Rocket journey

HRIDOY RANJAN KALITA
August 2021

Designing a model rocket is complicated in many different ways,but it is more challenging
to figure it out the mistakes.At every step one need to understand what is going on and
what may be the output.
"Experience is a hard teacher because she gives the test first ,the lesson
afterward" Verson Law.

From the above line we need to understand that there might be lots of information
,but still the main purpose of this whole project is to give you a basic introduction about
model rocket ,so that one can take help from here and can make his own rocket and
learn from errors and experience.

Components:
1.Arduino NANO or similar clone (should use an ATMEGA 328 chip or Uno for same
results)*
2.Inertial measurement unit - I used the MPU 6050
3.temperature and pressure sensor - I used the BMP 180,
4.microSD card reader with SPI bus microSD card with SD adapter
(5) 5bmm LEDs - I used a red, yellow, and blue one normally open pushbutton or tactile
switch
(6) 220 ohm resistors (or similar value) 5k ohm resistor (or similar value)
7.piezo buzzer or small speaker 2-6 additional header pins (optional) several lengths of
22 awg wire (or smaller)
8.9 volt battery connector or other power adapter

1. Materials:

through-hole PCB for prototyping (I used 50 mm x 70 mm perfboard) 3D printed
enclosure or plastic plate (optional - useful for protecting the flight computer during
flight), Balsa wood,PVC tube ,Rocket Motors, Ignitors,CardBoard,

Nose cone

The nose cone of the rocket has a shape that causes the air to flow smoothly around
the rocket. It could be conical in shape, but at subsonic speeds a rounded shape gives
lower aerodynamic drag. The nose cone is typically made from plastic, balsa wood,
hardwood, fiberglass, or styrofoam. It can be either hollow or solid.

Payload Section

Not all rockets have a payload section. The model shown has a clear plastic payload
section that allows any payload inside to be easily inspected visually. The payload section
can be used to carry a variety of payloads, such as electronic altimeters or cameras.

Transition Section Transition Section A transition section is used to connect body
tubes of different diameters. Not all rocket designs incorporate a transition. The tran-
sition could be used to either increase or decrease the rocket’s diameter at that point.
Transition sections are typically made from plastic, balsa wood, hardwood, fiberglass,
or paper. They may be either hollow or solid. In the model shown, the bottom of the
transition is where the rocket separates when the parachute is elected.

Shock Cord Mount

Shock Cord Mount The shock cord must be attached to the body of the rocket. There
are many ways to do this, but the most common used in model rockets is a folded-paper
mount glued to the inside of the body tube. It is also common to connect the shock cord
(or a separate anchor line) to the front of the motor mount in larger-diameter rockets.

Shock Cord Shock Cord The shock cord holds the parts of the rocket together
after they separate at ejection. The shock cord may be made of an elastic material to
help absorb the shock of the separating parts coming to a halt at the ends of the cord,
or it could be made from a non-elastic line (in which case it is normally longer). Typical
materials for shock cards are sewing elastic, rubber, nylon, and Kevlar.

Parachute

All model rockets require a recovery system to slow their descent and return them
safely to the ground. The most common type of recovery system is the parachute. The
parachute may be made from thin plastic or cloth. The parachute is expelled from the
body tube by the ejection charge of the rocket motor after a delay to allow the rocket to
reach apogee and be traveling at a relatively slow speed. Other recovery systems include
streamer, featherweight, glide, helicopter, body drag, and tumble.

Shroud lines

The shroud lines connect the parachute canopy to the rest of the rocket. The shroud
lines on most model rocket parachutes are made of strong thread, such as carpet thread,
but they may also be made of other material. The number of shroud lines varies, but is
typically 6 or 8 lines on a model rocket parachute. More shroud lines can cause a simple

flat parachute (a "parasheet") to form into a more nearly spherical shape, and therefore
be more efficient.

Recovery Wadding

Recovery wadding is flame-resistant material that protects the parachute (or other
recovery system components) from the hot blast of the motor ejection charge. The
ejection charge would melt a plastic parachute, so this protections is necessary. Recovery
wadding is typically chemically treated tissue paper or cellulose insulation. It is vital
that only flame-resistant materials be used as recovery wadding to prevent the ejected
wadding from causing fires.

Body Tube

The body tube (or tubes) are the airframe of the model rocket. Body tubes are
typically made from paper, fiberglass, or plastic, with the spiral-wound paper tube
being the most common. The rocket may have multiple body sections connected with
transition sections (if the tubes are different diameters) or nose blocks or couplers (if
the tubes are the same diameter). The body tube usually contains an engine mount to
hold the motor, and space for the recovery system.

Launch Lug

When a model rocket first begins to lift off, it is traveling too slowly for the fins to
provide aerodynamic guidance, so the rocket must be guided for the first few feet by a
launch rod or rail. The launch lug is what allows the model rocket to slide along the rod.
On a model rocket, the launch lug is typically a small diameter tube. Larger rockets
may use rail buttons on the side of the rocket to allow it to slide along a much stiffer
launch rail for initial guidance.

Fins

The fins of the rocket provide aerodynamic stability in flight so that the rocket will
fly straight (in the same way that the feathers of an arrow help it fly straight). The fins
are typically made from plastic, balsa wood, plywood, cardboard, or fiberglass. A rocket
three or four fins, but may have more. Some rockets don’t have any fins and may rely
upon a cone or other surfaces to stabilize the model in flight. On larger rockets, the fins
may be mounted through slots in the body tube for extra strength.

Engine Block

The engine block, or thrust ring, keeps the rocket motor from moving forward into
the rocket body during the thrusting phase of the flight. Engine blocks are typically
thick paper rings that are glued into the motor mount tube. If the rocket body has a
larger diameter than the motor, the motor mount tube that holds the rocket motor will
be centered within the body tube using cardboard or plywood centering rings.

Rocket Engine

The engine, or motor, of the model rocket is a commercially manufactured solid-
propellant rocket motor that is good for one flight. Model rocket motors are typically
made from thick wound paper tubes. The motor contains a ceramic nozzle, a solid pro-
pellant grain (chemically similar to black powder, but compressed into a solid piece),
a slow-burning delay element, and a loose-grained ejection charge that is retained by a
clay cap. Larger rockets may use motors with plastic casings and ammonium perchlo-
rate composite propellant. Some motors use metal casings that can be reloaded with

commercially manufactured APCP grains.

Igniter

Model rocket engines are always ignited electrically from a safe distance. The igniter
(which is sold with the motor) is typically made from wires that connect to a thin wire
coated in pyrogen. This pyrogen-coated tip is inserted into the rocket motor’s nozzle
and in contact with the solid propellant. When sufficient electrical current is passed
through the igniter, the thin wire heats, igniting the pyrogen, which then ignites the
motor propellant.

[

1. control system

One of the most important part is the part that control the rocket,specially the
rockets which is govern by the thrust vector system.But here we aren’t going to use
this as this type of rockets need very high level of precision and experience.Hence thrust
vector control rocket is out of this scope and a future project.

But here we are going to make the rocket a parachute deployment one, hence we
need a bit of control over the rockets.

1. .1 Arduino

Arduino is one of the most favourite microcontroller among people,specially Arduino
UNO and Nano. It is the brain of the rocket,allows different sensors to work properly.

1. .2 BMP180

BMP180 is a very cheap sensor ,used for measuring pressure , altitude,temperature
etc.In this project we will use it for the parachute deployment purpose. Aim is that this
sensor will calculate the height so that at a certain height we can deploy out parachute.
But before directly use it in our project it is always benifecial for us to check about its
performance.

The connections are shown bellow on figure 3
Now let us look at the following sensor data in figure 4:

For the above test the code used is given below:

13

17

19

21

23

Figure 1: Arduion Uno

#include <SFE\ BMP180.h>
H#include <Wire.h>

// You will need to create an SFEBMPI180 object , here called "pressure":
SFE\ BMP180 pressure;

#define ALTITUDE 1655.0 // Altitude of SparkFun’s HQ in Boulder, CO. in

meters

void setup ()

Serial .begin (9600) ;
Serial . println ("REBOOT") ;

// Initialize the sensor (it is important to get calibration values
stored on the device).

if (pressure.begin())
Serial.println ("BMP180 init success");

else\\
{

// Oops, something went wrong, this is usually a connection problem,\\
// see the comments at the top of this sketch for the proper
connections.\\

Serial.println ("BMP180 init fail\n\n");
while(1); // Pause forever.

B
»
.I.'
.
.

ONINGYY o

—
@}
w0
g
<]
[92]
L
—
=
[92]
n
L
—
ol
N
&
—
=
o0
o
o

27

29

31

39

41

43

47

49

51

B R B4 koA
EoE o E o oE

st Munite
ENGINEERS com

Figure 3: sensor connections

void loop ()

{

char status;
double T,P,p0,a;

// Loop here getting pressure readings every 10 seconds.

