

Vout = 15.5V lout = 0.2A

VinMin = 3.0V Device = LM3410YMF Topology = Boost Created = 9/14/12 2:59:32 AM VinMax = 4.3VBOM Cost = \$0.00 Total Pd = 0.45 W Footprint = 195.0 mm2

BOM Count = 17

WEBENCH ® **Design Report**

Design: 3491240/10 LM3410YMF LM3410YMF 3.0V-4.3V to 15.69V @ 0.2A

Electrical BOM

# Name	Manufacturer	Part Number	Qua	anti R rice	Properties	Footprint
1. Cin	MuRata	GRM21BR60J226ME39L Series= X5R	1	\$0.05	Cap= 22.0 µF ESR= 9.0 mOhm VDC= 6.3 V IRMS= 3.5 A	0805 13mm2
2. Cout	TDK	C3225X7R1E106M Series= X7R	1	\$0.18	Cap= 10.0 µF ESR= 2.7 mOhm VDC= 25.0 V IRMS= 3.0 A	1210 23mm2
3. D1	Diodes Inc.	B230A-13-F	1	\$0.09	VF@Io= 500.0 mV VRRM= 30.0 V	SMA 37mm2
4. D_LED	CUSTOM	CUSTOM	10	\$0.00	LED	CUSTOM 0mm2
5. L1	CUSTOM	CUSTOM	1	\$0.00	L= 27.0 μH DCR= 12.185 mOhm	CUSTOM 0mm2
6. Renable	Vishay-Dale	CRCW0402100KFKED Series= CRCWe3	1	\$0.01	Res= 100.0 kOhm Power= 63.0 mW Tolerance= 1.0%	0402 8mm2
7. Rsns	Rohm	MCR25JZHFLR910 Series= 298	1	\$0.04	Res= 910.0 mOhm Power= 500.0 mW Tolerance= 1.0%	1210 23mm2
8. U1	Texas Instruments	LM3410YMF	1	\$1.11	Switcher	MF05A 0mm2

Operating Values

#	Name	Value	Category	Description
1.	Cin IRMS	45.036 m A	Current	Input capacitor RMS ripple current
2.	Cout IRMS	446.3 m A	Current	Output capacitor RMS ripple current
3.	IC lpk	1.272 A	Current	Peak switch current in IC

#	Name	Value	Category	Description
4.	lin Avg	1.197 A	Current	Average input current
5.	L lpp	156.008 m A	Current	Peak-to-peak inductor ripple current
6.	LED lavg	208.791 m A	Current	LED Average Current
7.	LED Ipp	8.665 m A	Current	LED Ripple Current
8.	M1 Irms	1.09 A	Current	Q lavg
9.	BOM Count	17.0	General	Total Design BOM count
10.	FootPrint	195.0 mm2	General	Total Foot Print Area of BOM components
11.	Frequency	525.0 k Hz	General	Switching frequency
12.	IC Tolerance	12.0 m V	General	IC Feedback Tolerance
13.	M Vds Act	220.407 m V	General	Voltage drop across the MosFET
14.	Mode	CCM	General	Conduction Mode
15.	Pout	3.138 W	General	Total output power
16.	Total BOM	\$0.0	General	Total BOM Cost
17.	D1 Tj	32.5 degC	Op_Point	D1 junction temperature
18.	Vout OP	15.69 V	Op_Point	Operational Output Voltage
19.	Cross Freq	13.437 k Hz	Op_point	Bode plot crossover frequency
20.	Duty Cycle	83.253 %	Op_point	Duty cycle
21.	Efficiency	87.4 %	Op_point	Steady state efficiency
22.	IC Tj	65.164 degC	Op_point	IC junction temperature
23.	ICThetaJA	118.0 degC/W	Op_point	IC junction-to-ambient thermal resistance
24.	IOUT_OP	200.0 m A	Op_point	lout operating point
25.	LED Rd	1.1 Ohm	Op_point	LED DynamicResistance
26.	LED Vf	15.5 V	Op_point	Total LED Forward Calculated Voltage
27.	Phase Marg	21.353 deg	Op_point	Bode Plot Phase Margin
28.	VIN_OP	3.0 V	Op_point	Vin operating point
29.	Cin Pd	18.254 μ W	Power	Input capacitor power dissipation
30.	Cout Pd	537.795 μ W	Power	Output capacitor power dissipation
31.	Diode Pd	100.0 m W	Power	Diode power dissipation
32.	IC Pd	298.012 m W	Power	IC power dissipation
33.	L Pd	17.403 m W	Power	Inductor power dissipation
34.	LED Pd	3.1 W	Power	LED Power Dissipation
35.	Rsense Pd	36.4 m W	Power	LED Current Rsns Power Dissipation
36.	Total Pd	452.39 m W	Power	Total Power Dissipation

Design Inputs

#	Name	Value	Description
1.	lout	200.0 mA	Maximum Output Current
2.	lout1	200.0 mAmps	Output Current #1
3.	VinMax	4.3 V	Maximum input voltage
4.	VinMin	3.0 V	Minimum input voltage
5.	Vout	15.5 V	Output Voltage
6.	Vout1	15.5 Volt	Output Voltage #1
7.	application	LED_DRIVER	LED Application
8.	base_pn	LM3410Y	National Based Product Number
9.	LED_Architect	N	LED Architect Project
10.	ledparallel	2.0	Number of LED in parallel
11.	ledpartnumber	Custom	LED Part number
12.	ledseries	5.0	Number of LED in series
13.	line_fsw	60.0	AC Line Frequency
14.	source	DC	Input Source Type
15.	Та	30.0 degC	Ambient temperature

Design Assistance

1. LM3410Y Product Folder: http://www.ti.com/product/LM3410Y: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.