; 
 
    if (millis() >= offsetLastSample + 1) { 
      offsetSampleCount++; 
      offsetLastSample = millis(); 
    } 
 
    if (offsetSampleCount == 1500) { 
      currentOffset1 = -offsetCurrentMean; 
      OffsetRead = 2; 
      offsetSampleCount = 0; 
    } 
  } 
 
  if (OffsetRead == 2) { 
    currentOffset2 = 0; 
 
    if (millis() >= offsetLastSample + 1) { 
      offsetSampleCount++; 
      offsetLastSample = millis(); 
    } 
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    if (offsetSampleCount == 2500) { 
      currentOffset2 = -RMSCurrentMean; 
      OffsetRead = 0; 
      offsetSampleCount = 0; 
    } 
  } 
} 
 
This code measures AC current using the ACS712 current sensor connected to an Arduino. It 
calculates the Root Mean Square (RMS) of the current, removes DC offsets, and computes 
apparent power based on a fixed AC voltage of 230V. The results are displayed on an LCD via I2C 
and printed to the Serial Monitor. 
 

Conceptual Flow 

 

1. Initialization: 
o Sets up the Arduino, Serial Monitor, and LCD. 
o Displays an initialization message on the LCD. 

2. Data Collection: 
o Reads analog values from the ACS712 sensor. 
o Removes the DC offset (midpoint value of 512 for 0A). 
o Squares and accumulates readings for RMS calculation. 

3. RMS Current Calculation: 
o After 1000 samples, computes the mean of squared values and calculates the RMS. 
o Converts the RMS value to actual current in amps. 

4. Power Calculation: 
o Multiplies the RMS current by the fixed AC voltage (230V) to calculate power. 

5. Output: 
o Displays the RMS current and power on the LCD and Serial Monitor. 

 
 
 

Key Concepts in the Code
 

1. Analog-to-Digital Conversion (ADC) 

The ACS712 sensor outputs an analog voltage proportional to the current flowing through it. The 
Arduino's ADC converts this analog signal into a digital value (0–1023 for a 10-bit ADC). This is used 
for computation in the code. 
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 How ADC works in Arduino: 
o The input voltage (0–5V for most Arduinos) is divided into 1024 steps:  

 

o This provides a digital representation of the sensor's analog output. 

 

2. AC Signal and DC Offset 

The ACS712 sensor’s output includes: 

 A DC Offset: At 0A, the sensor outputs a constant voltage (e.g., 2.5V for ACS712). This is the 
"midpoint." 

 An AC Component: This represents the current fluctuations. 

To focus on the AC signal (current), the DC offset is removed by subtracting the midpoint value (512 for 
a 10-bit ADC at 2.5V). 

 

3. Root Mean Square (RMS) Current Measurement 

AC current is not constant—it varies sinusoidally. To measure its effective value, the RMS (Root 
Mean Square) technique is used. RMS gives the equivalent value of a DC current that would produce 
the same heating effect. 

 RMS Formula:  

                                        

 Steps in the Code: 
1. Each current sample is squared and accumulated (currentSampleSum). 
2. The mean is calculated by dividing the sum by the number of samples. 
3. The square root of the mean gives the RMS value. 
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4. Apparent Power Calculation 

The code calculates the apparent power in watts (W). Apparent power is the product of RMS current 
and voltage: 

                                                

 Voltage (V): Assumed to be constant at 230V AC. 
 Current (I): Measured using the RMS technique. 

This calculation is useful for understanding the energy usage of connected appliances. 

 

5. Sensor Sensitivity (mV per Amp) 

The ACS712 outputs a voltage proportional to the current, based on its sensitivity. For example: 

 ACS712-5A: 185 mV per amp. 
 ACS712-20A: 100 mV per amp. 
 ACS712-30A: 66 mV per amp. 

In the code: 

                                        

 The sensor's output voltage is converted to current using the sensitivity value 
(mVperAmpValue). 

 

6. Sampling and Data Averaging 

The code samples the current signal 1000 times in a loop to ensure accuracy: 

 By taking multiple samples and averaging them, the effect of noise or transient fluctuations is 
minimized. 

Why 1000 samples? 

 AC signals typically have a frequency of 50–60 Hz. At 50 Hz, one cycle lasts 20 ms. Sampling 
for 1000 ms (1 second) ensures multiple full cycles are captured for an accurate RMS calculation. 
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7. Removing DC Bias (Offset Calibration) 

The DC offset in the ACS712 output needs correction. The code does this in two stages: 

1. Initial Offset Removal: 
o Subtracts the midpoint value (512) directly. 

2. Dynamic Adjustment: 
o Fine-tunes the offset based on calculated means. 

This ensures the AC signal is centered around zero for accurate RMS calculations. 