// If you want sea—level—compensated pressure, as used in weather
reports ,

// you will need to know the altitude at which your measurements are

taken .

// We're using a constant called ALTITUDE in this sketch:

Serial.
Serial.
Serial.
Serial.
Serial.
Serial.

println () ;

print ("provided altitude: ");
print (ALTITUDE,0) ;

print (" meters, ");

print (ALTITUDE*3.28084 ,0) ;
println (" feet");

// If you want to measure altitude, and not pressure, you will instead

need

to rovide a known baseline ressure. This is shown at the end of the
p p
sketch .

& com3

provided altitude: 16535 meters, 5430 feest
temperature: 31.71 deg C, 8%.07 d=g F

absolute pressure: 9%5%7.78 mb, 29%.47 inHg

relative (ssa—-level) pressure: 1218.62 mb, 35.9%% inHg
computed altitude: 1655 meters, 5430 feet

provided altitude: 16535 meters, 5430 feest
temperature: 31.66 deg C, B8.9%9% d=g F

absolute pressure: 9%57.83 mb, 29%.47 inHg

relative (ssa—-level) pressure: 1218.6% mb, 35.9%% inHg
computed altitude: 1655 meters, 5430 feet

provided altitude: 16535 meters, 5430 feest
temperature: 31.65 deg C, B8.9%96 d=g F

absolute pressure: 957.84 mb, 29%.47 inHg

relative (ssa—-level) pressure: 1218.70 mb, 35.95%% inHg
computed altitude: 1655 meters, 5430 feet

provided altitude: 16535 meters, 5430 feest
temperature: 31.63 deg C, B88.94 d=g F

absolute pressure: 9%57.86 mb, 29%.47 inHg

relative (ssa—-level) pressure: 1218.732 mb, 35.9%% inHg
computed altitude: 1655 meters, 5430 feet

provided altitude: 16535 meters, 5430 feest
temperature: 31.60 deg C, B8.88 d=g F

absolute pressure: 9%57.83 mb, 29%.47 inHg

relative (ssa—-level) pressure: 1218.6% mb, 35.9%% inHg
computed altitude: 1655 meters, 5430 feet

Autoscroll [] Show timestamp

H £ Type here to search O

Figure 4: different parameters that can be measured

o
A |
=1

61

69

77

81

83

89

91

93

97

99

// You must first get a temperature measurement to perform a pressure

reading .

// Start a temperature measurement:
// If request is successful, the number of ms to wait is returned.
// If request is unsuccessful, 0 is returned.

status = pressure.startTemperature();
if (status != 0)

{

// Wait for the measurement to complete:
delay (status);

// Retrieve the completed temperature measurement:
// Note that the measurement is stored in the variable T.
// Function returns 1 if successful, 0 if failure.

status = pressure.getTemperature(T);
if (status != 0)

{

// Print out the measurement:

Serial . print ("temperature: ");
Serial.print (T,2);\\
Serial.print (" deg C, ");\\
Serial.print ((9.0/5.0)*T+32.0,2);

Serial.println (" deg F");

// Start a pressure measurement:

// The parameter is the oversampling setting , from 0 to 3 (highest
res, longest wait).

// If request is successful , the number of ms to wait is returned.

// If request is unsuccessful, 0 is returned

status = pressure.startPressure(3);

if (status != 0)\\

{
// Wait for the measurement to complete:
delay (status);

// Retrieve the completed pressure measurement:

// Note that the measurement is stored in the variable P.

// Note also that the function requires the previous temperature
measurement (T).

// (If temperature is stable, you can do one temperature
measurement for a number of pressure measurements.)

// Function returns 1 if successful, 0 if failure.

status = pressure.getPressure (P,T);
if (status != 0)

{

// Print out the measurement:

10

101

105

109

111

113

117

119

121

123

125

127

129

131

133

135

137

139

141

143

Serial.print ("absolute pressure: ");

(
Serial . print (P,2);
Serial.print (" mb "y
Serial.print (P*0.0295333727,2);
Serial.println (" inHg");

// The pressure sensor returns abolute pressure, which varies
with altitude.

// To remove the effects of altitude, use the sealevel function
and your current altitude.

// This number is commonly used in weather reports.

// Parameters: P = absolute pressure in mb, ALTITUDE = current
altitude in m.

// Result: p0 = sea—level compensated pressure in mb

p0 = pressure.sealevel (P,ALTITUDE); // we’re at 1655 meters (
Boulder , CO)

Serial.print ("relative (sea—level) pressure: ");

Serial.print(p0,2);

Serial.print (" mb "y

Serial.print(p0*0.0295333727,2);

Serial.println (" inHg");

// On the other hand, if you want to determine your altitude
from the pressure reading,

// use the altitude function along with a baseline pressure (sea
—level or other).

// Parameters: P = absolute pressure in mb, p0 = baseline
pressure in mb.

// Result: a = altitude in m.

a = pressure.altitude (P,p0);
Serial.print ("computed altitude: ");
Serial.print(a,0);
Serial.print (" Ineter ")
Serial.print (a%3.28084,0);
Serial.println (" feet");
else
Serial . println ("error retrieving pressure measurement\n");\\
else
Serial.println ("error starting pressure measurement\n");
else
Serial.println ("error retrieving temperature measurement\n");
else
Serial.println ("error starting temperature measurement\n");

delay (5000); } // Pause for 5 seconds.

11

145

147

12

Figure 5: IMUconnection

1. .3 IMU.MPU6050

MPUG6050 is also a very useful but cheap sensor used in various applications. One
of it’s used is calculating roll,pitch ,yaw of a model rocket.It has 6 Degree of freedom.3
axis gyroscope and 3 axis accelarometer with the help of which we can measure the
orientations of a rocket.It is the most important part of a thrust vector control rocket.
Testing:

IMU module is not as easy as BMP180,specially while calculating pitch and roll etc.
Hence it is always recommended to test before final project.

All the circuit diagram are shown in figure 5.

Now we will calculate the roll and pitch using this sensor.

A simple graph of pitch variation with time is shown in figure?7.

From the reading of accelerometer and gyroscoscope we can calculate the roll and
pitch .Here the IMU will provide us the acceleration along x,y and z axis(a_x,a_y,a_z
respectively).

Now

p = arctan(

var?+a y?
vVay?+a_y? var? +a_y? a_z

At the end we are now going to look at the code of MPUG050 for calculating Pitch
angle

); ¢ = arctan(

;o (1)

// Include Wire Library for I2C

#include <Wire.h>

N

// Define I12C Address — change if reqiuired
const int i2¢ addr = 0x3F;

IS

13

[570) uur,,f.

ARDUINO

.
ARBR

-
am smmmam mRRRR
£E RERER AARAR L

[}
o
a
o
w
=
o
z
=
[=]
w
o

Al QUAD CAMERA

O

(b) board makes an angle

(a) board is horizontal to the ground

Figure 6: Caption

14

. SenalP ot
Filg Wiew Secondary Snapshots Commands Haelp

LR) comaduneuncfzMimey ¢ 0 Cp:n @

X T

|

!

i
g R A

| ¥ [| ¥
0 200 400
Part Ciata Format Pt Coommacs Resod TesiVew Log

Pait | e QOMI Ardung Ling [134 1:0041] A

favidl Raie | 115000

(1 b Bariby ™ B s 0§ Shep MR i Mo Mow Contral

(1 Odd Parity I 7) 2 Sop D) Haroware Conbio

() Even Pavity () &bt | Software Combrol
() S

P o roenere o sene P

15
Figure 7: pitch vs time plot

"]

10

12

16

18

20

22

26

28

30

//Variables for Gyroscope

int

Figure 8. Three Axis for Measuring Tilt

Figure 8: roll,pitch

gyro_x, gyro_y, gyro_z;
long gyro x cal, gyro_ y cal, gyro z cal;
boolean set gyro angles;

long acc_x, acc_y, acc_z,
float angle roll acc, angle pitch acc;

float angle pitch,

int

acc_total vector;

angle roll;

angle pitch buffer, angle roll buffer;
float angle pitch output,

angle roll output;

// Setup timers and temp variables
long loop timer;

int

temp ;

// Display counter

int

displaycount = 0

void setup () \{

//Start I12C
Wire . begin () ;

//Setup the registers of the MPU-6050
setup_mpu_ 6050 registers();

//Read the raw acc and gyro data from the MPU-6050 1000 times
for (int cal _int = 0; cal int < 1000 ; cal_ int ++)

{

read _mpu_ 6050 data() ;

//Add the gyro x offset to the gyro x cal variable

gyro_x_cal += gyro_ x;

16

42

46

48

56

60

62

64

66

68

70

80

82

84

86

88

}

//Add the gyro y offset to the gyro y cal variable
gyro_y_cal += gyro_y;

//Add the gyro z offset to the gyro z cal variable
gyro_z _cal += gyro_z;

//Delay 3us to have 250Hz for—loop

delay (3);

}

// Divide all results by 1000 to get average offset\\
gyro_x_cal /= 1000;
gyro_y_cal /= 1000;
gyro_z _cal /= 1000;

// Start Serial Monitor
Serial.begin(115200);

// Imit Timer
loop timer = micros();

void loop () \{

// Get data from MPU-6050
read _mpu 6050 data() ;

//Subtract the offset values from the raw gyro values
gyro_x —= gyro_x_cal;
gyro_y —= gyro_y_cal;
gyro_z — gyro_z_cal;

//Gyro angle calculations . Note 0.0000611 = 1 / (250Hz x 65.5)

//Calculate the traveled pitch angle and add this to the angle pitch
variable

angle pitch += gyro x * 0.0000611;

//Calculate the traveled roll angle and add this to the angle roll
variable'\

//0.000001066 = 0.0000611 * (3.142(PI) / 180degr) The Arduino sin
function is in radians

angle roll += gyro _y % 0.0000611;

//If the IMU has yawed transfer the roll angle to the pitch angle
angle pitch += angle roll x sin(gyro_z % 0.000001066) ;
//If the IMU has yawed transfer the pitch angle to the roll angle
angle roll — angle pitch % sin(gyro_z % 0.000001066) ;

//Accelerometer angle calculations

//Calculate the total accelerometer vector\\
acc_total vector = sqrt ((acc_xxacc_x)+(acc_yxacc_y)+(acc_zxacc_z));

17

o| //57.296 =1 / (3.142 / 180) The Arduino asin function is in radians
//Calculate the pitch angle
92| angle pitch acc = asin((float)acc_y/acc total vector)* 57.296;

//Calculate the roll angle \\
o] angle roll acc = asin((float)acc_x/acc_total vector)x —57.296;

96| //Accelerometer calibration value for pitch

angle pitch acc —= 0.0;\\
os| //Accelerometer calibration value for roll
angle roll acc — 0.0;

100
if (set _gyro_ angles)

102 {

4| //If the IMU has been running
//Correct the drift of the gyro pitch angle with the accelerometer pitch

angle

106 angle pitch = angle pitch * 0.9996 + angle pitch acc * 0.0004;
//Correct the drift of the gyro roll angle with the accelerometer roll
angle

108 angle roll = angle roll % 0.9996 + angle roll acc % 0.0004;

\}
110 else\{

//IMU has just started
112 //Set the gyro pitch angle equal to the accelerometer pitch angle
angle pitch = angle pitch acc;
114 //Set the gyro roll angle equal to the accelerometer roll angle
angle roll = angle roll acc;
116 //Set the IMU started flag
set gyro angles = true;
sl \}

120/ //To dampen the pitch and roll angles a complementary filter is used\\
//Take 90% of the output pitch value and add 10% of the raw pitch value

122 angle pitch output = angle pitch output * 0.9 + angle pitch * 0.1;\\
//Take 90% of the output roll value and add 10% of the raw roll value
124] angle roll output = angle roll output x 0.9 + angle roll * 0.1;\\
//Wait until the loop timer reaches 4000us (250Hz) before starting the
next loop

126
// Print to Serial Monitor

128) //Serial.print(" | Angle "y
Serial.println (angle pitch output);

130

32| /) Increment the display counter
displaycount = displaycount +1;

134

136| Serial . println (angle pitch output);
while (micros () — loop timer < 4000);

18

138

140

144

146

148

150

S
¥

156

160

162

164

166

168

170

176

180

182

184

186

188

//Reset the loop timer
loop timer = micros();

}

void setup mpu_ 6050 registers()\{
//Activate the MPU-6050

//Start communicating with the MPU-6050
Wire. beginTransmission (0x68) ;

//Send the requested starting register
Wire. write (0x6B); \

//Set the requested starting register
Wire. write (0x00) ;

//End the transmission

Wire. endTransmission () ;

//Configure the accelerometer (+/—8g)

//Start communicating with the MPU-6050
Wire. beginTransmission (0x68) ;

//Send the requested starting register
Wire. write (0x1C) ;

//Set the requested starting register
Wire. write (0x10) ;

//End the transmission

Wire. endTransmission () ;

//Configure the gyro (500dps full scale)

//Start communicating with the MPU-6050
Wire. beginTransmission (0x68) ;

//Send the requested starting register
Wire. write (0x1B) ;

//Set the requested starting register
Wire. write (0x08) ;

//End the transmission

Wire. endTransmission () ;

void read mpu_ 6050 data () {
//Read the raw gyro and accelerometer data

//Start communicating with the MPU-6050
Wire. beginTransmission (0x68) ;

//Send the requested starting register
Wire. write (0x3B) ;

//End the transmission

19

10| Wire.endTransmission () ;

//Request 14 bytes from the MPU-6050
12| Wire.requestFrom (0x68,14) ;

//Wait until all the bytes are received
194] while (Wire. available () < 14);

1ws| //Following statements left shift 8 bits, then bitwise OR.
//Turns two 8—bit values into one 16—bit value
08| acc_x = Wire.read () <<8|Wire.read (

()
acc_y = Wire.read () <<8|Wire.read () ;
2000 acc_z = Wire.read () <<8|Wire.read ()
temp = Wire.read () <<8/Wire.read () ;
202| gyro_x = Wire.read () <<8/Wire.read () ;
gyro_y = Wire.read () <<8/Wire.read () ;
204| gyro_z = Wire.read () <<8Wire.read () ;

)

1. .4 Servo

Unlike IMU and BMP servo motors are very easy to use. The connection is as shown
in figure 9.

In this project we will use the servo motor as a trigger for parachute deployment
system.This part will be explained in detail in the rest part of the project.Hence be sure
that there is no error in the servo.

Code of servo for testing is given below:

#include <Servo .h>

int ServoPin=8;

5| void setup ()

\{Serial .begin (9600) ;

7 Servo servo;

servo.attach (8);}

ol void main ()

{ for(int i=0;i<=180;i++)
1| {servo.write(i);

delay (100) ;

w

20

=)

o0

1C

o0

X M.
amm ARDUINO

Figure 9: Caption

1. .5 Testing the barometer and servo system

After complete testing of each electronics now it’s to check the BMP180 and servo all
together are woking properly or not. system is arranged as shown in fig 10.

The results of the testing is shown in figure 11,here if the height measured by BMP180
is more than 1 meter then servo motor will rotate by an angle 180.
code of the following test:

#include <SFE BMP180.h>

#include <Wire.h>

#include<Servo.h>

SFE BMP180 pressure;

double baseline; // baseline pressure
Servo servo;

void setup ()

Serial.begin(115200);
Serial.println ("REBOOT") ;

21

14

20

22

24

26

28

32

34

36

38

40

42

46

50

56

ot
00

60

62

64

30 {

}

S

ervo.attach (8);

if (pressure.begin())
Serial.println ("BMPI80 init success");

else

{

Serial.println ("BMPI80 init

while (1); // Pause forever.

}

baseline = getPressure () ;

void loop ()

i

double a,P;

P = getPressure();

9

fail (disconnected?)\n\n");

a = pressure.altitude (P, baseline);

Serial.print ("

relative altitude:

(
it (a >= 0.0) Serial.print(" ");
Serial.print(a,1);

Serial . println (

delay (1500) ;
f(a>=1.0)

servo.write (180);

meters");

DE

Serial.println ("servo angle is 180");

delay (1000) ;

}
else\\

Serial.println ("servo angle is 0");
delay (1500) ;

{

}

double getPressure ()

{

char status;
double T,P,p0,a;

status = pressure.startTemperature () ;

if (status != 0)

22

66 {

68 delay (status);
70
status = pressure.getTemperature(T);
72 if (status != 0)
{
74
status = pressure.startPressure(3);
76 if (status != 0)
{
78
delay (status);
80
82 status = pressure.getPressure (P,T);

if (status != 0)

84 {
86 }

return (P);

88 else Serial.println("error retrieving pressure measurement\n");
90 else Serial.println("error starting pressure measurement\n");
92 else Serial.println("error retrieving temperature measurement\n");

94 }
else Serial.println("error starting temperature measurement\n");
96| }

Once it is done control system is almost ready.
1. circuit diagram for the final system:

All the circuit diagram and connections of the sensors are shown in figures 12-13:

5 MECHANICAL DESIGN OF DEPLOYMENT
SYSTEM

23

E R R e R
AEET VYR
FEEE NN

<« i
L3 L‘-t.‘\—i..\.... -
* R

n kﬂkh*— ik-L._'..