 

8. Timing and Sampling Rate 

The code uses millis() to ensure samples are taken at regular intervals (1 ms per sample). This avoids 
inconsistent sampling rates, which can distort RMS calculations. 

 

9. I2C Communication 

The code interfaces with the LCD using the I2C protocol: 

 SCL (Serial Clock Line): Synchronizes communication between devices. 
 SDA (Serial Data Line): Transmits data. 
 Address (0x27): Identifies the specific I2C device. 

I2C reduces the number of wires needed (compared to parallel communication) and simplifies 
connections. 

 

10. Power Display on LCD 

The code uses the LiquidCrystal_I2C library to print the RMS current and power on the LCD. 
This allows real-time monitoring of current and power without relying on a serial monitor. 
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Formulas Used 
 

  ADC to Voltage Conversion: 

                   

 Converts the ADC reading (0–1023) to a voltage in millivolts. 

 

  Current in Amps: 

                                        

 Converts the RMS voltage output of the sensor to RMS current. 

 

  Apparent Power: 

                                               

 

  Root Mean Square (RMS): 

                           

 

 Calculates the effective AC current. 
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ExplanaƟon of Variables
 

Constants 

cpp 
Copy code 
const int CurrentAnalogInputPin = A1; 
const float mVperAmpValue = 185.0; 
const float voltageAC = 230.0; 
const int decimalPrecision = 2; 

 CurrentAnalogInputPin: Defines the analog pin connected to the ACS712 sensor's output. 
 mVperAmpValue: The sensitivity of the ACS712 sensor model. For example: 

o ACS712-5A: 185 mV/A 
o ACS712-20A: 100 mV/A 
o ACS712-30A: 66 mV/A 

 voltageAC: Assumed constant voltage of 230V AC. 
 decimalPrecision: Number of decimal places to display in outputs. 

Offset Variables 

cpp 
Copy code 
float offsetSampleRead = 0; 
float offsetSampleSum = 0; 
float offsetCurrentMean = 0; 
float offsetLastSample = 0; 
float offsetSampleCount = 0; 

 offsetSampleRead: Raw sensor reading with DC offset removed. 
 offsetSampleSum: Sum of offset readings for calculating the average. 
 offsetCurrentMean: Average offset value used to remove the DC bias. 

Current Measurement Variables 

cpp 
Copy code 
float currentSampleRead = 0; 
float currentLastSample = 0; 
float currentSampleSum = 0; 
float currentSampleCount = 0; 
float currentMean; 
float RMSCurrentMean; 
float adjustRMSCurrentMean; 
float FinalRMSCurrent; 
float power; 

 currentSampleRead: Instantaneous current value after offset removal. 
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 currentSampleSum: Sum of squared current readings for RMS calculation. 
 currentMean: Mean of the squared current values. 
 RMSCurrentMean: Square root of currentMean, representing the RMS value. 
 FinalRMSCurrent: Converted RMS current in amperes. 
 power: Apparent power calculated using:  

 

6.Methodology 
 

 

1. System Design and Planning 

 Objective Identification: Clearly defined objectives, such as monitoring energy usage, ensuring 
real-time data display, and exploring potential for IoT integration. 

 Component Selection: 
o Arduino Uno as the microcontroller for its versatility, cost-effectiveness, and ease of 

integration. 
o ACS712 current sensor for precise and isolated current measurement using the Hall effect. 
o 16x2 LCD with I2C communication for simple real-time data display. 
o Step-down transformer and voltage divider for voltage measurement in simulations. 

 Software Tool Selection: Proteus for circuit simulation and Arduino IDE for software 
development. 

2. Circuit Simulation and Validation 

 Proteus Simulation: 
o The circuit was simulated to validate the functionality of the ACS712 sensor, Arduino 

Uno, and LCD display. 
o Simulation included modeling current and voltage measurements and displaying the 

calculated power on a virtual LCD. 
o Multiple scenarios were tested to debug potential errors and ensure stability. 

 Behavioral Testing: 
o Analyzed system behavior by simulating varying load conditions and verifying accurate 

current readings and power calculations. 

3. Hardware Implementation 

 Assembly: 
o Physical integration of Arduino, ACS712, and LCD on a breadboard. 
o Proper wiring ensured connections matched the simulation for consistent results. 
o Used pull-up resistors and capacitors where necessary for stable data flow. 