4 Wit

v I

@O REDMINOTE 9 i:?.RO .:u. 11
CO Al'QUAD CAMERA W W

Figure 10: servo using BMP180

24

@ coms3

I

HEHOOT

BMP180 init success

relative altitude: -0.5 meters,
sarvo angle is O

relative altitude: 0.2 metsrs,
servo angle is 0O

relative altitude: 0.2 meters,
servo angle is 0

relative altitude: 0.2 meters,
servo angle is 0

relative altitude: 0.8 metesrs,
servo angle is O

relative altitude: 0.5 meters,

servo angle is 0

relative altitude: 0.8 mesters,
servo angle is O

relative altitude: 0.4 metsrs,
servo angle is 0

relative altitude: 0.9 metsrs,
servo angle is 0
relative altitude: maters,
servo angle is 180
relative altituds:
servo angle is 0O

relative altitude: etars,

servo angle is O
relative altitude: 0.4 maters,
servo angle is O
relative altitudes: -0.3 metesrs,
servo angle is O

[~ Autoscrol [] Show timestamp

H L Type here to search

Figure 11: REsults

25

EasyEDA(Standard) 6.4.20.6 - Projects Offline mode

GOEasyEDA s File Edt Place Format View
[fe!

B

B

Project

=

Design
Manager

Liprary

Les ?
LCcsC
Parts
Jare
-
JLCPCB

@

Support

D
Opened Projects B
Filter

4 3 New Project3
£ Sheet_1

4 S delete

4 (3 New Project1

» [JWHAT

4 Sfinall

4 (3final
4 3 drone_transmitter
« 3 flight_computer
T Sheet_1
4 (3 New Project
£ Sheet_1
4 {3 arduinouno
T Sheet_1
= PCB_arduinouno
» [(Jarduine
4 I bsic design
T Sheet_1

Start

l
Canv
Backgrc
Visible ¢
Grid Co
Grid Sty
Grid Siz
Snap
Snap Si
Alt Snay
Mouse-
Mouse-

Mouse-|

Mouse-|

Design Tools Fabricaton Advanced Setting Help Wiring Tools
= a
Q=0 aaB % LENEDESD
.)) We o i W
7 final1 (23 flight_computer (£J arduinouno 3 *New Project3 {F SMALL_SERVO T T At
| 0 | 100 | 200 | 400 500 | M 800 .
PP PN BRI | e SO PRI i BT VOO v Pl e b P e L e P b P e b . —
R Z
VARG
us3 > T
TICRO SU CARD ADAPTER ARDUINO y D
A oSt | MicrosD SO0
I L = | {0
%) ‘ -
SWALL_SERVO ?\}g/schﬁm}Osscl r GND [C =)
—] AR Du
AD = M1 @ r‘
I GND beakout pin
s ==t
_GND
—— 02
H ARDUINO_NANO WPUB0S0 al
. EMP180
ADof- i
XCLE- sC
SCL
GNDF—
c ved] —:l_
GNDggy
sw1
R1 PUSH BUTTON SCH ONLY WODSS
R2
1k
Sheet_1 +
‘ | i = TITLE:
T GNDS Clamme 1

£ Type here to search

Figure 12: all the connections of sensors

26

, 28°C AQI36 A~ O m Z Q)

After a brief testing of our electronics ,Now t is time to understand how and where
we can use this.

In the deployment of the parachute it is very very important that it never fails. There
are lots of method for the deployment of parachute,but the method I an going to use I
think is the most secure ,belivable as well as easy method...... You can go details to the
mechanical system of the deployment system that we are going to use in the pdf given
below.—-

27

%) pamchute_deployment_system X + (-] - a X

« = C & https://cad.onshape.com/documents/935ebal333bed6eb26c39396/w/3d56fITBMBcbE 14d04c5cf04//e/B874be26ef396de05176614c6 o 6

P oApps & Gmal B YouTube [E Reading list

%) onshape = parachute_deployment_system main * {~} ﬂ AppStore LearningCenter [CUETSN @ ~) Ranjan kaku ~
= & ~# @iset G & €2 17 M S W Y BEE DL E e Y RW 5 3 E Searchtools.

L _J Instances (14)
o) M) Assembly 2 K3
® Ongin
A Partl<2> @
& Part1<3>
> W Assembly 1 <1

%
/

»* S

) Part 1
LE]Parﬂc?x

2 & @

1) Part 1 <9>
] Part 1 <10>
&) Part 2<3>
o) Part 2 <1>
o] Part 1 <4>

o) Part1 <11>
~ Mate Features (10}

T +$+ [ﬁ servo_body m SErvocap Eﬂ servoblade E Assembly 1 f_'n base Eﬁ support d:] SCrew E Assembly 2 f_'m Sig Uﬂ spring [ﬂ stresser Eﬂ rod Eﬂ Baar

L Type here to search

@) parachute_depioyment_system X + [~] = o X

€ - C @ nhttpsy/cad.onshape.com/documents/935eba8333be96eb26c39396/w/3d56fI78fBcb8 14d04c5cf04/e/874be2 bef396de05176614c6 1 6

i Apps G Gmail @ YouTube [E Reading st
J onshape = parachute_deployment_system man # ¥ @B Apstore Leaming Center @~ M Rangan kaku ~
7= & A Binset G w 21" B K S bW N HEB S DB & 9 RMWES LB H] Seachtos wc

® |nstances (14)

o) W) Assembly 2 -~ = ‘\j‘
@ Ongin)
) Part 1 <2> E
& Part 1 <3>
> W) Assembly 1 <1>
) Part 1 <6>
7] Part 1 <7>
&) Part1<9>
) Part1 <10> U
) Part 2 <3>

.ﬂ@@

]

o) Part 2 <1>
] Part 1 <4
& Part1<11>
~ Mate Features {10}

™ 4+ ([[sevobody [f)servocap [f])servoblade Assemblyl (f)base = []suppot [screw Assembly2 [f)so [)spring = [)stresser = [Jrod = () Baar

H L Type here to search

% parachute_depioyment_system X %1 Named Positions x | & WhatsApp x | + ° - a X

« » & https://cad.onshape.com/documents/935ebaB333be96eb26c39396/w/3d56f3 TEfEchE 14d04c5cf0d/e/B874belbef396del5176614c6 o .

Apps G Gmail B YouTube Reading list
©) onshape = parachute_deployment_system van # ¥ 8B Amsore LeamingCenter JCETH @ - I Ranjan kaku ~
9= & A Winsert © wd %2 171 B %0 0 o W 5 B © G 28 2 B & % £ W -, 5 (@ B0 Searchtools arlc
e Y Futeroyname | . 1

® jnsiances (14)
¥o)) Part 2 <3>

) Part2<l>
<) Part 1 <4>
) Part1 <11+
~ Mate Features (11}

% Gearl

A A
'
“
i
T
¥

s & I
R 4+ I:D serva_body djurvm:ap UD servoblade Assembly 1 d] base m support m SCrew E Assembly 2 [f] s [i_] spring "f stressel d_] rod d] Baar

H £ Type here to search C Light rain

% parachute_deployment_system X &1 Named Positions x | ® WhatsApp x | + (-] - a X

« > C @ https://cad. onshape.com/documents/935ebaB333be96eb26c39396/w/3d56f9TEfEchE 14d04c5cf0d/e/E874belbef396de05176614c6 o .
¥ Apps G Gmal @ YouTube Reading list
@ onshope = parachute_deployment_system man # # @B Awpsore LeamingCenter JCET @ - () Ranjan kaku ~

= . @inset @ wg %o 171 & <0 dr o Sy B B E 82 B v R W . 5@ B Searchtools ac
§ - .
T 7 Fueroyname

Instances (14)

>
6 &) Part 2 <3>

) Part2<l>
&) Part 1 <4>
Q) Partl<ll>
~ Mate Features (11}

>

A L R A
T

% Gearl = ' _ & I
L + m servo_body d] servocap Em servoblade E Assembly 1 d__] SCTew Assembly 2 dj Sig d [ﬁ Baar

ﬂ £ Type here to search

EasyEDA(Standard) 6.4.20.6 - Projects Offline mode
GDEQsyEDA =10 File Advanced Setiing Help Login m

=]
Selected Objects @

s Start 3 finalt £F Mounting_Hole & *PCB_final1 3D View
P,Ec Canvas Attributes
Supply Flag
Units mm v
L e o
- Tt T ackgroun: #808080
Eflo 4D Ground VCC Size
Resisan Board Thiekn_. 1 §mm
@l LA el I < Layer Distance pmm
Library g
2_0603_USK_0603_EL Fid Colors
(=]
wv 2
@ .—u}\-,-. I . . g Board Golor White v
- -
sc | 3386P U. 3386P - H b Surface Fins... G
Lesc . 3306P_U._3086P_E : » gg Sy Gold v
Capacitor by : & : lé’-; 28 Layers
- » LL Y T
Sl i | : e ® - 3DModel Visible ¥
JLCFCB bed .
>_0603_US_0803_EL : - i TopSilklayer visibla v
- U
. . : : TopSciderta... visible
@ : . . ;
TopPasteMa
support 2n_SMD_an_SMD_A . . PN, [Maibla ¥
-
Inductor : TopLayer Visible v
B PR Substrate Visible v
0603_US._0603_EL il
Powar Supply BottomPaste Visibla v
SottemSolder_. Visible

B = =

CR1220-2DC005-T2C

BotomSikLayer Visibla v

Connector

-
R-M-2.54 R-F-2.54 £
= _ 0911
M P Type here to search o H €@ = m B 2 v WCAQM AT D RS o, B

Figure 13: The circuit board for the flight computer

In this system we will compress the spring and the servo motor will act like a trig-
ger.According to the command from BMP180 the servo motor will release the spring

and parachute which is situated at the front ,will be shoot out.
After completing the system we are almost done with control system of the rocket.

6 Mechanical Structure Of the rocket

1. Stability
How fine is your rocket is,how sensitive is your control system, all are meaningless
if your rocket isn’t stable.Hence stability is the most important part for all kinds of

rockets.
Simply said A rocket is stable if the centre of gravity is ahead of centre of

pressure’.

But what this term refers and how to calculate them?
Any body moving in a fluid experiences pressure forces over its surface. The concepts
of center of pressure, aerodynamics center and neutral point are useful in understanding
the effects of these forces. Let’s take an airfoil moving in air with subsonic flow attached

to the body.(figure 14)

35

Cho
X !.E “’".

ANGLE OF
ATTACK

RELATIVE WIND

PRESSURE

Figure 14: forces on a aeroplane wings

Center of Pressure The center of pressure is the point where the total sum of a pres-
sure field acts on a body. In aerospace, this is the point on the airfoil (or wing) where
the resultant vector (of lift and drag) acts.

How to calculate the center of mass and center of pressure
CENTER OF MASS:

Calculating center of mass is really easy.
For a general shaped object, there is a simple mechanical way to determine the center
of gravity:

If we just balance the object using a string or an edge, the point at which the object
is balanced is the center of gravity. (Just like balancing a pencil on your finger!)

CENTER OF PRESSURE Calculating center of pressure isn’t as easy as Cg.Although
there are various methods like wing tunnel to mathematics,but either they are too ex-
pansive,time consuming or really difficult to do. But the method I going yo explain is
really easy although not perfectly accurate.This method is known as cardboard cutting
method.

In this method you place your rocket on a flat cardboard and draw the boundary of
3D rocket on a 2D plane i.e projection . After this you cut out that part from the card
board.

Figure 15 shows the method.

36

WhatsApp x | @ Newsletter18 X) nose cone | Assembly 1 X @) Use x | @ www.grc.nasa.gov x | + [~] -

&« c & https://cad.onshape.com/documents/026bc3c298894adfdc3702e8/w/611116ocbe862974fa53cf26/e/9a48e5a52deaced70bbdc7a ¥

S Apps G Gmail B YouTube Re
@) onshape = nose cone Main g &~ E App Store Learning Center Share 2R) Ranj
=N Binset @ @ 2 @ &S S H N HOBG & th B e %R W S HD Searchtools. atlc

+5 A
’ Instances (7)

8 Assembly 1 ®
@ Origin Y Front
) Part1<1=

J] Part1 <2>
o Part1<3>
) Part 1 <4=
J] Part 1 <5>
) Part1 <6>
) Part1<7=

v Mate Features (5)

R R

T 4+ mnose [Assembly 1 @l Part Studio 1 fl) shoulder] body ol fin

H £ Type here to search d® 29°C Light rain

Figure 15: projection on a card board

37

Balance point = C.P.

Cardboard “cut-
out” of rocket

Locating the rocket's approximate
“center-of-pressure”

Figure 16: balancing point

At the final step,you need to balance the card board piece on your finger.The bal-
ancing point is the Center of pressure
If the center of pressure is ahead of center of gravity,it is unstable .Make
sure that center of pressure is behind the center of mass.If not then try put
some additional mass to the rocket such that center of gravity (C,)leadsCenterofpressure(C,)

I have already mentioned the different parts of rocket but in this section
I will mention how to tmprove their performance.
1. OpenRocket

For designing my rocket and check its performance I used the software
Open Rocket.

1. Nose Cone

For aerodynamics Nose cone shape is very very important.In figure 17
the drag coefficients of different nose cone is shown.

38

Dimensions
For this project I used a nose cone of length=8.48 cm,
base diameter=2.48 cm,
inner diameter=2.3,
shape parameter—=1
material=plastic
It is better to choose parabolic,Ogive or long Eliptical as they have lower
drag coefficients .Hence less energy loss .

1. Body

Body design of a rocket may be vary according to it’s purpose.For a model
rocket it is generally a hollow cylinder.

Dimensions

aft diameter=2 and wall thickness 2 mm.
material=Cardboard. I have used a 13 cm body tube and a transition section
whose—shape—=conical
length=38 cm
fore diameter=2.48cm

aft diameter=2 and wall thickness 2 mm.
material=Cardboard.

1. Fins

Fins is a very important part of a rocket.It is the reason why a rocket can fly verti-
cally.Not only stability fins can also create a significant difference in the performance of
a rocket.

There are different kinds of fins .F1G 18 .

Dimensions
IN this project I used elliptical shaped fins
number of fins=3
rotation =-38 deg;
Height=38 c¢m; root chord=6;
3.3 ecm away from the bottom of the body tube. material=Balsa wood;

1. inner tube

Inner tube is used for placing rocket motor.It’s size should be such that it is not too
big to be heavy load for the rocket or not to small such that it can not fit a motor.

39

Drag of Nose Cones

Nose Shape s"m Temp gg
« 39.28mph | 720°F | 4477g
« 39.28mph | 72.0°F | 4942¢
« 39.27mph | 72.0°F | 4.149g
« 39.26mph | 725°F [4561g
c 39.25mph | 720°F| 5248¢g
39.24mph | 720°F | 8659g
3026 mph | 720°F | 10480

&
Vented Cupped Cyinder 39.19mph | 725°F | 10.399 g

Figure 17: Different nose cone and drag coefficient

40

RECTANGULAR
Simple to make,
least aerodynamic

SWEPT

Simple to make,
slightly better
aerodynamics

TAPERED SWEPT
Moves Center of
Pressure back,
good design for
fast moving
rockets.

VMmUOY9P2>ITwn 2=m

2009 Tom Sarradet

CLIPPED DELTA
Good aerodynamic fin,
used on low-drag,
high-performance
rockets

TRAPEZOIDAL

Good aerodynamic fin
for payload rockets,
moves the Center of
Pressure forward.

ELLIPTICAL
Best aerodynamic fin,
difficult to construct.

Figure 18: different fins

41

Design Designing the Rocket — Dual Deploy

AvBay in Dual Deployment

with TWO Tubes

Mose
Cone

Upper Aitfrarne [Payload Bay

AvBay

Lower ! Fin
Airframe

Shear Pins —
2.56 Nylan
Pan Head

Serems

Main Chute

Altimeter
based
ejection of
Main Chute

i,
Drogue
Chute

hotor or Altimeter
based ejection of
Drogue Chute*

- Wake sure you blow
the 'chute outward...

* Mote: For altimeter based ejection of Drogue, drop a charge to bottom of Fin
Airfrarne 50 that blast is upward (Film can, Bagoie, Coast/ Aerocon Capsule...).

Dctober 30, 2008

— Page21 -

Copyright Astralis Rocketry@ 2006
Al Rights Resenved

Figure 19: How a parachute opens

Dimensions
outer diameter =2 cm
mner diameter=1.9 cm
length=6 cm
material=PVC

1. Centering Ring

Centering ring is used for holding the inner tube.

Dimensions
Outer diameter=1.9
thickness=2.2 cm

1. Parachute

Parachute is also a very important part. It is the reason why a rocket lands safely.
It reduces the velocity of the free falling rocket.
Depending on the number of parachute the rocket travels a distance along the horizon

or ground level.

Generally a double parachute system is prefered over a single parachute since it reduce
the rocket horizontal travel distance.However it increases the complexity of the deploy-
ment system and mass,hence higher risk and lower vertical travel distance of the rocket. A

comparison in(fig 20)

Rocket Motor User should select a motor according his purpose.lt is always rec-

ommended to use high quality factory made rocket motor.
for this project I used a D21 single use rocket engine.

42

10K

Distance Drifted (ft)

Descent trajectories of rockets containing
dual and single deployment systems.