 Current Measurement: 
o ACS712 sensor was configured to measure AC current non-invasively, minimizing 

electrical hazards. 
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o Offset calibration was performed to account for the sensor's DC bias and ensure accurate 
RMS readings. 

 Display Integration: 
o Connected the LCD to the Arduino via I2C for efficient communication. 
o Programmed the LCD to display current, power consumption, and additional parameters 

in real time. 

4. Software Development 

 Programming: 
o Developed Arduino code for reading analog signals from the ACS712, calculating RMS 

current, and estimating power consumption based on a fixed voltage (230V AC). 
o Implemented offset correction and noise filtering techniques for stable readings. 
o Used the LiquidCrystal_I2C library to control the LCD display. 

 Testing: 
o Debugged software using the serial monitor to verify outputs. 
o Refined algorithms to improve accuracy and responsiveness of the system. 

5. Validation and Testing 

 Testing the Physical Model: 
o Compared outputs from the hardware setup with simulation results to validate 

consistency. 
o Ensured stable readings across varying current levels by testing under different load 

conditions. 
 Iterative Improvements: 

o Addressed issues like noise interference and I2C conflicts to refine system performance. 

 

7.Planned Enhancements and Future Developments 

  

1. IoT Integration 

 Remote Monitoring: 
o Integrate Wi-Fi modules like ESP8266 or GSM modules for wireless data transmission. 
o Users can view real-time energy data on mobile or web dashboards. 

 Cloud Analytics: 
o Store data on cloud platforms for long-term analysis. 
o Enable advanced features like trend visualization, anomaly detection, and predictive 

energy usage reports. 

2. Advanced Measurement Capabilities 

 Voltage Sensing: 
o Add voltage sensors to measure real-time voltage in conjunction with current for more 

accurate power calculations. 
 Power Factor Calculation: 
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o Extend the system to calculate power factor for monitoring reactive and apparent power. 
o Beneficial for industrial users to optimize energy efficiency. 

3. Smart Grid Compatibility 

 Adapt the system to work with smart grids by enabling two-way communication with utility 
companies. 

 Allow dynamic load adjustment and participation in demand-response programs to reduce overall 
grid stress. 

4. Energy Conservation Features 

 Threshold Alerts: 
o Set thresholds for energy consumption and trigger alerts via SMS or mobile notifications 

if exceeded. 
 Energy Budgeting: 

o Provide tools for users to set energy usage targets and monitor progress. 

5. Enhanced User Interface 

 Replace the 16x2 LCD with advanced touch displays or integrate with mobile applications for an 
interactive user experience. 

 Enable customization options for users to define what parameters are displayed. 

6. Automation and Control 

 Incorporate relays or smart plugs to allow the system to automatically turn off devices when idle 
or overconsuming energy. 

 Provide users with remote control capabilities through a mobile app. 

7. Cost and Efficiency Optimization 

 Component Upgrades: 
o Use more efficient sensors or microcontrollers, like ESP32, to reduce power consumption 

and cost. 
 Scalability: 

o Develop a modular version that can be expanded for multi-appliance monitoring or 
industrial use cases. 

8. Environmental Impact 

 Explore sustainable materials and manufacturing methods for physical devices. 
 Highlight the role of the system in reducing carbon footprints by promoting energy-saving 

practices. 
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9.  Conclusion - 

  

The development of the Smart Energy Meter marks a significant step towards efficient energy 
management and conservation. By leveraging an Arduino-based platform, the project successfully 
demonstrates the capability to monitor electrical parameters like current and calculate power 
consumption in real time. The implementation of the ACS712 sensor, along with an LCD display, 
ensures that energy usage data is readily accessible to users, empowering them to make informed 
decisions about their consumption patterns. 

This project not only addresses the immediate need for local energy monitoring but also lays the 
foundation for future enhancements, such as IoT integration for remote data transmission and advanced 
analytics. These features will enable greater scalability and applicability in both residential and industrial 
settings. 

The project aligns with global sustainability goals by promoting responsible energy usage and reducing 
wastage. While the current system achieves its primary objectives, it offers immense potential for growth 
with features like voltage measurement, smart grid compatibility, and predictive analytics. 

In conclusion, the Smart Energy Meter serves as a practical and scalable solution for modern energy 
challenges, demonstrating how technology can be harnessed to foster sustainable practices and create a 
more energy-efficient future. 

 

 