Figure 20: graph of how effective is double parachute system

43

*Rocket (OpenRocket_1.ork)

= a X
File Edit Teols Help
Rocket desion Motors & Configuration Flight simulations
Bt Add new component
[=] Sustainer Move up Body components and fin sets ol
<) Nose cone
EHC__] Body tibe Mave dowr <7] J:I - 7Y 1 P
- /] Trapezoidal fin set — by e, -
Lo Launch lug s core Bacy tute Transiion Tregezsids s Teeti — T
i~ 8 Inner Tube ==
1 Centering ring Edit
&5 Parachute
N4 Shock cord . 63
@ Unspecified Sl | ¥ ‘f“
v Lt Congse
Delete
Mass objecis ¥
View Type: | IDFinished B | [Ftos7= ¥ Fight configuration: | [D21-4]
0% Rocket Stabiity 3 48 cal
ml Length 26.5 cm, max. diameter 2 48 cm & G117 em
Mass with motors 252 g ® CP203cm

at =030

Apogee: 21m
Max_ velocity: 68.6 mis (Mach 0.20)
Mayx_acceleration 113 mis®

Click 1o salect Shifteclick to select other Double-click 1o edit Clickedrag to move

H P Type here to search =1} ! ™ & 30°C AQIE A B g

Figure 21: First design

1. Analysis

NOW its time to analysis the rocket and how can we improve them.
I have created two models of rockets having exactly same mass but some difference in

structure.How ever I kept the engine same so that I can check which is more aerody-
namics.

The design that I created earlier is in figure 21.

Clearly from fig 23 where I made a external aerodynamic simulation of the rocket I
have seen the rocket structure can be improved specially by changing body and fins.

1. improvement of The rocket design
Fig 24-26 is the modified design of my rocket.As a lots of turbulance and pressure

variation was found in the previous model ;hence I add a Boat Tail.Moreover I changed
the fins shaped to elliptical.

44

e - 0
A ANE SH N sty apwrs WA * MY

oc 7 el bl

e WAk LB Acta

Dasbbonst P Prgjects Farum Walp v hiadlly

© e

® Fremre o}

@ i [ISpe—
@ wia
P pr—
@ risveris GEOsE TaY PoanaTIviS

(R
[YSppor
-
Tetraeari .
@ L ewwert s

. etrare

@ Cybader 1
Peing Lo
P ity

T

QR

Setting

@) Comrete R

B £ Type tese to seanch . WT Renshowers ~ O W & 06 o0 '_:.'n ‘

Woawirrcmmeres w ®e - o »

k [8 sevnnsiv oo acrhtrerety pad s Nl 50T 581 00 T Vv - wper st MU BT 7D Gald Soddd 800 bl T ARt b LWL mrvecrSUAME SHNCA sy ateg LA e - | o » .

'nuen Datboard Puic Propects Feram Wl » hhadts

GEORE T Sma TIVEN

@) Comwmit . 1

B £ Type tuse to wancn 0o ® . » a . ¢ L. T Rain showers AQ.".MM‘

Figure 22: Mesh of the earlier rocket

45

| mcan |irricas oo % (] Temparstus fukd tvargeg - 5 % | [Chiius Shock Damaesi Airind - % | 4 e - o8

+ C @ Mips//wemsmscalecom workbenchTpids 26E5 972504 1 TOI0 T Therusdoelbl 12 H1cB-Sed5 Bc1d Scld6a | daF5 1o = 35557 bId3 4550 Blee 23002103 BAC-SOLUT.. Q & i

dpps G Gead @D Tk [sensing s
lnchn < ’ Dushboard Publc Promcts Porum Feip ~ heies i-
© vl 3
® Finers . BB N — wo/es B £ T ®
Vel &
b adarced concepts * Ju Parta Color

@ Sevwation cortral
¢ Bamat comtrd
© rareo

l 2 Type here 1o search

| e | Srvcate . Fud vy - 0 | ([Ctiun Shock Damed iz - % | 4 e - &
= QA hips//wensmscalecom workbenchTpide 2685972504 1 THIOT 1 T8y~ doalbd 12 9108 Lol -2c1d 5ed26a 10a5 Mo 30505873 -bid) 4350 Dloe a3IO2100IGAC-SOLUT.. @ o i
A & Gvr D WTibe [tessng
!uu-n < F Dasbbcard PublcPromcts Porum teip v e ‘.‘T“
-
© vy
Finers . . 2 @ - — / [r
® wae e ¢ 89 LU wowes B £ © &
¢ Adiarcad croepts * Jo Porta Cob []
v
@ Sewuton contyol A
< 1 Cutting Pane 1 .. ® Fisavegen
* Bmest cosprsl
@ taseo i r— —
&, en
[. - Orertation X ¥ 1 @2
@ Locsl serertne P -
© Rapos et
* Gesewiryoresive = » Westen
Washiog g ey —
R \
——— = [L]
- ‘..q Shome reesh
* Setting P]
* Comeer gorce piots > a~
— c=n s e
]
Pressare © L] :
_— Activate Windows
S P R RN as we) Go o Setmags oo actndy Windewa, -

Figure 23: Caption

46

W o | Srvicaie Worksench N D Wehig K Fociet wrvaletice | Srdoale W N + (-]
B+ C @ mipssiwew smscale.com workbenchy Tpid« SEISB02897 20074 TISSA My « D5 1 7 201 4030 bETE ETHOMS 10 S0l efied0cT - 3175 450c -bide- Coa | aMEBESEMCT - SOLUT G

Modpe G Grad @D OuTite

' Rocket iimulation <

* dadvanoed (g
@ brmeatan cortra

* Dmmgt comersi

@ tamerc:

Fcorngressbie 1 Bunl

o —
Whedh
by

= £ type here 10 search

.nlm“ i D Wi K foctermuimce | Sedcale W N o (-]

B Q@ mips/iwew smscale.com acribencTpids SEISB0239 7200 T4 TIS3Armu « D55 1 7 201 4030 bATE 6TTOMS 100k« efBeddcd 1175 A btde cos ! aMABESEA « SOLUT €

B oapm G Gvad @D otitn

lluhlnhuhﬂm < ’ Cuskboard Puble Promsts Porum Fai
e ———————————

¢ dvarced Conepts

® - WOl OE W NP N e—

* Rmmat comtrol

Figure 24: improved rocket

47

. rewn | Lrricse Woresesoh

M Wi

F C 8 ips//wem smscabe.com fwonbench/Tp v 40 4 1 LAlGeI NI s MISHN ey "
0o G o @ otike o
l Bocket ibmulation Casterars £ = Farur ey ras =3
L
Meah J
Q inty condtor
Sourdar, core ors M by Thaa
R T r— G OB Tiew PRIHTIVES
=t
O Fresmre e h
0 vy
° o .'.: .. el 3
S aruwd vt . hprats
9 Srmsa . o —

Ao F b Teras ey Ly

R |

o memre e

koh stk

®=

-,
! £ Type here 1o seanch

- rwn | brricse Worasench

oD Weenigs

5 C 8 mips)/wemsmscale.com 4 £ a 484 Y TIPS LS M " eateg . A o
B oAps G St @D Tk] Fee
' Rocket sbmulation Carttoars - =ts Poren S e
"
L
Meah 7
@ it conditor
Boute e e P L e

Autowried STt
[B t .

e R T

P tases rer g

Atemusd wTirgn

§ vt g

st o
Job st
-

©

u £ Type hee 10 seanch

tarnie
e
P e—

G O T PRy TIVES

Figure 25: mesh of the modified rocket

48

N

=
o

12

16

5

"Rocket
File Edit Teols Help

Rocket desion Motors & Configuration Flight simulations

0° Rocket
mml Length 29.5 cm, max. diameter 2.5 cm
Mass with motors 250 g

Apogee: 25m
M. velocity: B3 mis (Mach 0.20)
Mayx_acceleration 114 mis®

Click 1o salect Shifteclick to select other Double-click 1o edit Clickedrag to move

H L Type here to search

Bt Add new component 5
=1 Sustainer Move up
e Inner component
=] Body tube Move down B— _ N P e
L & Parachute o) (W B @ S
i e
M4 Shodk cord " i
e Conser B 5ok
=] Transition =
EHC_] Body tube : :
= & Inner Tube Mass cijects
! =~ ZJ¢ Centering ring 5 5
Lo M\ Eliotical fin set ozl @ q] g @
Lo @@ Unspecfied =
—_ a Srk cove o
T Transition Delete
v
View Type: |30 Finished i{ Fit (80.2% i\ Stage 1 Fiight configuration: | [D21-4] -

Stability:1.41 cal
*CG14 em
® CPA76cm

at b0 30

Figure 26: final rocket

After completing all the mechanical models,body ,adjusting different parts of the
rocket and completing all the connections in the PCB we now about to come to the end

of the project.

Just one thing left,i.e to upload the final code for the flight computer

For the flight computer the arduino code is given below

H#include <SD.h>
#include <Wire.h>
#include <SFE BMP180.h>
#include <Servo .h>
#include "I2Cdev.h"

#include "Wire.h"
Hendif

#define INTERRUPT PIN 2 //I2C
Arduino Uno & most boards
#define BUZZER PIN 3 //set
#define BLUE LED PIN 8 //set
#define YELLOW LED PIN 9 //set
#define RED LED PIN 10 //set
#define BUTTON PIN 7 //set
#define chipSelect 4 //set

CS pin)

s|#include "MPUG6050 6Axis MotionApps20.h"
#if 12CDEV_IMPLEMENTATION = IR2CDEV_ARDUINO WIRE

Interrupt Pin for MPU6050, use pin 2 on

buzzer pin

blue LED pin

yellow LED pin

red LED pin

button pin

chip select pin for MicroSD Card Adapter (

49

18

22

24

26

28

30

36

40

42

44

46

48

60

SFE BMP180 pressure;
Servo servo;
int Check downs = 0;

double baseline;

//declare general use variables

int buttonState = 0;

int MODE = 0; //initialize mode to zero

int t = 0; //create timestamp value

int dataRate = 10; //set specified sampling rate (data points per second)
(somewhere between 10—200 is ideal)

//declare MPU control/status vars
bool blinkState = false;
bool dmpReady = false; // set true if DMP init was successful

uint8 t mpulntStatus; // holds actual interrupt status byte from MPU

uint8 t devStatus; // return status after each device operation (0 =
success , !0 = error)

uintl6 _t packetSize; // expected DMP packet size (default is 42 bytes)

uintl6 _t fifoCount; // count of all bytes currently in FIFO

uint8 t fifoBuffer [64]; // FIFO storage buffer

//declare orientation/motion vars

Quaternion q; /) w, x, vy, 7] quaternion container

VectorIntl6 aa; /)%, vy, z] accel sensor measurements

VectorIntl6 aaReal; /o Ix, y, z] gravity —free accel sensor
measurements

VectorIntl6 aaWorld; /] Ix, v, z] world—frame accel sensor
measurements

VectorFloat gravity; /)%, v, 7] gravity vector

float euler [3]; // [psi, theta, phi] Euler angle container

float ypr[3]; // |yaw, pitch, roll] yaw/pitch/roll container

and gravity vector

//create objects
File file;

SFE BMP180 BMP;
MPU6050 mpu;

//Interrupt Detection Routine

volatile bool mpulnterrupt = false; // indicates whether MPU interrupt
pin has gone high

void dmpDataReady () {
mpulnterrupt = true;

}

void setup () {

//—— Serial Debugging ——
Serial.begin (9600) ;
//——— Establish Pin Modes and turn off all LEDs ——

20

64

66

68

76

78

80

84

86

88

90

92

94

96

98

100

102

104

106

108

110

pinMode (BUZZER_PIN, OUTPUT) ;
pinMode (BLUE LED PIN, OUTPUT) ;
pinMode (YELLOW_LED PIN, OUTPUT) ;
pinMode (RED_LED PIN, OUTPUT) ;
pinMode (chipSelect , OUTPUT) ;
pinMode (BUTTON_PIN, INPUT) ;
pinMode (INTERRUPT PIN, INPUT);
digitalWrite (YELLOW LED PIN, LOW) ;
digitalWrite (RED_LED PIN, LOW);
digitalWrite (BLUE_LED PIN, LOW);
tone (BUZZER_PIN, 500, 250);
//initialize SD Card
if (ISD.begin(chipSelect)){

//Serial debugging

Serial.println ("Could not initialize SD card");
}
//clear SD data
if (SD.exists (" file.txt")){

if (SD.remove("file .txt") = true){

Serial.println ("removed data");
}

}

//initialize BMP sensor
if (BMP. begin ()){
Serial.println ("BMP init success");
}
//initialize IMU and I2C clock
#if I2CDEV_IMPLEMENTATION — I2CDEV_ARDUINO_ WIRE
Wire . begin () ;
Wire. setClock (400000) ;
#elif 12CDEV_IMPLEMENTATION [2CDEV_BUILTIN FASTWIRE
Fastwire :: setup (400, true);

#Hendif

mpu. initialize (); //start MPU

Serial.println (F("Testing device connections...")); //debugging serial
statement

Serial.println (mpu. testConnection () ? F("MPUG050 connection successful™)
: F("MPU6050 connection failed")); //debugging serial statement
devStatus = mpu.dmplInitialize () ;
// supply your own gyro offsets here, scaled for min sensitivity
mpu. set XGyroOffset (0) ;
mpu. setY GyroOffset (0) ;
mpu. setZGyroOffset (0) ;
mpu. setZAccelOffset (1688); // 1688 factory default for my test chip
if (devStatus =— 0) {
// turn on the DMP, now that it ’s ready
Serial.println (F("Enabling DMP..."));
mpu. set DMPEnabled (true) ;
// enable Arduino interrupt detection
Serial . print (F("Enabling interrupt detection (Arduino external
interrupt "));

Serial.print (digitalPinToInterrupt (INTERRUPT PIN));

51

")

112 Serial.println (F('
(digitalPinToInterrupt (INTERRUPT PIN), dmpDataReady,

attachInterrupt
RISING) ;
114 mpulntStatus = mpu. getIntStatus () ;

// set our DMP Ready flag so the main loop () function knows it ’s
okay to wuse it

116 Serial . println (F("DMP ready! Waiting for first interrupt..."));
dmpReady = true;
118 // get expected DMP packet size for later comparison

packetSize = mpu.dmpGetFIFOPacketSize () ;
1200 } else {

122 Serial . print (F("DMP Initialization failed (code "));
Serial.print (devStatus);
124 Serial.println(F(")"));

}

126 servo.attach (9);

//set mode

128 MODE = 1; //set to PAD IDLE mode — initialize sensors and SD card
//MODE = 2; //set to FLIGHT mode — log data

130 //MODE = 3; //set to RECOVERY mode — close file

}

void loop () {

132

134 servo.write (90);
delay (100) ;

136 // put your main code here, to run repeatedly:
if (MODE — 1){ //PAD IDLE MODE

138 digitalWrite (RED_LED PIN, HIGH) ;

file = SD.open("file.txt", FILE WRITE); //Open SD card file
140 if(file) {

Serial.println ("t ,T,P,ax,ay,az,rx,ry,rz"); //print first line with
data labels

142 file .println ("t ,T,P,ax,ay,az,rx,ry,rz");
MODE = 2;
144 }
else{
146 Serial.println ("Error opening file");

delay (5000); //just chill for 5 seconds before trying again
148 }

}

150 if MODE =— 2){ //ACTIVE FLIGHT mode
digitalWrite (YELLOW_LED PIN, HIGH) ;

152 digitalWrite (RED_LED PIN, LOW) ;
digitalWrite (BLUE_LED PIN, LOW) ;

154 //print timestamp and comma to separate data
Serial.print (t);

156 Serial.print (",");
file.print (t);

158 file.print (" ,");

160 char status;

52

162

164

166

168

176

178

180

182

184

186

188

190

192

194

196

198

200

202

204

206

208

210

212

double a,P al, a2 P2, Difference;

P = getPressure();

al = pressure.altitude (P, baseline);
delay (3000) ;

P2 = getPressure () ;

a2 = pressure.altitude (P2, baseline) ;

Difference = a2 — al;

if (abs(Difference) > 1) {
if (Difference < 0) Check_downs =+ 1;
if (Difference > 0) Check downs = 0;

}

Serial.print(”start ;‘u);
Serial.print (al);
Serial.print (" meter >");
Serial . println (a2);

Serial.print ("Difference: ");
Serial.print (al — a2);
Serial.println ("meters");
Serial.print ("Check downs : ");
Serial.print (Check downs);
Serial.println ();

if (Check downs — 3) {
servo.write (180) ;
digitalWrite (RED_LED PIN ITOW);
digitalWrite (BLUE_LED PIN,HIGH) ;

}

else

{ digitalWrite (RED LED PIN HIGH);
digitalWrite (BLUE_LED PIN,LOW) ;

}

delay (1000) ;

file.print (",");
//get IMU data
if (!dmpReady) return;
while (!'mpulnterrupt && fifoCount < packetSize){
if (mpulnterrupt && fifoCount < packetSize){
fifoCount = mpu.getFIFOCount () ;
}

}

mpulnterrupt = false;

23

214

216

218

220

222

226

228

230

232

234

236

238

240

244

246

248

250

256

260

262

mpulntStatus = mpu. getIntStatus () ;
fifoCount = mpu. getFIFOCount () ;

if ((mpulntStatus & BV(MPU6050 INTERRUPT FIFO OFLOW_ BIT))

~=1024){
mpu. resetFIFO () ;
fifoCount = mpu.getFIFOCount () ;
Serial.println ("FIFO Overflow!");

}

else if (mpulntStatus & BV(MPU6050 INTERRUPT DMP INT BIT)){
while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount () ;

mpu. get FIFOBytes (fifoBuffer , packetSize);

fifoCount —= packetSize;
//get real—world acceleration

mpu. dmpGetQuaternion(&q, fifoBuffer);

mpu. dmpGetAccel(&aa, fifoBuffer);
mpu. dmpGetGravity (&gravity , &q);

mpu. dmpGetLinearAccel (&aaReal , &aa, &gravity);

//print real—world acceleration
Serial.print (aaReal.x);
file.print (aaReal.x);
Serial .print (",");
file.print (",");
Serial.print (aaReal.y);
file.print (aaReal.y);
Serial.print (",");
file.print (",");
Serial.print (aaReal.z);
file.print (aaReal.z);
Serial.print (",");

file .print (",");

//get Euler angles

mpu. dmpGetQuaternion(&q, fifoBuffer);

mpu. dmpGetEuler (euler , &q);
//print Euler angles
Serial.print (euler [0]*x180/M _PI);
file .print (euler [0]*180/M _PI);
Serial .print (",");
file.print (",");
Serial.print(euler[1]*180/M PI);
file.print (euler|1]*180/M_PI);
Serial.print (",");
file.print (",");
Serial.print (euler [2]«180/M _PI);
file.print (euler[2]*x180/M_PI);
}
//end data entry line
Serial.println(); //ends line
file.println(); //ends line
//check for mode switch
buttonState = digitalRead (BUTTON PIN);
if (buttonState — LOW){
MODE — 3;

o4

fifoCount

264

266

268

270

274

276

278

280

282

284

286

288

290

294

296

298

300

302

304

306

308

310

312

tone (BUZZER_PIN, 1000, 250);
delay (100) ;

}
if (MODE = 3){ //RECOVERY MODE

file.close();

digitalWrite (YELLOW LED PIN, LOW) ;
digitalWrite (RED_LED PIN, LOW) ;
digitalWrite (BLUE_LED PIN, HIGH) ;

delay (1000) ;

}

t =1t + 1; //increment t value

delay (1000/dataRate) ; //pause so that data output corresponds to data
rate

if(t > 32765){ //prevents issues related to integers rolling
over at 32767
b = g

}
}
double getPressure ()

{

char status;
double T,P,p0,a;

status = pressure.startTemperature();
if (status != 0)

{

// Wait for the measurement to complete:

delay (status);

status = pressure.getTemperature(T);
if (status != 0)

{

status = pressure.startPressure (3);

if (status != 0)

{
// Wait for the measurement to complete:
delay (status);

status = pressure.getPressure (P,T);
if (status != 0)

{
}

else Serial.println("error retrieving pressure measurement\n");

return (P);

95

314

316

318

ot

EasyEDA(Standard) 6.4.20.6 - Projects Offline mode

Wiring Tools -—

4 STD e I ace ormal ew esign 00Is abrication vance ettn el
EasyEDA =t Fie Edit PI Format View Design Tools Fabrication Ad d Setting Help
B R 5 I Q =z Uk @ab Bs | % = L ENE =D
v sy) .
Filter Start 3 final1 (3 flight_computer (3 arduinouno 3 *New Project T F X e :'EL [
pﬁw T T P T - U D . D PO I S—— P
1 4
Inductor Backgrc
1 &4
- = =
g: Canaa] \ﬁ G\ Visible ¢
MDeS\gn __0603_US_0603_EL » B\ > T Grid Co
anager LED2 LED1
Power Supply i LED-OSO?&LED-OEOLR @ 0| ey
E L2 ?&—"] M1 o () | Gdse
EELD PMALILSERVOD ArduinoNANO U
CR1220-2DC005-T2C 4 BMP180 QB | snap
| I 1-
Connect] VDD
ennector +81p13/5CK D12/MISO 2 : Y I~ i swps
L3y D11/MOSIH% GND
Library 8 arer pioH3 5 Alt Snag
19 a0 Doz scL
R-M-2.54_R-F-254_ [] a1 {,:"‘«:} D8 - T Mouse-
—_— £ A2 D. SDhA
o A
wg A T s 22143 D6 — Mouse-
BE == 3 8
LCsC :-: :.: - 4 :; BZ Vi Mouse-|
Pats R M-2.54_RF-254_: 22 e
] 26 2? Bg o Mouse-|
ol £+ 5v GND 4
15 SE{RESET RESET -5—
JLCPCB N-TH_2P-F-IDC-2 54] <5 GND DO/RX [=—
- =201vin D1/TX H—
@ .. & F ARDUING_NANO
DB9_Male3-Type-A_\ 1 uz
Support
Switch/Key 1
e gl g
3 6x6 1_SK-12D02-V(]
Diodes -
.
L D 1
ED-0603_f 1N400TW 1 *Sheet_1 +
Transistor o
B O Type here to search Q o e ™ hd H 0 ¢ . 28°C lightrain ~ O mO 7 Q0 E

Figure 27: Basic flight computer

else Serial.println("error starting pressure measurement\n");

}

else Serial.println("error retrieving temperature measurement\n");

}

else Serial.println("error starting temperature measurement\n");

}

But the flight computer can me made with out MPU6050 and SD card.The circuit
diagram is given in figure 28. Here is the final code of the alternative /easy fight

computer:

#include <SFE BMP180.h>
#include <Wire.h>
#include <Servo.h>

// You will need to create an SFE BMPI180 object , here called "pressure':

SFE BMP180 pressure;

5

6

19

21

23

29

37

39

41

47

Servo servo;

int GREENLED=9;

int REDLED=10;

int Check downs = 0;

double baseline; // baseline pressure

void setup ()

{

Serial
Serial

// Initialize the sensor (it is important

.begin (9600) ;
.println ("REBOOT") ;

stored on the device).
pinMode (REDLED,OUTPUT) ;
pinMode (GREENLED, OUTPUT) ;
if (pressure.begin()){

Serial.println ("BMPI80 init

}

else

{

Serial.println ("BMP180 init fail (disconnected?)\n\n");

while (1); // Pause forever.

// Get the baseline pressure:

baseline = getPressure();

Serial.
Serial.
Serial.
Serial.
Serial.
Serial.

Servo .
Servo .

}

print ("baseline pressure: ");
print (baseline);

println (" mb");

print ("baseline pressure: ");
print (baseline /33.864,0);
println (" Inhg");

attach (5);

write (90); //sets servo to its midpoint

void loop ()
{servo.write(90);
delay (10) ;

double

a,P,al,a2,P2,Difference;

// Get a new pressure reading:

// Show the relative altitude difference between
new reading and the baseline reading:

// the
//a =

pressure . altitude (P, baseline);

o7

calibration

success");

61| //Serial.print("relative altitude: ");

/)it (a >= 0.0) Serial.print(" "); // add a space for positive numbers
63| //Serial.print(a,l);

//Serial.print (" meters, ");

65 /)it (a >= 0.0)

Serial.print (" "); // add a space for positive numbers
671 P = getPressure();
6o al = pressure.altitude (P, baseline);

71| delay (3000);

3| P2 = getPressure () ;

75| a2 = pressure.altitude (P2, baseline);
77 Difference = a2 — al;
if (abs(Difference) > 1) {
79 it (Difference < 0) Check downs =t 1;

if (Difference > 0) Check_downs = 0;
81 }

83 Serial.print ("Start >");
Serial.print(al);

85 Serial.print (" meter >");
Serial.println (a2);

87
Serial.print ("Difference: ");

so] Serial.print(al — a2);
Serial.println ("meters");

91 Serial.print ("Check downs : ");

Serial.print (Check downs);
93 Serial.println () ;

95| if (Check downs =— 3) {
servo.write (90) ;

97 digitalWrite (REDLED,LOW) ;
digitalWrite (GREENLED, HIGH) ;

}

101 else
{ digitalWrite (REDLED,HIGH) ;
103 digital Write (GREENLED,LOW) ;

}
15| delay (1000) ;

107 }

99

109

double getPressure ()

111 {

o8

113

117

119

121

123

127

129

131

133

135

137

139

141

143

147

149

char status;
double T,P,p0,a;

status = pressure.startTemperature();
if (status != 0)

// Wait for the measurement to complete:

delay (status);

status = pressure.getTemperature(T);
if (status != 0)

{

status = pressure.startPressure(3);

if (status != 0)

{
// Wait for the measurement to complete:
delay (status);

// Retrieve the completed pressure measurement:

// Note that the measurement is stored in the variable P.

// Use &P’ to provide the address of P.

// Note also that the function requires the previous temperature
measurement (T).

// (If temperature is stable, you can do one temperature
measurement for a number of pressure measurements.)

// Function returns 1 if successful, 0 if failure.

status = pressure.getPressure (P,T);
if (status != 0)
{
return (P);
}

else Serial.println("error retrieving pressure measurement\n");

}

else Serial.println("error starting pressure measurement\n");

}

else Serial.println("error retrieving temperature measurement\n");

}

else Serial.println("error starting temperature measurement\n");

}

29

	Introduction
	Material used
	What constitute a model rocket?
	Different parts of a rocket
	MECHANICAL DESIGN OF DEPLOYMENT SYSTEM
	Mechanical Structure Of the rocket
	Design and analysis of different parts of a rocket

